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DISJOINT PATHS IN A RECTILINEAR GRID

Andris FRANK*
Dedicated to Tibor Gallaj on his seventieth birthday
Received 16 November 1981

We give a good characterization and a good algorithm for a special case of the integral
multicommaodity flow problem when the graph is defined by a rectangle on a rectilinear prid,
The problem was raised by engineers motivated by some basic questions of constructing printed
circuit boards.

1. Introduction

One of the central topics in graph theory concerns the existence of disjoint
paths under various constraints. Basic results are due to Gallai [3, 4], Tutte {13],
Menger [10), K6nig [6], Mader [9], Scymour [12], Lovisz [8]. In the present paper we
discuss the following problem in this field.

Given an undirected graph, find & edge-disjoint paths between % pairs of ver-
tices specified in advance. This problem, often called the disfoint paths problem,
is a specialization of the integral multicommodity flow problem which belongs to the
hard class of NP-complete problems even if k=2 5.

For the disjoint paths problem there is a good characterization, due to Seymour
[12], for k=2, but the question is open for any fixed k=3 [5]. However, the follow-
ing special case, related to wiring problems of printed circuit boards, can be well-
characterized. The proof also provides a goad algorithm.

In a rectilinear grid (or plane lattice) we are given a closed rectangle T (boun-
ded by lattice lines) and k pairs of distinct lattice points of the boundary. T defines
a finite subgraph G of the plane grid in the natural way (which has ».m vertices when
m horizontal and » vertical lines intersect T). The purpose of this paper is to give an
answer to the disjoint paths problem in this special case.

The problem was formulated by I. Abos, an electrical engineer who (with
his co-workers) worked out a general computer program for designing printed cir-
cuits boards [1].

* Research partly supported by Sonderforschungsbereich 21 (DFG), Institute fiir Operat-
ions Research, Universitit Bonn, West Geérmany.
AMS subject classification (1980): 90 B 10, 68 C 25; 68 E 10,
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It should be noted that the engineering literature is quite rich in works concern-
ing such designing questions and a large number of models, approaches, and algo-
rithms are offered. However, the great part of these procedures uses heuristics and
a typical conclusion of such a paper is that “the computer program was able to cons-
truct 90—95 per cent of the wirings”. Of course, such programs may work quite well
in practice, but mathematically well-founded models may help to reach further impro-
<oEo=ﬂ_mn._ the mathematical context our problem is strongly related to that of Oka-
mura and Seymour {11]. The precise relationship will be discussed in Section 4.

In the first part of the paper we consider the even more special problem when
one member of each pair is on the upper horizontal line while the other one is on the
lower line. We refer to this case as bipartite. The non-bipartite case, c.c_uou the termi-
nals are allowed to be arbitrarily positioned on the boundary of T, will be presented
in Section 3. L ) al

By a column (row) of T'we mean a region in Hvo:.znnu two consecutive vertica
(horizontal) lattice lines. The path congestion (or aaaw&.:ﬁ:v of a column ¢ is the num-
ber of terminal pairs separated by ¢. We call a lattice point exposed if it is not a ter-
minal., An obvious necessary condition for a solution is the h&naﬁ criterion: the
congestion of any column is at most m, the number of horizontal lines.

2. The bipartite case

Unfortunately the column criterion is not sufficient in general, as each of the
next examples shows.

12 ] 2 1.2 3 1 2 2 4 5 7
O OO
21 2 1
231 2563 714
Fig. 1

Surprisingly, a small restriction makes the colymn criterion sufficient. Namely,
we have the following result.

-

Theorem 1. If at least one corner point of T is not a terminal vertex, the column criterion
is necessary and sufficient for the existence of edge-disjoint paths between the corres-
ponding terminals.

=(1, m)
Proof. We prove the suffiency. Suppose that the H.o.E. corners of T are A=(1,m),
B={(n,m), wuuﬁaa. 1), D=(1,1). For a terminal pair i let .QS and L(i) denote the
x-coordinates of the upper and lower member of i, respectively. We shall adopt the
notational convention that the x-coordinate of a point P wiil be denoted by the same

term P. . .
It may be assumed that m is equal to the maximal congestion 4. We proceed by

induction on m. The case m=1 being trivial, let
upper corner of T) is exposed.

m>1. Assume that point 4 (the left
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We can assume that L(i)# U(i), that is no trivial path exists. For otherwise,
join them by a vertical path, then remove this lattice line from the rectangle. In the
reduced problem the column criterion holds again and A is also exposed.

The algorithm will consist of m phases. During each phase, both the number
of horizontal lines and the maximal congestion will be reduced by one. We describe
and analyse only the first phase. This will result in a sequence U’ () (i=1,2, ..., k)
of distinct points which tells path / where to go to on the upper line. In particular,
U’ (1)=U() means that path ; will start vertically down.

In order to have a valid algorithm and proof, the sequence U’ (i) (i=1, ..., k)
must be determined in such a way that the induction hypothesis should hold for the
terminal pairs U”(f), L{) (i=1,2, ..., k) on the rectangle T’ consisting of one less
horizontal lattice line (i.e. the corners of T° are A'=(I,m—1), B =(n,m-1),
C=(n, 1), D=(1,1)). In other words, the new maximal congestion should be m—1
and one corner point of T” must be exposed again.

Our procedure has the feature that the upper corner points are alternately
exposed, that is, at the end of the first phase the right upper corner of T” will be expo-
sed, after the second phase the left upper corner will, and so forth.

A path i is said to be a lefi-path (right-path) if U@)=L(E) (U(H)<L(i)). Let
X, ¥ be two points on segment AB with X< Y. The basic step of our procedure is:
“left-pushing” on XY. Assume that X is exposed. An elementary lefi-pushing on XY
tells a single left-path how to go on the segment X'Y. Decide whether there exists a left
path i for which X<U(i)=Y and if so, select one, say j, for which L{) is as small
as possible. (If no such path exists, the elementary left-pushing is called vanishing.)
Set U'(j)=X if L(j)=X and U'(j)=max(Z: X=Z=L(j),(Z, m) is exposed)
if L(j)>X,

Note that U’( ;) is well-defined since X was exposed. Furthermore j becomes
trivial for the second phase if Z=L{j) and becomes a right path if Z=<L(f). In
this latter case the congestion of columns between Z and L{j ) has been increased by
one. Moreover, by the minimality of /, each point Z+1, 242, ..., L{j) on the upper
line is a terminal of a right path.

A left-pushing on XY tells several left-paths how to go on the segment XY,
First, apply an elementary left-pushing on XY. Assume that path j has been moved
to the left. Then the point X’=U/(j) on the upper line has become exposed. Apply
now an elementary left-pushing on X*Y and repeat this procedure until the actual
left-pushing is vanishing.

An elementary right-pushing is defined analogously.

The first phase of the algorithm consists of iwo parts. First, apply a left-push-
ing on the whole A B. In the second part consider each maximal subsegment XY of AB
which has not been covered by any path in the first part and put ¥'=max (Z: X=
=Z=Y,(Z, m)is exposed). (By definition of a left-pushing, X has been exposed and
thus ¥’ does make sense.) For each XY’ apply a right-pushing on X¥”,

The description of the first phase of the algorithm is now complete. We set
U'(j)=U(j) for each path j having not appeared in the left or right-pushing of the
first phase.

To prove the correctness of the algorithm, first observe that U’(H)= U7 ()
when i/ and the subpaths which have been defined on 4B are edge-disjoint. Furt-
hetmore, one can see that, after deleting the trivial paths which have arisen, the right

3
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upper corner of the rectangle is exposed. Let us prove now that the maximum con-
gestion in the reduced problem is one less. . . .
The congestion of any column was changed by 0, +1 or —1. First, consider
those columns whose congestion increased by one. This might occur oa_w in Part
1, if, while accomplishing an elementary left-pushing on XY, we had L(}) V.w. and
L(/)>2Z. As mentioned, the congestion of each column between Z and L( )} has

increased by 1.

Claim 1. The original congestion of any column between Z and L( f) is at most A-2.

Proof. Since the points (L(/),m) and (L(j), 1) are terminals of a right-path
and a left-path, me@oﬁ?n:m. dmo rmﬁw L{H)—1, L{N=c(L{(H, L(N+]1)-2=4-2
where ¢(S, S+ 1) stands for the congestion of the column ,c@ming S m:n._ S+1.
We know that all points Z+1, ..., L{j) on the upper Ego are Rqanm_m of
right paths. Therefore ¢(Z, Z+1)=c(Z+1, Z+2)=.. . Sc(L(H)—-1L L(j)=4-2,
as required. |}
The congestion of any column, which separates the terminals of a left-path, is

reduced by 1 in the first part. So we have to deal with the Emiam\_ segments X ¥ which
have not been covered in the first part. Recall the definition of ¥”.

Claim 2. The (unchanged) congestion of each column between Y’ and Y is less than 4.

Proof, For ¥’ <Z <Y each point (Z, m) is a terminal of a right path and thus
(Y, Y +D)=c(¥'+1, Y +2)=..=e(¥—1, 5 One can see that the point (¥, m)
was originally exposed. We have three possibilities for ¥,

(i) ¥Y=B5,thatis Y is the right upper corner of T. Then

ce(Y—-1,Y)=1=<m=A4,
(i) (Y, I)is a terminal of a left path in which case
c(Y=1Y)=<e(Y,Y+1) = 4,
(iii) (¥, 1)is not a terminal of a left path and ¥—<n. By Claim 1
oV, Y+1)=4-2.
Since c(¥—1, ¥)=c(Y, Y+1}+1 the claim follows. ]
Claim 3. The new congestion of any column between X and Y’ is at most 4—1.

f. Assume that the column (Z, Z+1) violates the claim (X=Z<7¥"). Then
MUN_.H.M._; 1) originally separates 4 terminal pairs of right paths. If anyone of these has
an upper terminal U(f)>X then one path has crossed the column (Z, Z+ D in the
second part of the algorithm and therefore the new congestion of (Z, Z+1) is less

contradicting the assumption.
than m_wu the other awmn U Qv.n% for all the 4 (right) paths i separated by (Z,Z+1).
Then X can not be A and (X, m) is a terminal of a left path while (X, 1) not. Hence
(X1, X)=c(Z, Z+1)=4, a contradiction. [

DISJOINT PATHS IN A GRID 365

The proof of Theorem 1 is now complete. |

Remark. Observe that a non-boundary vertical lattice line can be deleted if no ter-
minal point is on it since the column criterion continues to hold. So we can assume
that m=k, n=2k. Therefore the complexity of the algorithm depends only on k and
not on m and x.

Theorem 1 does not answer the case when none of the four corners is exposed.
In the first three examples in Figure 1 the reader can easily convince himself or herself,
that no solution exists. But what simple reasons may prove the non-existence of the
solution in the fourth example? Theorem 2 provides an answer. In order to incorporate
Theorem 1, it will be convenient to consider the points {0, m), (n+1, m) as fietitious
exposed points.

Theorem 2. (a) If there is no (proper) exposed point on the upper line, the problem
has a solution if and only if each path is trivial.

(b)  Assume that there is at least one proper exposed point.

bl.  If m<A, there is no solution.

b2, Ifm=A, there always exists a solution.

b3.  If m=A4, there exists a solution if and only if there are two exposed points
(fictitious or not) on the upper line such that the congestion of any column between them
is less than 4.

(Observe that Theorem 1 is included. If m=A and 4 is exposed, the “column”
between 0 and A is of zero congestion.)

Proof. Part (a) is trivial. We have seen bl. To see b2, let (X, m) be an exposed point.
Apply a right-pushing on AX. Then we get a new problem on a rectangle of m—1
horizontal lines. But now the left upper corner became exposed and m—1=4 so
Theorem 1 applies.

b3. Necessity. Assume that the exposed points X,, X;, ..., X,y (r=1) on
the upper line are separated by saturated columns (columns of congestion A) which
are (Zy, Zy+1), ..., (Z4q, Zyyy +1). Eachof thesets {1,2, ..., Z,}, {Z,+1, ..., Z)
{Z,+1+1, ..., n} onthe upper line has the property that the number of terminals in it
and the number of edges leaving it have different parity. Therefore no solution uses
every edge leaving such a set. But the edge which is not used cannot be £, Z;+ 1)
since each edge of a saturated column must be in a path. Hence these ed ges are vertical
edges of the uppermost row (m—1, m). This row contains n vertical edges. On the
other hand, it must contain at least 7+2 edges not in any path and n—¢ edges which
are in a path. This is impossible.

Suffiency. Suppose X and Y are two exposed points not separated by saturated
columns. If Y is proper, first apply a left-pushing on Y8 then apply right-pushings on
the maximal non-covered segments of YB. If X is proper, do the same on AX by
changing the terms “left” and “right”, We get therefore a problem in a rectangle of
m—1 horizontal lattice lines in which the maximal congestion is A—1. This latter
follows from the proof of Theorem 1 applied to the segments AX and ¥B and from
the hypothesis for the segment X'Y. Moreover, the left (right) corner became exposed
if X(Y) was proper. Apply Theorem 1. ||

Return to the examples in Figure 1. The first and third do not satisfy condition
(a). The second and fourth example do not satisfy b3. (See Figure 2.)

3k
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3. The non-bipartite case

Henceforth we assume the terminals are positioned arbitrarily on the boundary
of T. Furthermore, the corners are allowed to cw mm&mnna. to two terminals. Hrm two
examples in Figure 3 may indicate some mmmwnc_nam of finding a good characterization
for this problem. One of them has a solution but the other has not.

2 3 4 5 2 3 4 5

Fig. 3

i i joi i ir by a new
We need the notion of odd sets. To this end, join each terminai pair by
edge. A subset X of vertices of G is called odd if, in the extended graph, the number
of edges (new or old) leaving X is odd. (In the sequel we do not need the new edges any
H ¢ . -
o_..mnqw& simple parity argument shows. that no solution uses every edge leaving X.
Call a cut of G saturated if its congestion is equal n“..o the number of edges in it.
R k that columns and rows define cuts of special kind.
an_.Hnﬁ {r1s rss oo, 1} bethe set of saturated rows (7 =0) and let ¢ be any column.
These define ¢+ 1 disjoint sets T on the left-hand side of ¢. See Fig. 4.

.d|d 1 "

-y

Ta

-,  {t=2}

Ta
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The number of odd sets T; is called the parity congestion of c.

The revised congestion or r-congestion of a column e is the sum of the parity
congestion and the path congestion of ¢. (Note that the r-congestion would be the
same if, in the definition of T;, we had said ‘right-hand” instead of “left-hand™.)

Revised column criterion. The r-congestion of any column is at most 7.

The revised row criterion is defined in an analogous manner.

Theorem 3. We are given a rectangle in a rectilinear grid and k pairs of terminals on
its boundary. There exist k edge-disjoint paths between the corresponding terminals if
and only if the revised row and column criteria hold,

Remark. This theorem involves Theorem 2 but its proof provides a much less efficient
(though polynomial-bounded) algorithm than that described in Section 2.

Proof. Necessity (of the revised column criterion). If T;is odd, at least one edge e leav-
ing T; will not be used in any solution. Edge e is in column ¢, for othervise ¢ would be
in a saturated row which is impossible. Therefore the number m of edges in ¢ should
be at feast the number of 0dd sets T} plus the congestion of ¢, 1.e. at least the r-congest-
ion of ¢,

Sufficiency. The theorem is trivial for m=1, or n=1 so suppose that m, a>1.
First we prove the theorem when there are no odd sets at all. In this case the congest-
ion and r-congestion are the same. Instead of rectangles, we prove the assertion for
n-rectangles. By a near-rectangle or n-rectangle we mean a region R bounded by the
segments AY, YX, XB, BC, CD, DA where A=(l, m— D, Y={y,m-1), X=
=(v,m), B=(n,m), C=(n1), D=(1,1). Here n>v=1 and m=2, See Fig. 5.

X B

Y

Fig. 5

The row (colurnn) criterion is now slightly modified: the congestion of any
row (column) r should be at most the number of edgesin r,

The convex corners 4, X, B, C, D may be assigned to either two or no termi-
nals. The corner ¥ is assigned to no terminal and any other point of the boundary
is assigned to exactly one terminal. We say that an a-rectangle is satisfactory if these
assumptions and the row and column criteria hold.

Lemma. In satisfactory n-rectangles there exist edge-disjoint points between the cor-
responding terminals.

Proof. By induction on the area of R (which is integer). We are using a ‘cutting off®
operation at X which replaces R by R’ defined by X~ ‘=(v+1l,m) Y'=(v+1,m-1),
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A’=A, B=B, C'=C, D’=D if v<n—1 and by A'=4, B’=(m—1,n), C’=C,
D’=D if v=n—1. Morcover, a cutting off operation may change some terminals and
introduce some new ones. Our general strategy is that we determine a cutting off
in such a way that R’ should be satisfactory and a solution in R’ (that we have by the
induction hypothesis) should imply a solution in R. .
For a terminal pair 7 let i(1) and i(2) denote the two members om. L )
For two points ¥, W=X of the boundary we say that W<"V if XWV is

clockwise on the boundary.

Case 1. X is not exposed. Then two terminals are in X, say RGH&.CVHN 3 Suppose
that i(2)="(2). Set i(1):=X" and j(1):=Y if v<n—1 and i(1):=8, j(1):=
i=(n—1,m—1) if v=n.

Claim. R’ is satisfactory.

We prove the row and column criteria. The only row which can S.cES.Eo
row criterion is (m—1, m). In this case j(2) is on the segment X"B and so is (.
Furthermore this row was saturated in R. But this is impossible.

The only column which can violate the column criterion is c¢=(v, v+1).
Then both i(2) and j (2) are on the left hand side of ¢ and ¢ was saturated in R. This
is impossible if v=1. If v=1, the congestion of the noEE..y (v—11v)is m»._n.mmn that
of (v, v+1), thatis the column (v—1, v} was oversaturated in R, a contradiction. | |

From a solution in R’ we obtain one in R by extending the paths i and j with
the edges (X, X") and (¥, X)), respectively.

Case 2. X is exposed.

Subcase 2.1. Neither the column (v, v+ 1) nor the row (m—1, m) .mm saturated. i
Cut off X and let / be a new terminal pair with i(1)=2X", i(2)=Y. Obviously
R’ is satisfactory and omitting the path 7 from the solution in R’ we obtain a solution

in R.
Subcase 2.2. The row (m—1, m) is saturated.
Then there is no terminal pair j with both j(1) and j(2) on E.n segment XB.

For notational convenience suppose that j (2) is not on X, B) m.om. any s._..nn y<=n—1.
Choose the terminal pair i in such a way that /(1)is on X8 and n, J(l)is on XB En:
i(2)=’j(2). Cut off X and replace the terminal pair { by #* and i” where i (DH=i(1),
=X, (=Y, "Q)=i(2). . N

¢ If v=n—1 then i(1)=j(1)=B for some i and j. Suppose that {(2) =7/ (2).
Cut off X and set i(1):=(n, m—1), j()=Y.

Claim. R’ is satisfactory.

Proof. The only danger may arise when X is less than the X-coordinate of i(2) and
there is a column ¢ separating X and i(2) such that ¢ was saturated in R. But the choice
of i implies that j (2) is on the right-hand side of ¢ whenever j (1) is on XB. Thus the
congestion of ¢ may be at most m—2. |j

From a solution in R’ we obtain one in R by gluing the paths #*, YXY”, i”.

DISIOINT PATHS IN A GRID 369

Subcase 2. The column ¢=(v, v+ 1) is saturated but the row (m—1, m) is not.

Suppose that j (1) is on the right-hand side of ¢ and j (2) is on the other for all
JED, where @ denotes the set of terminal pairs separated by ¢.

Choose i€ Z in such a way that j(1)="i(1) forany je&.

Cat off X and replace i by i and i” where #(1)=i(1), 'Q=Y, i"1)=X",
i"(D)=X". (The case y=n—1 is left to the reader.)

Claim. R’ issatisfactory.
If U is a member of a terminal pair, denote the other by +{U).

Proof. The only danger may arise when #(1) is on CD and there is a row r=
={u, u+1) above (1) and i(2) which was saturated in R. By a simple induction we
can prove that each column is saturated on the left-hand side of ¢ and #(k, 1) is on
the right-hand side of ¢ for k=1, 2, ..., v. Consequently the column (1, 2) is satura-
ted, there are two terminals in D and no terminal in C and no terminal pair j with
J{(1), j (2) on CD. Using this, it can be shown that each row above r is saturated contra-
dicting the assumption that (m—1, m) is not saturated. |

From a solution in R” we obtain one in R by gluing the paths #, YX¥’, .
The proof of the lemma is complete. ||

Turning to the general case, observe that a set is odd if and only if it contains
an odd number of odd vertices. Furthermore, in our case only the vertices on the
boundary may be odd. What we are going to show is that there exists a pairing of the
odd vertices such that the column and row criteria will hold if these pairs are consi-
dered as new terminal pairs to be connected. In this case the Lemma can be applied.

Suppose that the saturated rows and columns are ry,ry, ..., 7, (¢=0) and
€1, €35 .0y € (§=0), respectively. These rows and columns divide the graph into
(r+1)- (s+1) disjoint parts P,. It can be seen that each set P; is even. Condiser one
P;in which the odd points are X, X;, ..., X; (k is even) in this orde ron the bound-
ary of T. Pair them in the natural way, that is, the pairs are X, X,, X;X,, ..., Xi_1X;.

Claim. The row and column criteria hold if these pairs are new terminal pairs to be
connected.

Proof. We prove the column criterion. Let ¢ be any column. If ¢ is saturated then it
does not separate any new pair and thus ¢ will satisfy the column criterion.

Let ¢ be not saturated. Assume that ¢ separates at most two new pairs. In this
case ¢ will violate the column criterion only if its congestion is one less than m and ¢
separates exactly two new pairs. But this is impossible because of parity reasons.

If ¢ separates more than two new pairs then £=0 and s=0,

Observe that in one P, there may atise at maost one new pair which is separated
by ¢ and one does arise if and only if the corresponding T (see Figure 6) is odd. This
means that the number of new pairs separated by ¢ is just equal to the parity conges-
tion of ¢. Now the revised column criterion implies the claim. |

The proof of Theorem 3 is complete. |
Turn back to the examples in Figure 3. The first example has no solution since

column ¢ violates the revised column criterion. The second example has a solution.
See Figure 7 (next page).
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Remark, The proof of Theorem 3 involves an algorithm. In the first part we have to
pair the odd vertices which is easy. The second part consists of the applications of
about m - n cutting off operations. So the complexity is proportional ta m - n compar-
ing with the algorithm in Section 2 whose complexity depends only on the number of
paths to be constructed.

Consequence. [f no saturated columns and rows exist, the problem always has a solution.

Xz X3 X X5 Xg X7 Xg Xg
X1 P T =" T~ T~ 2y
g T T T T ———————_J5
Ti \_x._
A X
2 y { 3
1 | X4

Fig. 6
Z2 3 4 5 2 3 & f
1 m.lll
¢ N. l!-o»cqn.on '
\_Ill rows
e -
5 3 hqw 2 1 4 3 2
<
4+l %6
Fig. 7
4. Planar graphs

A related result of Okamura and Seymour [11] concerns the disjoint path
problem for arbitrary planar graphs with a fixed embedding. Again, the terminals
are specified on the boundary. The cut eriterion requires that the congestion of any

cut should not exceed the cardinality of the cut.

Theorem 4. (Cf. [12.)) If there are no odd sets, the cut criterion is necessary and suffici-
ent for the existénce of edge disjoint paths between the corresponding terminals. ||

The Lemma, used in the proof of Theorem 3, can easily be derived from z..mw
theorem. Actually, the proof of the Lemma is an adaption of Seymour and Okamura’s
proof but it seemed to be worthwhile to work out the details here since the algorithm

is significantly simpler for this special case. o
It would be anice to find a common generalization of Theorem 3 and 4.
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