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A combinatorial algorithm for finding a feasible vector of the Edmonds-Giles
polyhedron is presented. The algorithm is polynomially bounded provided that an
oracle is available for minimizing submodutar functions. A feasibility theorem is
also proved by the algorithm and, as a consequence, good algerithm for finding
an integer-valued modular function between a sub- and a supermodular function is
deduced. An important idea in the algorithm is due to Schinsleben and Lawler and
Martel: the shortest augmenting paths have to be chosen in a lexicographic order,

1. INTRODUCTION

In [4] Edmonds and Giles proved a general min-max relation pertaining
to submodular functions on directed graphs. Their main result includes such
special cases as Hoffman’s circulation theorem [18], Edmonds’ matroid and
polymatroid intersection theorem [6], and the Lucchesi—Younger theorem
[20].

In [9} we described an algorithm which provided a constructive proof for
the Edmonds—Giles theorem. That procedure is not only finite but
polynomially bounded provided that a fast oracle is available for minimizing
a submodular function and that the variables x are restricted by 0 <x < I.

Among the specializations mentioned, this is the case in the matroid inter-
section problem and in the Lucchesi-Younger problem. (In fact, the main
ideas of the algorithm in [9] were first developed for these special cases; see
[10, 11].) Another special case of this kind serves as a good algorithm for
finding a minimum cost k-strongly connected orientation of an undirected
graph when the two possible orientations of an edge may have different costs
[9, 21].
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In the general Edmonds—Giles problem, however, when x is bounded by
arbitrary integer vectors f and g, ie., f<x<g the complexity of the
algorithm in [9] includes a factor proportional to the maximal absolute value
M of fand g. This more general case occurs in the minimum cost circulation
problem and in the polymatroid intersection problem.

In [9] first an algorithm was described to find an optimal primal solution
which started with any feasible solution. It then was stated that the same
aigorithm could be used for finding a starting feasible solution. However, as
Cunningham pointed out, this statement is true only for the special case of
intersecting families and not for crossing families. Furthermore, the
complexity of this feasibility procedure also includes M; i.e., it is not
polynomially bounded in the general /< x < g case.

The main purpose of the present paper is to provide a polynomial time
combinatorial algorithm for determining a feasible solution to the Edmonds—
Giles problem. In order to do this we shall use the approach given in [9] that
first considers the intersecting case, combined with an idea of Schénsleben
[23] and of Lawler and Martel [19]. Then we prove a feasibility theorem. In
Section 4 a discrete separation theorem will be derived along with an adap-
tation of the algorithm for this case. In Section 5 we reduce the general
crossing case to the intersecting case by showing how the algorithm for inter-
secting families can be used, applying it twice, in the general crossing case.
This two-step approach fills in the gap in [9] mentioned above. Finally we
show how the Lawler—Martel model can be handled by the present method
and briefly outline the relation to other models.

In [2] we described a combinatorial solution algorithm for the
optimization problem over the Edmonds—Giles polyhedron. (For a noncom-
binatorial procedure, see [16].) That algorithm heavily relies on the present
work which serves as a fundamental subroutine (like the situation in
Edmonds’ weighted matroid intersection algorithm [5], where the maximum
cardinality matroid intersection is used extensively}. See also [14].

We note that a fast oracle for minimizing submodular functions is
assumed to be available and, in calculating the complexity of an algorithm,
we consider the addition, subtraction, and comparison of two real numbers
as one step each.

2. PRELIMINARIES

Throughout the paper we work with a finite groundset ¥ of # elements. If
A SV, the complement of 4 is denoted by 4. Sets A4, B € ¥V are co-disjoint if
A and B are disjoint. Sets A, B < V are intersecting if none of A B, 4 — B,
B —4 is empty. If, in addition, 4\ B+ V then 4 and B are crossing. A
family .Z of subsets of ¥ is intersecting (crossing) if AN B, A\JB € 2 for
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all intersecting {crossing) members of 2. .# is called a ring family if it is
closed under taking any union and intersection. A set function b is
submodular on A, B if b{(A) + b(B) > b{d M B) + b{4 \J B). A function p is
supermodular if —p is submodular. Semetimes we call a pair (b,.#) a
crossing (intersecting) submodular function if .# is a crossing (intersecting)
family, b is defined on .# and submodular on crossing {intersecting) sets.

A set 4 is called a ui-set if u€ A, v& A. For a veclor z € R" and for
BcV set z(B)=Y (z(v): v € B). Obviously z is modular (i.e., sub- and
supermodular) and every modular set function with z(@) =0 comes in this
way. We do not distinguish between a modular function z with z{@) =0 and
a vector zE RY. Let G=(V,E) be a directed graph with » nodes and m
arrows. (We use the term “‘arrow” rather than directed edge.) Multiple
arrows and loops are excluded. An arrow uv enters (leaves) B Vif Bis a
vii-set (uir-set). For a vector x € R denote p,(B) =Y (x(e): ¢ enters B) and
8.(B) = p,(B). For a singleton we use p,(v) instead of p,{{v}).

Let (b',.#') be a real-valued crossing submodular function. Let 4’ be a
(0, £1) matrix the rows of which correspond to the members of %', the
columns of which correspond to the elements of E and

ap.=—1 if e leaves B,
=+1 if e enters B,

=0 otherwise.

Denote by a; the column vector of A’ corresponding to e € E. Without loss
of generality we can assume that @, V& .#'. Let f;g€ R® be two real
vectors with < g (f, g may include infinite components).

The theorem of Edmonds and Giles states that the linear system

A'x<b, f<x<g N

is totally dual integral. For total dual integrality, see also [22, 24].

First we shall be dealing with the special case of intersecting submodular
functions. In Section 5 we show how the algorithm deveioped for intersecting
submodular functions extends to the general crossing case.

3. INTERSECTING SUBMODULAR FUNCTIONS
Instead of (&', #’), let {b, #) be an intersecting submodular function and

assume that V€ .# and b(V)=0. Let the matrix 4 be defined in the same
way as A’ was.
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THEOREM 1. The linear system
Ax<b,  f€x<g, 2)
has a solution if and only if

SACELIP ACWLAMEPV (3)

whenever B ..., B, are disjoint members of £. Moreover, (2) has an integral
solution i’ b, [, g are integral and (3) holds.

If (2) has a solution, one may wish to determine the maximum value of
x(t,5,), where 1,5, is a specified arrow. This is equivalent to asking the
maximum possible lower bound f(z,s,) for which (3) holds. (It is convenient
to suppose that g(t,5,) = +00.) Thus Theorem 1 implies the following result
where the arrow f£,5, is not counted in p, and d,.

THEOREM 1A. max(x(f,5,): x s a solution to (2))=min(3 b(B,)—
pAU B+ 6,0 B;):B,...B,EL, BNB, =0 for 1 <i<j<k, and ) B,
is an sqfy-set).

Notice that the minimum is +co if, for any disjoint members B, of .# such
that (J B, is an s4f;-set , there is an arrow wv either entering (J B, with
Sf(uv) = —oo or leaving {J B, with g{uv) = +o0.

Proof of Theorem 1. Necessity. If x is a solution to (2) then we have

2 (p(B;) —0,(B)=p, AC B) -4, AC B)
Py AC B~ m%c B)).

Sufficiency. Adjoin two new nodes f,5 to & and for each v €V
construct new arrows e from v to s and from ¢ to v and set f(e)=0,
g(e) = +oo. Henceforth we consider the linear system (2) with respect to this
graph G,. Obviously it has a solution by taking, for example, x(e) to be
anything with f<x < g on old arrows and x(tv)=0, x(vs)= M for each
v €V, where M is a large enough number (for example, M = max(p (X) —
J.(X) — b(X): X € #) will do). Our purpose is to find another solution in
which x(vs) =0 for each v € V. We note that one may use other starting
solutions. Actually, in the general case of crossing submodular functions we
shall reduce the problem to an intersecting problem and then another starting
solution will be needed. In the present case, however, the new arrows v do
not play any rele and they can be omitted.

Let A (B)=p,(B) — 63(B), where p. and &} concern G,. Note that A, is a
modular function and Ax < b is equivalent to the fact that 1 (B) < b(B) for
each B € .%. A member B of .# is called b-right (with respect to x) or briefly

2 8(B)

VoA
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tight if 1,(B)=5b(B). (In {9] a somewhat confusing term “strict” was used
for tight.)

The following two simple lemmas were proved in [9].

LemMmA 1. If K and L are intersecting tight members of % then KM L
and K\J L are also tight.

If v € V is in some tight set, denote by B{v) the intersection of all tight
sets containing v. (B{v) depends on x.)

Lemma 2. (a) B(v) is tight.
(b) If a family of tight sets forms a connected hypergraph, the union is
again tight.

Let us define an auxiliary digraph H, in which three kinds of arrows may
exist (so H_ may contain muitiple arrows):

(1) e,=wuv is an arrow (called forward) if x(uv) < g{uv). Its capacity
is defined by c(e,) = g(uv) — x(uv).

(2) e;=vu is an arrow (called backward) if x(uv)> f(uv). Its
capacity is defined by c(e,) = x{uv) — f{uv).

(3) e;=uv (u+s)is an arrow {called jumping) if there is no tight
ud-set with respect to x. The capacity of e, is defined by c(e,) = min(b(B) —
A[(B):BE Z, B is a ui-set).

In particular, if x(us) > O for a new arrow us, then sz will be in H,. Or, if
v € V is not in any tight set, then v¢ will be in H,. Try to find a path in H,
from s to ¢ There may be two cases.

Case 1. There is no path from s to ¢

Let § be the subset of vertices of J reachable from s. If §= then
x{us) =0 for each u € ¥ therefore the restriction of the current solution x to
the arrows of G is a solution to (2).

If § # & then any vertex v in § is in a tight set, namely, in B(r), included
in §, that is, § is the union of tight sets. From Lemma 2b, § partitions into
disjoint tight sets B,, B,...., B,. Moreover, x(uv) = g(uv) if an arrow uv in G
leaves 5 and x(uv) =jf(uv) if uv enters S. Thus we have

S b(BY =Y (LB} — 54(B.)) = pAS) — 6,(5) — X (x{us): u € V).

This means that | b(B,) < p{lJ) B;) — d,({) B,), contradicting (3).

Observe that if the sets B(v) are available, then the sets B, can be quickly
computed since they are the components of the hypergraph -# = {B(v):
ve S}
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Case 2. In H, there exists a path from s to 1.

Let P be a shortest path from s to ¢ (with respect to the number of
arrows). Denote by 4 the minimum capacity of the arrows on P. 4 is called
the capacity of P. We see that 4 > 0. Define a new vector x':

x'(uv)=x(uv) + 4 if uwe€kEisondbP,
=x(uv)—4 if (v € E or v=ys)and vu is on P,

= x(uv) otherwise.
We call this change an augmentation.

LEMMA 3. For any member B of #, A (B) =i (B) +4 - (&(B) — p/(B)),
where o' (BX& (B)) stands for the number of fumping arrows of P entering
{leaving) B.

Proof. This is quite easy when p’(B) = &/(B) =0 and, in general, follows
by a simple induction on g/(B) + &#(B). |

LEMMA 4. x' is a solution to (2) (with respect 1o G).

Proof. Obviously we have f<x'<g Let &B)=b(B)—A(B) for
BE #. We are going to prove that &(B) - 4 < ¢(B) for each BE . #. By
Lemma 3 this implies that A,(B}< b(B) for BE .#, ie, Ax" b We
proceed by induction on the value &(B). The case &(B)=0 is trivial. Let
&(B) >0 and let uv be the first jumping arrow on P (starting at s) which
leaves B. If v = ¢ then there is no other such jumping arrow, i.e., &(8)=1
and c{ut) > 4. On the other hand c(ut) < b(B)—4,(B)=¢(B) and thus
&(B) - 4 < &(B).

Claim. 1f v+t then ¥(BU B(u))=4&(B)— 1.

Proof. Since no jumping arrow leaves B(u) and uv does not leave
BU B(u) we have &(B\UB(u)) <& (B)— 1. On the other hand if gr is
another jumping arrow on P leaving B then we claim that r & B(u) (that is,
gr leaves B\U B(u), too); in the contrary case ur would be a shortcut arrow
to P, contradicting the minimality of P.

Now we have &(B)=c(B)+ e(Bu))>e(BNBu))+eBUBu)=24+
4. (#(B)—1)=A45(B), as required. Here we made use of the induction
hypothesis for B\ B(x) and the previous claim. [

The basic idea behind the algorithm is the same as in the classical Ford-
Fulkerson maximum flow algorithm [8]. Again build up the new auxiliary .
digraph with respect to the new solution x’ to (2) and repeat the procedure
until Case 1 occurs. We have to prove that the number of subsequent

FINDING FEASIBLE VECTORS 227

augmentations can be bounded by a polynomial in |¥|. To this end, among
the various shortest augmenting paths in a given stage, we break ties by a
lexicographic ordering. (This means that the run of the algorithm will be
completely determined.) Assume that the vertices of G, have fixed (different)
indices. For notational convenience we do not distinguish between the name
and the index of a vertex. That is, for two vertices », v, ¥ > v means that the
index of u is greater than that of r.

For an intermediate solution x denote by ¢, () (r,(u)) the length of the
least length path from s to u (from u to ¢) in the auxiliary digraph H,. Call
an arrow wv in H, admissible if o u)+ 1. (v)+ 1 =0./(f). Obviously a
shortest path from s to ¢ can consist of admissible arrows only. Let us define
7, {v) as the minimum index u for which v is admissible. If no such u exists
then m{v) = co. The vertices of the augmenting path we will use are ¢, n(¢),
n{n(t),..., 5. Obviously none of these indices is co. (These vertices still do not
determine uniquely the augmenting path since from u# to v may lead three
parallel arrows in H . It does not matter which one is chosen, but the one of
maximum capacity seems to be the most natural.) Henceforth by an augmen-
tation path we mean a path defined this way. Note that a simple
madification of the well-known labelling technique finds this path.

The idea of using least augmenting paths is due to Dinitz [3] and to
Edmonds and Karp [7] and helps to solve the maximum flow problem
efficiently. The idea of lexicographic tiebreaking was suggested by
Schénsleben [23] for the polymatroid intersection problem and by Lawler
and Martel for the so-called polymatroidal flow problem {19]. Still another
application of this idea, due to Cunningham, is a method for testing
membership in a matroid polyhedron {1]. The key observation, called the
“Splicing Lemma’ by Lawler and Martel is as follows in the present context.

SpLicinG LEMMA. Suppose that ¢,(v) > o, (u) and uv is a new jumping
arrow in H,., that is, uv is a jumping arrow in H . but not in H_. There

exist two consecutive nodes v, u, of P such that v v, uu, are jumping arrows
imH, and o (w)=0v)=0v}—l=0(u)—- L

Proof. Recall that B(w) is the minimal tight set containing w (with
respect to x) if w is contained in at least one tight set; if w is not in any tight
set then let B(w) = VU {¢}. Since uv is a new jumping arrow, v & B(u). Let
X be a maximal tight uf-set such that B(u)< X and (i) for wEPM
(X — B(u)), 0,(w) < o,{u). Since X is not tight with respect to x’, by Lemma
3 there is a jumping arrow v,u, of P entering X. By Lemma I,
X' =B(v,)UX is tight. Property (i) holds for X’ since o (w)< o (v} =
o.(u,) — 1 €o,(u) whenever w € P B(v,}) — X. Thus the maximal choice of
X implies that X' is not a ui-set, i.e., v € B(v,). Hence o,(u,) =0, (v,})+ 1 =
6.(v) 2 0,(u)+ 1 which shows by (i) that u, € B(u). In other words v,v
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and wu, are jumping arrows and 6,(u) + 1 <o (1) <o (v,) + L =0,{u,} <
o (u) + 1 from which equality follows everywhere. §

LeEmMA 5. o,(w) and t (w) {w € V) are nondecreasing.

Proof. We prove the statement for o, (w). If uv is a new arrow in H,. for
which ¢, (%) < o,(v) then uv is jumping and, by the splicing lemma, ¢,(¥) =
o.(v) — 1. Therefore ¢ {w) cannot decrease. 1

By a phase we mean a maximal sequence of successive augmentations in
which #(¢) is unchanged. Obviously the number of phases is at most n.

LeEmMMA 6. In one phase n (v) does not decrease.

Proof. The only possibility for decreasing n.(v) would be a new
admissible jumping arrow ur after making an augmentation. Apply the
splicing lemma and consider those vertices v,, u; of P. Then v, v, uu,, and
v, u, are all admissible arrows in H,. Thus z,(v) <v, = n,(1,) < u, i.e., the
new jumping arrow uv does not reduce 7 (v). 1

Call an arrow on the augmenting path critical if its capacity is 4.
LEMMA 7. After making an augmentation, a critical arrow disappears
Jrom the auxiliary digraph.

Proof. The lemma is trivial if either uv is a forward or backward arrow
or #=s. Assume that uv is a jumping arrow. We prove that there exists a
uf-set X tight with respect to x’. Since uv is critical, 4 = min(b{(8) — A,(B):
B is a wi-member of #). Let B be a minimal ud-set for which
A =b(B)— 1,(B).

Claim. B < B(u).

Proof. A=¢eB)=&e(B)+e(B1)) 2 e(BNBu)+e(BUBu)) > 4+0
from which ¢(B M B(u))=4A. By the minimality of B, B =B B{u}, i.e.,
B < B(u).

The claim shows that X :=B satisfies the following properties:
(a) X is a ub-set,
(b) b(X)—A X)=4,
(c) weXnP=aJ(w)<o,(u)
Choose a maximal set X satisfying (a)-(c).
Claim. No jumping arrow gr on P enters X.

Progf. Suppose on the contrary that such a gr exists. We are going to
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show that X' = XU B(g) satisfies (a)}-(c), contradicting the maximal choice
of X.

(a) o,(@)+ 1 =0fr) <o u)=0o(v)— 1; therefore, v € B(q).

{(b) Denoting b(X)— A, (X) by e(X), we get d=¢c(X)=¢e(X)+
e(B(g)) =z e(X N B(g))+e(X’') 20+ 4, whence e(X') = 4.

{c) For we(PnB(g)—X. we have o (w)<olg)=0.(r)—
1 <o, (u).

Using Lemmas 3 and 4 we have b(X)>A,.(X)=2A(X)+4(FX)—
PXN=bX)—A+48(X) 2 b(X) from which bX)=21,(X), as
required. |l

LemMa 8. If uv is a critical jumping arrow on an augmenting path P
then uv will be no longer a jumping admissible arrow during the whole phase.

Proof. By Lemma 7 after augmenting along P, the arrow uv disappears.
At that time we had =, (v)=u; thus, by Lemma 6, 7.{v) 2 u during the
whole phase. |

Assume indirectly that later in the same phase we are making an augmen-
tation of the current x along an augmenting path P and uv becomes again a
jumping admissible arrow. Applying the splicing lemma, we see that
ug vy, =nu,)<u from which ¥ =v,, that is, uv was a jumping
arrow already in H,, a contradiction. [l

By now we have proved that within one phase an arrow may be critical at
most once. Since there may be three parallel arrows from u to v, the number
of successive augmentations is at most 3x#° in one phase and thus the overall
number of augmentations is at most 3n’. Furthermore, if the input data b, f,
g are all integral then all arithmetic is integral and thus the final x is also
integral.

In order to apply the algorithm we need an oracle which can

(A) minimize b(B) — z(B) over the ud-members of 7,

where z is an arbitrary modular function. (Note that z =2, is modular.)
With the help of this oracle we can compute the auxiliary digraph H as well
as the capacities of jumping arrows in H,. Assume this oracle is available
with complexity 7. One augmenting path and the new H,. with the capacities
can be computed in nh steps. Thercfore the overall complexity of the
algorithm can be bounded by O(n’h).
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ALGORITHM FOR SOLVING (2)
Input G =(V, E): directed graph,
& intersecting family, @ € # c 2,

b: # - R, real-valued function, submodular on inter-
secting pairs,

Le E > R, real vectors, f< g,
M: upper bound for 5(B)}, M > 0.

Output Either

X a solution to (2), integer-valued if b, f, g are integer-
valued,

or {B}:

We make use of oracle (A)

a subfamily of # which violates (3).

Step 0. Form the digraph - G,. Let x be any vector for which
J(e) < x(e) < gle) holds for arrows in E and x(e) =M for new arrows e = us

ey
Step 1.

1.1. Using oracle {A), form the auxiliary diagraph H, and compute
the capacities of its arrows.

1.2. Try to find a lexicographically minimal shortest path P from s to
¢t in H,_ by the labelling technique. If no such path exists, go to Step 2.

1.3. Compute the minimal capacity 4 of the arrows of P and update

x(e)+ 4 if e is a forward arrow on P
x{e) =1 x(e)— 4 if x is a backward arrow on P
0 otherwise.

1.4. Go to Step 1.
Step 2.

2.1, Denote by 5 the set of labelled vertices of V. If § = then the
restriction of the current x to the original arrows is a solution to (2). HALT.

2.2. If §# @, form the components B, B,,..., B, of the hypergraph
A ={B(v):v € S}; {B;] violates (3). HALT.

A slight modification of the algorithm enables us to get a solution x to (2)
which maximizes x(¢,s,) for a specified arrow #;s,. To this end we start with
any feasible solution found previously and define an auxiliary digraph in the
same way as in Section 3 except that no extra nodes and arrows are needed.

Tt T
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The algorithm consists of finding augmenting paths from s, to ¢, in the
subsequent auxiliary digraphs. The algorithm terminates by detecting either a
solution x for which no augmenting path exists in the corresponding H, or a
solution x such that K, contains an augmenting path of infinite capacity.

In the first case x is the required maximal solution and sets B, for which
we have equality in Theorem 1A can be obtained as the components of a
hypergraph formed by the tight sets in the set of reachable nodes. In the
second case the maximum is not finite.

4. SEPARATION THEOREM
As an application of Theorem 1, we prove the following result.

THEOREM 2. We are given (wo intersecting families £, &
@& 2U.P) and two functions b: # - R, p: P~ R which are sub- and
supermodular, respectively, on intersecting sets. There exists a vector m € R
such that b(B) 2 m(B) for B € # and p(P) < m(P) for PE 2 if and only if

S pPYSY b(B) (4)

holds for any disjoint members P, of .#* and B, of % such that U B, =} P,.
Moteover, if b and p are integer-valued, then m can be chosen to be integer-
valued.

(Such an m is said to separate b and p.) Note that this theorem easily
implies the next one which was proved in [9].

DISCRETE SEPARATION THEOREM. Lef % be a ring family and b and p
integer-valued functions on ¥ which are sub- and supermodular, respec-
tively, on any pair of members of 7. If p < b then there exists an integer-
valued modular function m for which p<m<b.

Progf of Theorem 2. The necessity of (4) is straightforward. The
sufficiency can be derived from Theorem 1 by a simple elementary
construction just as the Discrete Separation Theorem was proved in [9].
Namely, let ¥’ be another copy of the ground set ¥ and construct an arrow
from v’ to v for each v € V. Let %' = {P': PE #} and F = .9\ J Z. Set
S(BY="5b(B) for B€E.# and f(P'}=—p(P) for PE€ #. Then (f,#) is an
intersecting submodular function and there is a 1-1 correspondence between
the feasible solutions of the Edmonds—Giles problem defined by (f, ¥ ) and
the modular function m separating b and p. Thus the algorithm of Section 3
applies. Notice that the necessary oracle (A) for this particular Edmonds—
Giles problem is available provided that we have an oracle for minimizing
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b(B)— m(B) and m(P) — p(P) over ur-members of .# and 7, respectively,
for any modular function m.

In fact, the algorithm can be modified to work on the original ground set
V. Here we outline this adaptation of the algorithm in Section 3 (of course,
without proof). We remark that this discrete separation algorithm will be
used for finding an appropriate starting feasible solution to the Edmonds—
Giles problem in case of crossing submodular functions. See Section 3.

ALGORITHM FOR SEPARATING SUB- AND SUPERMODULAR FUNCTIONS

Input .#,.7: 2, intersecting families, @ € .2, .7,
b: .# > R, real-valued function submodular on intersecting
sets,
):H .# = IR, real-valued function supermodular on intersecting
sets,
M: nonnegative bound for which —M < p, b M.

OQutput Either

m: vector in RY separating p and b which is integer-valued if p
and b are integer-valued,
or {P;}: disjoint members of .7,
{B;}: disjoint members of .# such that JP,={B; and
Mhﬁuhv > M Emb.

We need an oracle for minimizing #(B) — m(B) and m(P) — p(P) over ui-
members of .# and .9, respectively (for any modular m).

Step 0. Choose two modular functions m, 4 so that d>0 and
pE<m<b+d (eg, m(X)=M|X|, d(X)=2M|X|). Set b':=b+d. Call a
set X b'-tight if 5'(X) = m(X) and p-tight if p(X) = m(X). Let s and ¢ be two
new vertices.

Step 1.
1.1. Using the oracle above, form an auxiliary digraph H on V'\U {s, ¢}
with the following arrows and capacities:
su: if d(u) > 0. Let c{uv) = d(ur),
uv: if no b'-tight uo-set exists in#. Let e(uv) = min(d’{B) — m(B):
B € % is a uv-set). Call such an arrow blue.
uv: if not p-tight uii-set exists in .#. Let ¢(uv) = min{m(P) — p(P):
P € .9 is a ui-set). Call such an arrow pink.

1.2. Try to find a lexicographically minimal shortest path / from s to
¢ in H. If no such path exists, go to Step 2.
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1.3. Denote by 4 the minimum capacity of the arrows on U. The
vertices of U are s = vy, ), U,y U, Uy, , = £ Update d(v ) :=d(v,) — 4.

1.4, The arrows on U are alternately blue and pink. Update m as
follows:

_ imw) if v,v,is blue,
) Im(v,)—4 if wv,v,is pink.

For i > 2 increase or decrease m(v,) by 4 according to whether v, is entered
by a pink or blue arrow on U.

Go to 1.1.

Step 2.

2.1. Denote by S the set of labelled vertices of V. If S = , the current
m satisfies the requirements since now d = 0. HALT.

2.2, If § #@, the components B, B,..... B, of the hypergraph -#; =
{B(v):v € S} partition S, Also, the components P,,P,..,P, of the
hypergraph #; = {P(v): v € §} partition §. The sets {B;} and {P;] violate
(4). HALT.

5. CROSSING SUBMODULAR FUNCTIONS

We turn to the original problem when (&', %) is a crossing submodular
function (&, V& .%'). The rough idea is that there exists an intersecting
submodular function (b, #) which determines the same Edmonds—Giles
polyhedron as (b’,.%#') and then the algoritlimt in Section 3 can be applied.

Let us define Z=(X:X#@, X=X, X,€2", X,NX,=0}U {V}i.
Let b(X)=min(Xb'X):X=NX, X €2, Xnk=@) for
Xc#— |V} and B(V)=0.

Lemma I was proved in [9].

LEMMA 1. (b, .F) is an intersecting submodular function.

LEMMA 2. For a vector y € RY with y(V) =0,

(i) y(B)< b'(B) for each BE ' [ and only if
(i) »(B)< b(B) for each BE . 7.
Proof. Since #' < # and b(B) < b'(B) for B € .%' the “if”’ part follows.

On the other hand, given a vector y satisfying (i) and BE.Z, B# V, we
have b(B)=3b0'(B) 22 b(B) >3 y(B)=—X y(B))=—»(U B;)=y(B)
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for some B,E @', where B=(\B, and B,NB,=@. For B=V, b(B)=
yB)=0. 1

Applying Lemma 2 to y =1, we get

CoroLtary. (b, #) and (b', F') define the same Edmonds-Giles
polyhedron.

These lemmas enable us to formulate the feasibility theorem for the
crossing case.

THEOREM |’ The linear system {1) has a solution if and only if
pAUB)—3,(UB)<Y ¥ (By) (5)

for any disjoint nonempty sets B, (possibly not in #’), where each B, is the
intersection of pairwise codigjoint members By of #' (j=1,2,..k)
Moreover, if b', [, g are integral and (5) holds, (1) has an integral solution.

We note that Theorem 1A can be extended analogously.

Having the Edmonds—Giles polyhedron in an intersecting form one can try
to apply the algorithm of Section 3 to this (4, #). The only question is
whether oracle (A) for (b, .#) is available provided that the same oracle is
available for (»’,.#') (when it is denoted by (A’)). There is a small difficulty
here to be overcome. In the algorithm of Section 3 at the beginning two extra
nodes and a set £, of new arrows were adjoined to & and then a starting
solution x € R®YFr was easily found. The difficulty now is that we do not
seem to have a method to determine min (B} — A,(B) over ui-members of
% by using oracle (A’) for arbitrary x. In Lemma 3, however, we shall see
that such a method exists if x has the additional property that A.(V)= 0.
Therefore we need a precalculation to determine such a starting solution x
and later, during the subsequent augmentations, this property of x has to be
maintained.

Let x, € RF be an arbitrary vector with /< x, < g. In the first step we find
a vector zo € R such that z,(V) =0 and z,(B) + 4, (B) < b'(B) for BE #".
This is carried out by the discrete separation algorithm given in Section 4 as
follows.

Choose an arbitrary node r&V and set .# =|B:BE.2', r& B},
#={V—B:B€ #',r € B}. Also define b,(B) = b'(B) — 4, (B) for BE .#,
and p(P)=—b'(V — P)+ 4, (V — P) for P€ .7 Obviously, #,, 5" C 2v-r
and (b,,.%,) and (p, #) are intersecting sub- and supermodular functions,
respectively. In order to get a separating modular function m& R V=r apply
the discrete separation algorithm to these functions. Observe that the
necessary oracles for this algorithm are available if oracle {A) is available
for 5'. Namely, minimizing 5(B) — m(B) (m € R*~") over u-members of .,
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is equivalent to minimizing »(B) — m’(B) (m’ € R") over uf-members of . %",
where m'(x) = m(x) for x € V — r and m'(r) is a large enough number. The
oracle for p can be obtained analogously.

Suppose the algorithm terminates by detecting sets B,,B,,., B, and
P, P,,.. P, violating (4). This means that (i) ¥ b'(B;)+ 3 b'(P;)) <O.
Choosing B,,,=V-—-U(Bpi=1..,k)., (5) does not hold for
B,,B,..,B,,B,,, since in this case each B;({ = l,... k) is a member of ..#’
while B,,, =) (P;:f= ..., 1) and in (5) we get from (i) that " 5(B;;) <0
while, because ) (Bi= L., k+ 1)=V, p{l) B))=d,( B))=0.

Assume now that (4) holds and the algorithm finds a separating vector
mER"™". Let z, € R be defined by z,(v)=m{v) if t € ¥V —r and z4(r) =
—m(V —r), Then z, satisfies the requirements, i.e., z,(¥)=0 and z,(B) +
A (BYSb'(B)for BE. D",

As in Section 3 adjoin to G two extra nodes s, ¢ and new arrows vs,
(v € V). This time, however, set x = (x,, x,), where x, is as above, x,(vs) =
—zo(v) if 24(v) < 0, and x,(tv) = z,(v) if z,(v) > 0. (Other new arrows can be
omitted. )

Let A (B)=pi{B)— 6.(B), where p! and 4, concern the enlarged graph.
Observe that A, =z,+ 4, and thus x is a solution to (2) such that
A1) =0.

Now we show that the necessary oracle is available for such an x. Let y be
a modular function such that y(@)=p(¥)=0 and y(B)< b'(B) for each
B €.#'. The next lemma, when applied to y =4,, shows that min(b(B) —
A (B)) over ut-members of .% can be computed with the help of eracle (A').

Lemma 3. Given (b, . %), y as above, and u, v € V, we have min{b({B) —
v(B): BE€ #, B a uv-set)=min{b'(B)— y(B): B€ %', B a ut-set).

Progf. Let y and y’ be the minimum values of the left- and right-hand
sides, respectively. Since .#' . % and b»'(B)} = b(B) for B € #', we have
7" > 9. On the other hand let B be a ui-set in .# for which y = b(B) — y(B).
Then b(B)—p(B)=2 (b'(B;):i=1,.,k)—p(B)=2 (b'(B)) - »(B))) for
some B,&.#' (i=1,., k) with B,M B,=. Here we used that y(B)=
=3 ¥(B;}=Y ¥(B,). Among these sets B, one is a ui-set , say B;; thus
b'(B,}--y(B,) > b(B,)—y(B,) > y. Hence y = b(B)—y(B) = b'(B,) —
YB)+ X '(B) —yBy):i=2,3,..k) > bB,)~yB,) >y  whence
b (B} —y(B,) =1 as required. [

Observe that an augmentation provides another vector x’' = (x3, x}) for
which A_.(V)=0. This is so because, since b(}V} =4, (F}=10, no jumping
arrow enters or leaves ¥ in the auxiliary digraph. Therefore, the algorithm
can be continued with this x’ and the necessary oracle is available
throughout the algorithm.
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One more difference occurs in the crossing case when no solution exists.
In this case the following lemma, taken from {9] helps us.

LEMMA 4. Any b-tight set B € #, for which the hypergraph {B(u}: u € B
is connected}, can be obtained constructively as the intersection of pairwise
co-disjoint b'-tight members of .B'.

In the original version of this paper from the algorithmic point of view the
reduction of the crossing case to the intersecting one was not correct. It was
Cunningham who pointed out this error; many thanks are due to him. In fact
the same error occurred in [9], too. There the method for finding an
optimum solution in the crossing case is correct if a starting feasible solution
is already available. However, the method of finding a starting feasible
solution works only for intersecting submodular functions and not for
crossing ones. The two-step approach presented here overcomes that dif-
ficulty.

6. PoLYMATROIDAL NETWORK FLows AND OTHER MODELS

Lawler and Martel [19] and Hassin {17] introduced the concept of
polymatroidal network flows. Here we show how their model can be
formulated as a feasibility problem of the Edmonds-Giles polyhedron.

We are given a digraph H = (U, A) with a source s and sink . For each
vertex v of H there are specified two capacity functions «, and 8. a,, (8,) is
defined on the subsets of the set 4, (B,) of arrows entering (leaving) v. Both
a, and f, are submodular on any pair of subsets, monotone nondecreasing
(i.e., a(X) > a,(Y) whenever X oY), and a,(@)=F,(2)=0.

An independent flow f is a non-negative flow from s to ¢, (i.e., f€ R% and
p(v) = 84v) for v € U— {s, t}) satisfying the inequalities / (X) < a, (X} for
XS A, and f(X)< B, (X) for X< B, (ve )

The objective is to find an independent flow of maximum value. Martel
and Lawler completely solved this problem by introducing the concept of
lexicographically shortest augmenting paths. In order to reduce this problem
to (1), assume the arrow a = 8, is in the graph and the objective is to find
an independent circulation which maximizes the arc flow on #;5,.

Replace each vertex v of U/ by as many new vertices as there are arrows
incident to v. Denote by ¢ (v) (p*(v)) the set of new copies of v
corresponding to 4, (B,) and set p(t)=¢*(¥)Uep (v). We shall not
distinguish between a subset of ¢ ~(v) and the corresponding subset of 4,,.

Therefore, we obtain the set ¥ of 2|A| elements. The arrows in H
determine a partition of V into 2-elements subsets. Denote by e, and e, the
elements in ¥ corresponding to the arrow e = uv of H. For a subset X of U

set p(X) =U (p(v): v € X).
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Define &, = {pX:@#XcU} and for ue U let &, ={F:@+Fc
o ()l and Z,={F:@#V-F<c¢*(u)).Let ' =) (o, U P uc U
F,. Let us define

b(F)=0 if Fe.2,
= a,(F) if FE,,
=B(V—F) if Fe.%,

Now it can easily be seen that .2’ is a crossing family, b’ is submodular on
crossing pairs, and there is a one-to-one correspondence between the
solutions to (1) and the independent circulations. Therefore the crossing
version of the algorithm mentioned at the end of Section 3 can be applied.

Finally we remark that the present approach makes it possible to solve the
polymatroidal flow problem even if the function a«, (f,) is defined on an
intersecting subfamily on A4, (B,) and is submodular on intersecting pairs
only. The monotonicity can also be dropped. Furthermore, extra upper and
lower bounds f and g can be accomodated on the arrows,

By the reduction above the optimization algorithm [2] applies to obtaining
a minimal cost polymatroidal circulation.

There are other models for submodular functions. One of these is
Fujishige’s independent flow model [15]. Lawler and Martel showed by a
simple ¢lementary construction that this model can be formulated as a
polymatroidal network flow problem. Fujishige’s algorithm is not proved to
be finite when the capacities may be irrational nor polynomial bounded for
integral capacities.

Two other models are kernel systems [12] and generalized polymatreids
|13]. It can be shown that optimization problems in these problems can be
solved by an optimization method for the Edmonds—Giles polyhedron. See
[14]. There are models which do not seem to fit into the Edmonds—Giles
framework and we do not know any combinatorial algorithm for them. One
such example is Hoffman—Schwartz’ lattice poiyhedron. An excellent survey
by Schrijver exhibits a very accurate relationship between the various models
[25]. See also [14].
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