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AN ALGORITHM FOR THE UNBGUNDED MATROID INTERSECTION POLYHEDRON

A. Frank and E. Tardos

Research Institute for Telecommunication,
Budapest,
Hungary.

An algorithmic relation, between results of Edmonds,
Cunningham, McDiarmid and Groflin-Hoffman, is discussed.

INTRODUCTION

Throughout the paper we suppose two matroids M; and M, (without Toops) on &
finite groundset E with rank functions s Fs and a non-negative weight function
won E, Let us denote the maximum cardinality of a common independent set in A
by r(A). It is known that r(A) = min{r (X) + r,(A-X}) [2]. 1In [2] Edmonds also
proved the Matroid Polyhedron Intersection Theorem:

THEQREM 1. The linear system

% 20, x{A) ¢ ___;?._;v._d;: for A< E {1
defines the convex hull P of common independent sets of M; and M, and {1} is
totally dual integral.

(A Vinear system Ax < b is called totally dua) integral or TDI if the linear
programming dual min{yb: y » 0, yA = w) has an integral optimum for each integral
w whenever the optimum exists. A basic feature of TDI systems is that they
define a polyhedron whose facets contain integer points _m_.muv.

Edmonds E also provided a good algorithm for optimizing a linear objective
over P and for producing an optimal solution to the linear programming dual.

Fulkerson [6] proposed to investigate an unbounded palyhedron in connection with
matroid intersections. Denoting by P, the convex hull of k-element common inde-
pendent sets of M; and M, fulkerson conjectured and Tater Cunningham _uu and
McDiarmmid [¥] independently proved that

P+ RE = (x: x(A) > max(0,k-r(E-A)) for ASE}. C(2)
Finally, Grdaflin and Hoffman _H_ showed that the linear system in {2) is TDI.
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The criginal proof of Groflin and Hoffman relies on the concept of lattice poly-
hedra and does not seem to provide an algorithm for finding the optimal solutions
in the correspending primal and dual linear programs. The purpose of this note

is to present a constructive proof for the Grof]in-Hoffman theorem by describing

such an algorithm.

For a subset A< E and a weighting w on E, Xy denotes the incidence vector of A
and w(A) = £{w(e): e < A}, Fora number x let x* = max(0,x}. Given a family F
of subsets, ¥ ¢ ¥ is called w-minimal in F if w(F) < w(X) for each X ¢ ¥,

PROOF AND ALGCRITHM

Without loss of generality we can suppose that 1_Amg = wmﬁmv = r{E) = k. Then
the theorem of Grdflin and Hoffman menticned in the Introduction is as follows.

THEOREM 2. {7] For every integral weight function w » O the dual Vm+1 of linear
programs
min(wx: x(A} » k-r(E-A)) = amxﬁm>nm y(A) (k-r{E-A)): (3N
¥(A) 3 0y Ep e ¥{R)Xp=n)

have integral optimum solutions.

Pyoof and algorithm. Since an optimal integral vector in the left-hand side of
(3} corresponds to a common base of My and ZN. to prove Theorem 2 we have to find
a common base B and an integral vector y which provide eguality in (3). By
complementary slackness, this is equivalent to showing that y(A} > O implies
(1B A=) %(A) = k-r{E-A) that is B-A is a maximal cardinality common independent
subset of E-A. Such a set A is called admissible (with respect te B). Thus our
purpose is to find a common base B and a feasible vector y so that y(A} > C only
if A is admissible.

In mm we proved the following version of Theorem 1.

LEMMA 3. Given My,My,w, a common base 8 is w-minimal if and only if there are
weights wy.wo such that wytw,=w and B is a zﬁaaﬂsAawﬂ base of M, i=1,2.
Moreover, if w is integer-valued, w; can be chosen integer-valued.

The proof of this lemma in wm is by describing an algorithm which provides both
the w-minimal B and the required weight splitting wy.wy- The present method
starts with these data and constructs y from them.
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Let py < ... <Py and gy < ... < &5 be the distinct values of the weights Wy ¥,
respectively and set p, = g, = -=. Arrange the elements of E into a two-dimen-
sional array so that x & E is in entry (1.3) if wy{x) = Py and zmﬁxv = q;-

Note that there may be entries with more than one element in them. For an entry

(1,§), set Ayy = {veE: Wi (v} » py» Walv) »qj). Call an entry {i,3) critical

if Py Ay 0 and Piy * 9.1 < 0. The key observation is the following

LEMMA 4. If {i,J) is critical, the set >*u is admissible.

Proof. Let ># = {vekE: zdﬁ<v < py} and >m = {vekE: SmA<v < QMV. Then

par; >m = m-bmu and since (1,j) is critical, >_HJ hm = @, What we show is that

B ﬁdrs is a maxima) cardinality independent subset of A in My {h =1,2). If,
indirectly, there exists an element v ¢ Ay -B such that (81 Ap) + v is independent
in M, then there is an element u e wars such that B + v - u is a base of L

Since £3ﬁ<v < wy{u) the wy-weight of B +v - u is strictly smaller than that of

B, a contradiction. /

We are now in a position to define the dual solution y. Set
(py#ag)" - (py_ya;)* = (py*a5)" + (Pypaza) s it
y{A) = A=Ay for some lgiem lgjen
0, otherwise

obviously y{A} 3 0 and «Apﬁuu > 0 implies that (i,j) is critical, and then, by
Lemma 4, >¢u is admissible. The feasibility of y, that is L pae y(R)=w(E} for

e ¢ E, immediately follows by applying the next trivial lemma for nmu = nuﬁ+nhv+.

LEMMA 5. Let C = Anmuv be an m by n matrix, Then for 1€ ssm, 15 t<n

where o and Cig 13 meant to be 0.

By now the proof of Theorem 2 is complete. //
To illustrate the method consider the following example with two graphical
matroids on eight elements

a b ¢ d e f g nh

: the weights
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"
i=H

The common base and the weight splitting provided by the mEolﬂzm_ in [5]:
B = {a,e,d,f}

The array:
5 |a b g
3 c |dye [ h
-2 f
-4 -2 2 3

The optimal dual solution y:

¥lhp3) = 4 A,. = {d.e.g,h}
Y(A,) =1 Mg = {9,h}

¥(A31) =1 Ay = {a,b,g)
¥{Az) =1 Agp = (b,g}

¥{Apa) =1 Ayp = {c,d.e.g,h,b}.

Finally, we remark that Schrijver [10] proved a theorem for polymatroids
analagous to the resuTt of Gréflin and Hoffman. It can be shown that our method
extends to polymatroids as well.
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