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Given a planar graph G=(¥, E), find k cdge-disjoint paths in G connecting k
pairs of terminals specified on the outer face of G. Generalizing earlier resulis of
Okamura and Seymour (J. Combin. Theory Ser. B 31 (1981), 75-81) and of the
author (Combinatorica 2, No. 4 {1982), 361-371), we solve this problem when each
node of & not on the outer face has even degree. The solution involves a good
characterization for the sclvability and the proofl gives tise to an algorithm of com-
plexity O(|F{’log|¥1). In particular, the integral multicommodity flow problem is
proved to belong to the problem class P when the underlying graph is outer-
planar.  © 1985 Academic Press, inc.

1. INTRODUCTION

The central topic of this paper is the following.

Edge-disjoint paths problem. Given an undirect graph G = (V, E), find %
edge-disjoint paths in G connecting k specified pairs of (not necessarily dis-
tinct) nodes of G. :

The integral multicommodity flow problem is a capacitated version
where each edge ¢ has an integral capacity indicating how many paths are
altowed to go through e, This problem is known to be NP-complete |3|
while the edge-disjoint paths problem is trivial for £=1 and has a deep
solution for £ =2 [8, 10]. For bigger & the status is not known in general
but there are important results for special classes of graphs. For a survey,
see [7].

Here we solve the problem when G is planar, the terminals are
positioned on the outer face, and each node not on the outer face has even
degree. The solution involves a necessary and sufficient condition as well as
a2 polynomial time algorithm. In particular, the results show that the
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integral multicommodity flow problem for outer-planar graphs belongs to
the problem class P.

Sometimes it is convenient to specify the pairs to be conected by supply-
ing graph H in which there is an edge uv for each terminal pair v, v. With
such a graph the edge-disjoint paths problem is as follows: Given two edge-
disjoint graphs G=(V, E) and H=(V, F) on the same node set, find |F]
edge-disjoint circuits in G+ H each of which uses exactly one edge of H.
We call the elements of E and F supply and demand edges, respectively.

Throughout the paper we work with a connected graph G =(V, E). For
a subset XV, 6(X)={uviuveE, uckX, veV-X}. A co-boundary
0g(X}) is called a cut if both X and V' — X induce connected subgraphs (in
this case we call X a cut-inducing set). We use the notation dg(X) for
{66(X)|. For X, YV and capacity function ge RS let d (X, ¥) denote
Z(guww)yueX—Y, ve Y —X)and d (X)=:d (X, V—X). We call the num-
ber d,(X) the congestion of co-boundary é,(X).

A graph is said to be Eularian if the degree of each node is even. We con-
sider every planar graph G to be embedded into the plane. By the outer
Jface of G we mean the boundary circuit of the infinite region. A node of G
is calied inmer if it is not on the outer face. A planar graph is called outer-
planar if no inner node exists. A planar graph is called (s, t}-planar if
s, 2e V and s, t are outer nodes.

2. PRELIMINARIES

A simple necessary condition for the solvability of the edge-disjoint paths
problem is the cur criterion:

di(X)<dg(X) for every X< V.

Tt is easily seen that the cut criterion holds true if the inequality is required
to be true only for cut-inducing sets X.

We call the number s(X) := dg(X) — dq(X) the surplus of 65(X). The cut
criterion says that the surplus is non-negative. A cut §;(X) (and somettmes
the set X) is said to be saturated if s{X)=0. The cut criterion is not suf-
ficient in general as Fig. 1 shows. However Okamura and Seymour proved

TueoreM 1. [6]. If G is planar, G + H is Eulerian, and every edge of H
connects two nodes of the outer face of G, then the cut criterion is necessary
and sufficient for the solvability of the edge-disjoint paths problem.

Note that neither the assumption that G + H is Eulerian nor the restric-
tion on H can be removed as shown by examples in Fig. 1 and Fig. 2.
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There are other special cases where the cut criterion is sufficient [7] but
it is important to find further necessary criteria for situations when the cut
criterion is not sufficient in general.

In [1] the edge-disjoint paths problem was solved in such a special case
which we call the grid model. In a rectilinear grid (or plane lattice) we are
given a closed rectangle T (bounded by lattice lines) and & pairs of distinct
lattice points on the boundary of 7. The rectangle T defines a finite sub-
graph G r of the plane grid in the natural way (which has mn nodes when m
horizontal and n vertical grid lines intersect 7). A problem instance of the
edge-disjoint paths problem in this grid model along with a solution is
shown in Fig 3.

In the grid model the cut criterion is not sufficient in general, as the
example in Fig. 1 serves again as a counterexample. To formulate a more
general necessary condition we need the concept of odd sets. A subset
X< Vis called odd with respect to G+ H if dg(X)+ dy(X) is odd.

The crucial observation on odd sets is that for any solution to the edge-
disjoint paths problem and for any odd set X at least one edge (actually an
odd number of edges) in &,(X) cannot be used by the paths.

In [1] it turned out that it is enough to deal with only horizontal and
vertical cuts. To be more precise, by a column (row) of G we mean a cut
of G consisting only of horizontal (vertical) edges. Let {r,, r;,.., r,} be the
set of satured rows (¢ 0) and let ¢ be any column. The removal of the
edges in r,,...,r, and ¢ leaves ¢t + 1 components 7T,.., T, | on the left-hand
side of ¢ (Fig. 4).

Denote by g(c) the number of odd sets among T,.., T, ,. For a row r
of Gy the number g(r) is defined analogously. Since every edge of a
saturated cut must be used in a solution and at least one edge leaving an
odd set cannot be used in a solution, for the solvability it is necessary that
the number ¢(c) cannot exceed the surplus s(c} of column ¢, In [1] the
foliowing theorem was proved.

=5

{t=2}
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THEOREM 2 [1]. We are given a rectangle T in a rectilinear grid and k
pairs of distinct terminals on its boundary. There exist k edge-disjoint paths
in G between the corresponding terminals if and only if q(c) < s(c) for each
column ¢ and q(r) < s(r) for each row r.

The problem instance in Fig. 5A does not possess a solution since for
column ¢ in Fig. 5B we have ¢(c)=4 and s(c})=2. We mention two con-
sequences of Theorem 2 which may be interesting for their own sake and
may be useful in modelling layout problems of electric circuits.

CoOROLLARY 3 [1]. In the grid model the cut criterion restricted to
columns and rows is sufficient provided that no saturated columns or rows
exist,

COROLLARY 4 [1]. If one member of each terminal pair is positioned on
the upper boundary line of T while the other is on the lower boundary line of
T and at least one corner point of T is not a terminal, then the edge-disjoint
paths problem has a solution if and only if the cut criterion holds for every
column.

3. THE MaIN RESULT

The purpose of the present paper is to give a common generalization of
Theorems 1 and 2. Before doing this let us observe some similarities and
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differences between the two models. Unlike the Okamura—Seymour case, in
the grid model we have a special kind of planar graph, the terminals are
distinct but it is not assumed that G + H is Eulerian. On the other hand, in
both models

(a) the underlying graph G is planar,

(b) the terminals are placed on the outer face of G,

{c} every inner node of G has even degree.

Our main result is
THEOREM 5. Given a graph G and k pairs of (not necessarily distinct)

terminals so that (a), (b), (c) are satisfied, there exist k edge-disjoint paths in
G between the corresponding terminals if and only if

T s(C)>] (1)
for every family {C,, C3yn C/} of 1<|V| cuts of G, where g denotes the
number of components in G' =G — C, — - — C, which are odd with respect
to G+ H.

Remark. Observe that if no inner node exists, Theorem 5 provides a
complete answer to the edge-disjoint paths problem in outer-planar graphs.
Since the capacitated version can also be handled (Sect. 4) the integral mul-
ticommodity flow problem in outer-planar graphs can be considered
solved.

Remark. Theorem 5 when specialized to the grid model provides a
necessary and sufficient condition more complicated than that in
Theorem 2. However, it is not difficult to derive (using the special structure
of the grid model and the assumption made on the distinctness of the ter-
minals) that in this case it suffices to restrict ourselves to column and row
cuts. The (mostly technical) details are left to the reader.

Proof. Necessity. Suppose that there are & edge-disjoint paths between
the -terminals. For any odd set X at least one edge of G leaving X is not
used. Thus at least g/2 edges from C;s cannot be used. On the other hand,
in a cut C, at most s(C;) edges may not be used which implies (1).

Sufficiency. Observe first that (1) implies the cut criterion by chosing
! to be 1. If there are no odd sets, then by Theorem 1 we are done.

Obviously, a set X is odd precisely if X contains an odd number of odd
nodes. By hypothesis each odd node is on the outer face of G. Let the set of
odd nodes be T={a,, @y, a5,}. (The subscripts reflect the order of the
odd nodes on .the outer face.)
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The idea behind the proof is that we find an appropriate pairing of odd
nodes and consider these pairs as new terminal pairs to be connected. In
this extended problem there are no odd sets, so Theorem 1 can be applied
provided that the cut criterion holds. Hence a pairing of odd nodes is
“appropriate” if every cut C of G separates at most s{C) new pairs. What
we are going to prove is that such an appropriate pairing exists if (1) is
satisfied.

For a subset A, ;= {a,,a;, |, .., a;}, | <I<j<2n, set

pi(A; )=min(s(C}: C a cut separating A, , and T— 4, ). (2}

Observe that s(C)=|4,,| (mod2) for any cut C separating 4,; and
T—A;; s0p(A;;)=]4,,| (mod 2). The next lemma is the crucial point in
the proof. To formulate it, let # be a complete graph on nodes
Ay, Qs Ay A st A, = {a;, a1 &), 1 <I< j< 20, is called an arc-set
and let p be a non-negative integer-valued function on the set of arc-sets
such that p(X}=|X| (mod 2) for each arc-set X. The first element a, of 4, ;
is denoted by AA, ;) the last element g; is denoted by /{4, ).

PAIRING LEMMA. Exactly one of the following two alternatives holds:

(i) There exists a perfect matching M of D such that

d(X) < p(X) for every arc-set X.

(ii) There exists a family F ={A,, As,... A)} of arc-seis for which
AA)#AA), £(A)#£(A)) (i#)) and

q
ME;;AM,

where q denotes the number of components of odd cardinality in
D—U(6p(4;) A, F).

Proof. First, let M be a perfect matching satisfying (i) and # =
{A,, A3,... A;} satisfying (ii). Let Q,,.., @, be the sets of odd components
in D—J8,(4;). Since each @, is left by an odd number of edges in M, the
number z of edges in M which leave at least one Q, is at least g/2. On the
other hand z cannot exceed ¥ p(4;). Thus (i} and (ii) cannot be true at the
same time.

Second, let us assume (ii} does not hold.

Case 1. Suppose that p(A)>0 for each arc-set 4. We claim that the
matching M = {a,a;, @3a4,..., @3, 12, } satisfies (). Indeed, d,,(4) <2 for
each arc-set A. If d,,{4)=0, then d,,(A4) < p(A). If d,,(A)=1, then |4] is
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odd and so is p(A4) whence d,,(A) < p(A). Finally, if d,,(4)=2, then |4]
and p(A4) are even. But p{4)>0 from which d,,{4)< p(4).

Case 2. Suppose that p(Ay)=0 for some arc-set A,. Let 4, be minimal.
Now |A,| is even. If the last element ¢ of A, is not a,,, renumber the nodes
(maintaining the same cyclic order} in such a way that the last element of
A, should be a,, and replace each arc-set containing ¢ by its complement.
This way we obtain an equivalent problem where Ag= {da, G+ 15 G20}
for some k, 1 <k<n.

We define a smaller problem on a complete graph D’ on nodes
ap, ay,.48y. Let A= {a;, a;, (,.., a;} be an arc-set of D’ (1 <i<j<2k).
Let p'(4,,)=p(4,,) if j<2k. Let p'(4;5)=min(m,, my), where m =
min(p(Ad;5_)—1: t=k+1.,n) and my=min(p(d;z): 1=K,... n).
Obviously p'(4) = |4| (mod 2} and we claim that p'(4)>0. Indeed, if we
had p'(4,;) <0 for some i, j then j=2k and P(Aiz)=p(Aiz-)—1=—1
for some ¢, k+1<t<n But then |44nd,; ., is odd and F =
{Aq. A;24 1} would violate (ii).

Claim. (ii) does not hold for D'and p’,

Proof. Suppose to the contrary that there exists a family # " satisfying
(il) with respect to D’ and p’. We shall define a family # of arc-sets of D
which satisfies (ii) with respect to D and p. This will contradict the
assumption.

If there is no arc-set 4 in ' containing a,, then # =% satisfies (ii)
with respect to D, p. If such an A occurs in #', then 4 =A,,, for some j,
1 < i< 2k. (Note that at most one such an A exists.) If p'{A4; )= p(4;2)
for some ¢, k<t<n, then F =F — {45} v {A,,} satisfies (ii) with
respect to D, p. If p'(A,5)=p(A4;2,_,)—1 for some ¢, k+1<t<n, then
F=F — A} {A;2_:, Ao} satisfies (ii) with respect to D, p and the
claim is proved.

Applying the induction hypothesis to D', p’, we get a perfect matching
M’ of D' satisfying (i). Let us define a perfect matching M of D, as follows.
M =M U {ay 8.1, G202k 4 35 Q20— 192 }-

Claim. M satisfies (i) with respect to D, p.

Proof. By the construction of M and p’ we have d,{4;;) < p(4,)) for
i, j, where 1<i<2k, i<j<n For A4, with 2k<i<j<2n we have
p(A,;)>0 (by the minimality of 4,) from which d,, (4, ;)< p(A, ;) follows,

The second claim compietes the proof of the pairing lemma.

Now apply the lemma to p=p, as defined in (2). If (i) holds, we have
the appropriate pairing and we are done. If (ii) holds, let us consider the
family & = {4,, 4;,... 4;} in (ii). Let C; (i=12,., /) be a cut of G
separating A4; and T—A, for which s(C)=p(4;). We claim that
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FIGURE 6

C,, Cypy €, violate (1). To see this, first observe that a component of
G—INC;:i=1,..,]) cannot contain nodes from T belonging to distinct
components of D—1{J) (8,(4,): i=1,.., ). Let X be an odd component of
this latter graph. The nodes of X belong to one or more componnents of
G—-U(C;:i=1,.,1) but one of these components, denote it by ¥, must
contain an odd number of elements of X which is equivalent to saying that

Y is odd with respect to G+ H.
Consequently, there are at least ¢ components of G —|J) C, which are

odd with respect to G+ H and ¥ 5(C;) < g/2, contradicting (1). This con-
tradiction completes the proof of Theorem 5. ||

In the example given in Fig. 6 the edge-disjoint paths problem does not
have a solution since the four cuts indicated in the figure violate (1). The
numbers on the cuts denote the surplus. Their sum is 2 while 4=8 and so
2 s(C)<q/2.

By the proof of the pairing lemma, Theorem 5 implies the following
result.

COROLLARY A. Under the hypotheses of Theorem5 the edge-disjoint
paths problem has a solution whenever the surplus of every cut is positive.

We can further specialize this result. Suppose we are given a triangle R in
a triangular grid which is bounded by lattice lines. R defines a graph G, in
the natural way. Suppose that k pairs of distinct terminais are given on the
boundary of R (see Fig. 7).

CorROLLARY B. There are always k edge-disjoint paths in G g between the
corresponding terminal pairs.
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FiGure 7

The proof is by showing that in this special case the surplus of each cut
is positive, so Corollary A applies.

Remark. From the proof of the pairing lemma we see that if (i) does
not hold, then there is a cut family violating (1) consisting of at most »
members, It also follows that in Theorem 5 each component of &' contains
a connected piece of the outer face of G.

Remark. 1If in Theorem 5 we drop the assumption that every inner node
has even degree, then, as E. Tardos kindly pointed out, (1) is not sufficient
in general; see the example in Fig. 8.

We close the section by presenting a conjecture stating that (1) might
also be sufficient in another special case.

Conjecture. Suppose that G + H is planar (but the terminals need not
be on the outer face of G} then (1) is necessary and sufficient for the
solvability of the edge-disjoint paths problem.

FiGURE 8
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If G+ H is planar and Eulerian, then a theorem of Seymour [9] states
that the cut criterion is already sufficient. If H contains at most 3 edges, the
conjecture follows from a result of Korach [4].

4. ALGORITHMIC ASPECTS

The proof of Theorem 1 in [6] is constructive and actually yields a
polynomial time solution algorithm of complexity O(|¥|*log|V]). (We out-
line it below.) Since the proof of the pairing lemma also gives rise to a
polynomial time algorithm to find the appropriate pairing, there is a
polynomial time algorithm to find either the paths or the cuts in
Theorem 5. In order to calculate the values p (A4, ;) we need (%) max-flow
min-cut (MFMC) computations, where 2n is the number of odd nodes.

It is important to notice that each of the p,(4,,} values can be calculatd
by applying an MFMC computation to an (s, £)-planar graph. Namely,
extend & by placing two new nodes s, ¢ on the infinite region of G and
adjoin edges connecting s and the nodes in A, ; and edges connecting ¢ and
the nodes in T'—A,;. Let the capacities of each new edge be large. This
way we get an (s, ¢)-planar graph where the value of the minimum cut
separating s and ¢ is p,(4, ;).

For (s, ¢)-planar graphs there is an O(|V|tog|¥]) MFMC algorithm
[2,6]. Hence the pairing algorithm needs O(|¥|*log|¥|) steps and the
complexity of the overall algorithm is O(|V)*log|V]).

In [1] for the bipartite grid model (Corollary4)} an O(Nlogh)
algorithm was developed, where N denotes the number of demand edges.
Recently Mehthorn and Preparata were able to generalize this method for
the general grid model [5, Theorem 2]. The complexity of their algorithm
is also O(NlogN) (that does not depend on the size of the underlying
grid).

There is a natural way to obtain a weighted version of Theorem 5. Sup-
pose that G and H are given as in Theorem 5. With every edge e of G a
positive integral capacity g(e) is associated so that the sum of capacities at
every inner node is even. Moreover, with every edge ¢ of H a positive
integral demand A(e} is associated. The problem is to find a collection & of
paths so that & contains h{uv) paths connecting u and v for every uve F
and every edge e is used by at most g(e) members of &.

A possible special case of this problem which might have applications in
circuit design is the weighted grid model where with each horizontal and
vertical line a positive integer is associated which represents the capacity of
every edge belonging to this line.

One can immediately observe that the weighted problem goes back to
the problem in Theorem 5. Namely, replace every supply edge ¢ by g{e)
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parallel copies and every demand edge e by h(e) parallel copies. The
unweighted problem obtained this way satisfies the hypotheses of
Theorem 5 so the weighted problem theoretically can be considered to be
solved.

From an algorithmic point of view, however, this reduction is not at all
satisfactory since the complexity of the resulting algorithm would include a
factor proportional to the maximum capacity M. A proper polynomial
algorithm is allowed only to involve a polynomial in log M, the number of
digits of M. We are going to show how this difficulty can be overcome.

Notice that there is no difficulty in finding the appropriate pairing since
the proof of the pairing lemma provides a good algorithm if the values
p(A,,) are available.

So the problem which remains to be overcome is finding an algorithm
for the weighted version of the theorem of Okamura and Seymour [6]. To
this end, suppose in addition that the sum of capacities plus the sum of
demands at every outer node of G is even. The cut criterion in the weighted
case is d,(X) = d,(X) for every X < V. The surplus d,(X) —d,(X) of a set X
is denoted again by s(X). By the assumptions on g and £ s(X) is always
even.

We can suppose that G is 2-connected, for otherwise the problem can be
decomposed at a cut-node into smaller problems. So we suppose that the
boundary of G forms a simple circuit C with nodes x,, x,,..., x, (in this
order).

The idea behind the algorithm is a refinement of that of Okamura and
Seymour, so we briefly summarize their method. Choose an edge on C, say
Xx,Xx;, and a certain demand edge x,.x, (k</). Revise the sets of supply
and demand edges as follows. Let E=E—x,x;, and F=
F—x,x;4+ x, X%+ x,;x,. One can immediately see that if the new problem
with supply graph &= (V, E’) and demand graph H' =(V, F) has a
solution, then so does the original one. Namely, paths P,, and P,, can be
glued together via edge x,x, to form a (possibly not simple) path between
x, and x,. Since G’ + H’ is Eulerian, ¢’ is planar, and every edge of H' con-
nects two outer nodes of G’ the only question (in order to apply induction
on |E|) is whether the cut criterion continues to hold. Okamura and
Seymour proved that this is the case if x, and x, are chosen as follows. Let
Y be a minimal saturated set for which x, € ¥, x,¢ Y (if no such set exists,
let Y=VF—x,) and let x,x,€ F be such that x, €Y and / is as large as
possible,

The method of Okamura and Seymour consists of applying iteratively
the above reduction (including a decomposition into 2-connected parts
when the reduced graph is not 2-connected). In each iterative step one edge
of G is deleted, so the procedure stops after at most | E| iterations. For the
weighted case we need a lemma.
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LeMMa. If dy(X, Y)=0 for some X, Y=V, then
s(X)+5(Y)=5{XY)+3(XU Y)+ 2d(X, Y).

Proof. 1t is easily seen that the contribution of each edge is the same on
the two sides of the equality. §J

Denote C;= {x, x3,.., X;} for 1<i<n—1. For each i calculate the
minimum m,; of 4,(X) over all subsets X<V for which C;£X and
(C—C)nX=¢J. This can simply be done by an MFMC computation
with C, as a sink set and C— C; as a source set. One can observe that the
method for (s, t}-planar graphs can be used again [2,6].

It is well known that there exists a unique minimal set X,, where the
minimum m, is attained and the MFMC algorithm provides with this set as
well. Let 5,=4(X,) and m=min(s: 1 <ign—1).

Case 1. m>0. Reduce g(x,x,) by z=min(m, g(x,x,)) and if z is odd,
increase h(x,x;) by one. The new problem satisfies the requirements
{Eulerian property, cut criterion, etc.) so it suffices to deal with it. If
g(x,x,) < m, then the new capacity of x,x, is zero, therefore this edge can
be left out and we obtain a smaller problem. If m < g(x,x,), then in the
resulting problem a saturated set arises which contains x, but does not
contain x,, that is, the new m=0.

Case 2. m=0. Let j denote the smallest subscript i for which s,=0.
Choose a demand edge x,x, (k<1) so that x,€ X, and / is as large as
possible. Let 6, =min(s,;:i=1,2,.,7—1) and §=min{g(x,x,), hlx.x,),
4,/2). Obviously 4 > 0.

Execute §.times the reduction procedure for x,, x,, x,, x, as it was
described for the unweighted case. That is, decrease capacity g(x,x,) and
demand A(x, x;} by 6 and increase demands A(x,x,) and A{x,x,) by &. (It
will not be disturbing that new demand edges may have arisen.) Like the
unweighted case one can easily get a solution to the starting problem if a
solution is available to the reduced one.

Claim. The cut criterion continues to hold.

Proof. Let #={X: {x,,x,}nX#F, x,, x,¢ X} After the reduction
the surplus of a cut-inducing set X is decreased if and only if X or
V —Xe# and in this case the amount of the reduction is 24. So we have
to show that s{X)> 28 for Xe . By the maximal choice of / we have
d,(X, X;)=0 so the lemma applies:

S(X) = s(X) +5(X)) = sS(X A X)) + (X U X)) + 2d,(X, X)).

If x,¢X, then x,eX and x,x, connects X-X, and XX therefore
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&mﬁh‘. \ﬂ.v > Nﬁ XnX _v >é from which .Ak.v =28 follows. If x LE X, then 5. M_ Zm:ﬂ—ﬂwz >Mﬂ F. m... EWM%&? Routing through a rectangle, report, University of
i : e inois, Urbana-Champaign, .
MA\%DNLW%_ >26 from which s(X)>26 follows again and the claim is 6. H. OkaMURA AND P. SEYMOUR, Multicommodity flows in planar graphs, J. Combin.
proved. Theory Ser. B 31 2
. . . . v Ser. B 31 (1981), 75-81.

The algorithm consists of repeating the reduction procedure. We have 7. A. SCHRUVER, Min-max results in combinatorial optimization, in “Mathematical
three cases according to where the minimum is attained in the definition Programming The State of the Art” {A. Bachem, M. Grotschel, and B. Korte, Eds.),
of &. Springer-Verlag, New York/Berlin, 1983.

8. P. SEymouRr, Disjoint paths in graphs, Discrete Math. 29 (1980), 293-305.

Case 1. &= g(x,x,). Then the new capacity of x, x, is zero and x,x, is 9. P. SEYMOUR, On odd cuts and plane multicommodity flows, Proc. London Math. Soc. (3)

deleted from G. Repeat the reduction procedure for the smaller problem. 42 (1981), 178-192.

. . 10. C. THOMASSEN, 2-linked graphs, European J. Combin. I (1980}, 371-378.
Case 2. d=h(x.x;). Repeat the reduction procedure with the same
Xy, X,, and X,

Case 3. 8=s,/2 for a certain A, 1 <A<j—1. Repeat the reduction !
procedure with the same x,, x,. :
A section of the algorithm between two occurances of Case 1 is called a
phase. In order to prove that the procedure is a polynomial time algorithm, .
observe that d,(X) decreases by one if Case 2 accurs. Furthermore, during
a reduction the demand of an edge occuring in a saturated cut cannot
increase. Hence in the course of one whole algorithm Case 2 can occur at
most |¥|? times.
If Case 3 occurs, then in the reduced problem X, is saturated and A< j.
Thus in one phase Case 3 can occur at most |F] times. In one phase we
need |V] MFMC computations. Since for (s, f)-planar there is an
O(j¥| log|¥]} algorithms the compiexity of the overall aigorithm is
O(1¥1*log{ V).
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Note added in proof.  Recently I learned that R. Hassin also developed an algorithm for the
capacitated case of the Okamura-Seymour problem. See R. Hassin, On multicommodity flows
in planar graphs, Networks 14 (1984), 225-235.
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