MATHEMATICS OF OPERATIONS RESEARCH
vol. 10, No. 2, May 1985
Printed in U.S.A:

A PRIMAL-DUAL ALGORITHM FOR SUBMODULAR
FLOWS*+

WILLIAM H. CUNNINGHAMj anD ANDRAS FRANKS§

Previously the only polynomial-time solution algorithm to solve the optimal submodular
flow problem introduced by Edmonds and Giles was based on the ellipsoid method. Here,
modulo an efficient oracle for minimizing certain submodular functions, a pelynomial time
procedure is presented which uses only combinatorial steps (like building auxiliary digraphs,
finding augmenting paths). The minimizing oracle is currently available only via the ellipsoid
method, in general; however in important special cases, such as network flows, matroid
intersections, orientations, and directed cut coverings, the necessary oracle can be provided
combinatorially.

1. Introduction. In [4] Edmonds and Giles proved a very general min-max rela-
tion concerning submodular functions on directed graphs. This “submodular flow”
problem includes among others, the orientation [7], minimum cost flow [6], poly-
matroid intersection [3], and directed cut covering [17] problems. On the algorithmic
side Grotschel, Lovasz, and Schrijver [13] have discovered a good algorithm for the
submodular flow problem based on the ellipsoid method. However the ellipsoid
method seems to have only theoretical significance, so it is desirable to have an
efficient solution algorithm which is purely combinatorial. Such combinatorial algo-
rithms have proved fundamental from the practical point of view and theoretically as
well in describing the structure of the problem in question.

In [7] a constructive method was presented for proving the Edmonds—Giles theorem.
That procedure provides a polynomially-bounded algorithm when the variables are
bounded by 0 and 1, regardless of the integrality of the cost function. Although the
algorithm could be extended to the more general case when the constraints include
general integer bounds on the variables, then its complexity would include a factor
proportional to the maximum absolute value M of the bounds. Therefore, the resulting
algorithm would not be a good algorithm, since the complexity of a proper polynomial
algorithm is allowed only to involve a polynomial in log M, the number of digits of M.

The main purpose of the present work is to develop a polynomial-time combinato-
rial procedure to solve the optimal submodular flow problem (that is, finding a
minimum cost submodular flow) and its linear programming dual. In [8] an algorithm
for finding a feasible solution to a submodular flow problem was described. A variant,
called the maximal submodular flow algorithm, was also discussed there for maximiz-
ing x(;) for a fixed arrow j over submodular flows x. This algorithm is polynomially
bounded regardless of the variable-bounds and the values of the submodular function,
The key to that algorithm is that the successive augmenting paths are chosen in a
lexicographic order; this idea is due to Schonsleben [19] and Lawler and Martel [15].
Our present algorithm is obtained by combining the ideas of [7] and [8] with the

*Received September 24, 1982; revised November 18, 1983.

AMS 1980 subject classification. Primary: 90C35,

OR/MS Index 1978 subject classification. Primary: 484 Networks/graphs/flow algorithms.

Key words. Submodular flows, directed graphs, oracle methods, ellipsoid method.

TSupported by Sonderforschungsbereich 21 (DGF), Institut fiir Operations Research, Universitit Bonn.
Partially supported by a grant from NSERC of CANADA.

¥Carleton University.

¥Research Institute for Telecommunication.

251
0364-765X /85 /1002/0251301.25

Copyright © 1985, The Institute of Management Sciences/Operations Research Society of America

252 WILLIAM H. CUNNINGHAM & ANDRAS FRANK

scaling technique. (The proof of the validity and efficiency of the algorithm relies
heavily on [8].)

It should be emphasized that the algorithms in [7] and [8), as well as the present one
and its specialization to polymatroid intersection, require an oracle which can, roughly,
minimize a submodular function. Currently the only polynomial-time algorithm for
this problem [13] is also based on the ellipsoid method. (However, in many of the
important applications the relevant oracle is available via a combinatorial algorithm.)
It is an extremely important open problem to find a good combinatorial algorithm for
the general submodular function minimization problem.,

Modulo this minimizing oracle our procedure provides an efficient solution algo-
rithm for the weighted polymatroid intersection problem, that of finding 2 maximum-
weight vector in the intersection of two polymatroids. Previously, efficient combinato-
rial algorithms were known only for the case of (0, 1) weights [15], [19]. Similarly, our
method provides the first efficient combinatorial algorithm for the minimum cost
versions of a number of other models, for example, independent flows [11], flows with
set constraints [14], polymatroidal network flows [15), and generalized polymatroids
[10], all of which have recently been shown to be equivalent to submodular flows. See
Schrijver [20] for an excellent survey. Along the way we derive a purely combinatorial
good characterization of dual feasibility for an optimal submodular flow problem.

The strategy of our algorithm, roughly, is as follows. First we formulate the
optimality criteria for the arrows with the help of the so-called potentials. The
algorithm starts with a feasible solution and a potential which may violate the
optimality criteria. It then improves the violated optimality criteria arrow by arrow.
This is done by applying the maximal submodular flow algorithm [8] to a face of the
original submodular flow polyhedron. We shall prove that it is also a submodular flow
polyhedron, so the algorithm of [8] works.

This procedure provides a finite algorithm. However, by applying a kind of scaling
technique, it is made to be an algorithm whose complexity involves a factor propor-
tional to K, the logarithm of the maximum absolute value of the (integral) objective
function, and does not otherwise depend on the numbers involved. In fact the
algorithm requires the order of Kn® flow augmentations where n is the number of
nodes. o

Throughout the paper we work with a finite ground set ¥ of n elements, IfACV,
then 4 denotes V'\A. Sets 4, B are co-disjoint if A N B = @. Sets A, B are intersecting if
A N B is nonempty. If, in addition, 4 U B # V, then A4, B are crossing. A set 4 is a
up-set if u € A, v & A. A set function is submodular on A, B if b(AY+ b(B) > (AN
B) + b(4 U B). If equality holds, b is modular on A, B. A set function b:2"— R U
{+o0} is fully submodular if b is submodular on every pair of subsets; b is an
intersecting (crossing) submodular function if » is submodular on every intersecting
(crossing) pair of subsets. Throughout we suppose that b(@) = b(V) =0 for each set
function &. Sometimes we construct new submodular functions . Then b(X) is meant
to be + oo if no other value is assigned to X explicitly,

Let G=(V,E) be a directed graph with node-set ¥ and arrow-set E. Multiple
arrows are allowed but loops are not. An arrow up leaves (enters) B C V if B is a ut-set
(vii-set); the set of such arrows is denoted by §(B) (o(B)). For a vector x € RE, and
B C V, A (B) denotes 3'(x(e): e enters B) — 2(x(e): e leaves B). It is easy to check
that A, is modular on pairs A4, B of subsets of ¥. For a vector z € R and for B C V,
z{B) denotes 3 (z(v): v € B). Obviously z is modular and every modular set function
with z(@) = 0 comes in this way. We do not distinguish between a modular function z
with z(J) = 0 and a vector z € RV,

2. Submodular flows. Let 5” be a crossing submodular function. Let € RE, that
is, d is a real weighting of the arrows. Similarly, let f € (R U { — 00 })E, gE(R U

PRIMAL-DUAL ALGORITHM FOR SUBMODULAR ELOWS 253

{90})”. Consider the following linear program: |
maxdx subjectio A (F)<b"(F) for FCV; f<x< g (1

A feasible solution x of (1) is called a submodular flow and the set of feasible
solutions is a submodular flow polyhedron.

Txeorem 1 (Edmonds-Giles). [/ If d is integer-valued and the linear program dual to
(1) has an optimal solution, then it has an integer-valued optimal solution. If b” and (the
finite components of) f, g are integer-valued and (1) has an optimal solution, then it has
an integer-valued optimal solution.

(Edmonds and Giles formulated their theorem for submodular functions 5" defined
on a crossing family of subsets. By extending b” with value oo to every subset we get
an equivalent formulation. But it is more convenient to work with functions defined on
every subset.)

Our algorithm will find these optima efficiently in the case when d is integer-valued.
A rational d can, of course, be replaced by Dd, where D is a common denominator for
the components of d. It should be noted that the algorithm of [7] for the (0, 1) case
runs in polynomial time without any assumption on d. If there are no assumptions at
all about the data, we will indicate how our techniques, without scaling, lead to a finite
algorithm. :

In [8] an algorithm was described for finding a feasible solution to (1). That paper
also presents a variant, the maximal submodular flow algorithm, which solves (1) when
d(e)=1 for a specified arrow e and d(e) =0 otherwise. Here we “apply” both
algorithms but in different senses. The present algorithm starts with any feasible
solution and this is obtained (for example) by applying the feasibility algorithm of [8].
The maximal submodular flow algorithm of [8] will play another kind of role in our
discussion. Namely we shall use it for proving the validity of the method.

We also remark that the feasibility algorithm needs an oracle to minimize b"(F) ~
z(F) over up-sets where z is an arbitrary modular function, while the submodular flow
algorithm (once a starting feasible solution is available) needs this oracle only for
modular functions of the form z(F) = A (F).

In applications (such- as orientation or directed cut coverings) it is very important
that b” is required to be submodular on crossing sets only. On the other hand:

THEOREM 2. A submodular flow polyhedron P can be defined by a fully submodular
function.

This is a result of Fujishige {12], and also follows from results in [7). The proof
depends on the following two lemmas whose proofs can be found in [7]. The first one
originated in Dunstan [2] and Lovasz [16].

LemMMa 3. Where b’ is an intersecting submodular function, b defined by b(X)=
min(35'(X)): {X;} a partition of X) is Jully submodular. Moreover, {z € RV : z(F)
SV(F),FCV)={zeR":z2(F)< b(F), FC V).

LEMMA 4. Where b” is a crossing submodular function, '(X)=min(3b"(X,): { X,)
a partition of X) is an intersecting submodular Junction. Moreover, {z € RV : 2(V) =0,
F)<b"(F), FCV}={z€RY:2(V)=0,2(F)< b'(F), F C Vi.

Applying first Lemma 4 to z = A_, one can see that a submodular flow polyhedron P
can be determined by an intersecting submodular function. Now from Lemma 3 the
theorem follows.

In [7] and [8] the first reduction (Lemma 4) was used to get a submodular flow
problem in intersecting form. There we described the algorithm for intersecting

254 WILLIAM H. CUNNINGHAM & ANDRAS FRANK

submodular functions and showed how to use it in the crossing case. The second
reduction did not seem to have any advantage. In the present paper however we use
both reductions because the discussion here becomes simpler. We describe the algo-
rithm assuming fully submodular functions. 1t will turn out that this algorithm to get
an optimal primal solution from any feasible solution can be used without any change
for submodular flows given by a crosstng submodular function. One difference
between the case of fully submodular functions and crossing submodular functions
occurs in finding a feasible solution. This is treated in [8]. The other difference is in
getting the optimal dual solution. This is discussed jn [7] and briefly outlined in §6.

Let us exhibit another important relation among the functions 4”, ' and b in
Lemmas 3 and 4. For x€ P and w,v € V, let (U, 0) =min(b(F)— A (F): F a
ub-set). €.(u,v) and ¢/ (u,v) are defined analogously.

THEOREM 5. €, (u,0) = €.(u,0) = € (u,v).

PROOF. The second equality was shown in [8). The first one is shown similarly:
obviously €,(u,0) < €,(#,v). Choose a uB-set X such that €(u,0) = b(X) - A (X)
= 2(0'(X;) = A, (X)) for some partition {X;} of X. One X, is a up-set so S(H'(X,) -
A (X)) > €. (u,0). '

The next result will be important for proving the validity of the algorithm.

THEOREM 6. Any face Q of a submodular flow polyhedron P is a submodular Sflow
polyhedron. :

PROOF. Suppose that P is defined by a fully submodular function » and Q#0.1It
is clear that requiring any of the inequalities f(e) < x(e) or x(e) < g(e) to hold with
equality causes no difficulty. So we suppose that Q is defined by fixing A (B) on the
members of a family # of subsets, thatis, 0 = {x: x € P, A(B)=b(B)forbE A }.
Suppose that 3(|B|*: B € #) is maximum.

Claim. For B,,B, € %, ¢ither B, C B, or B, C B,.

Proor. Observe that b(B)) + b(B,)=b(B, N B,) U b(B, U B,). Indeed, for
x€Q, x(B)+ x(B;))=5b(B))+ b(B,)> b(B,N B,) + b(B, U B,) > x(B, N B+
x(B, U B,) = x(B,) + x(B,) whence equality follows everywhere. Since {x € P: x(B,)
=b(B), i=1,2}={xEP:x(B,N B,) = b(B,N B,), x(B, U By)=b(B, U B,)},
(Z\{B,B,})U {B,N By, B, U B} defines Q as well. By the choice of # the claim
follows.

Let & =(B,B,,..., B} where @= B, CB,C --- C B, = V. Define H(X) as
follows. 5(X)=b(X U B)— b(B) if X C B, \B. Set Q=(xeRE:f<x<g,
AMFYS b(Fyfor FC V). '

Claim. b is an intersecting submodular function and Q = 0.

PrOOF. Let X,Y C B, \B,.
b(X)+5(Y)=b(X UB)+b(YUB)-2b(B,)
>b((XNY)UB)+b(XUYUB)-2b(B,)
=b(XNY)y+b(XUY)

Let x€ 0 and FC V. Let B; denote the maximal set in % for which Fg B,-.‘ By
induction we suppose that A_(¥) < b(Y) for proper subsets Y of F. We have

A(F)=A(F\B)+ A (F 0 B) < B(F\B,)+ b(F N B,)
=b(F U B,)~ b(B,)+ b(F 1 B)) < b(F).

PRIMAL-DUAL ALGORITHM FOR SUBMODULAR FLOWS 255

Furthermore, for B, € %, b(B,) = b(B,,,) — b(8,, \B,) and so
b(Byy=—2(B(Bu\B):i=hh+1,... k—1)

—2A(Biy\B) = A (B,) = \(B,).

Therefore A (B,)= b(B,) and Q CQ. Now let x€Q and X S B, \B. A(X)
=A (X UB)—A(B)<b(XUB)— b(B)—b(X) thatis, 0 € 0. W

Let v (F)=b(F) = A(F), .(F)= b(F) A(F), and € (u,v)=min(y (F): F a
uv-set). Let Q and By C B, C -+ - C B, be as in Theorem 6.

THEOREM 7. For x € Q, € (u,0) = €. (u,0) if u,v € B; . \\B; for some i, and € (u,v)
= 0 otherwise.

Prook. Foru€ B, \\B,, v & B, \B;, we have
0< &(u,0) < B(B, \B))— A (B, \B,)
= b(BH-l) — b(8,) _Ax(Bi-H) + Ax(Bi) =0,

$0 € (u,0)=0.
Let u,v € B,)\ B,. For some ut-set X C B,, \B,,

& 0) = b(X) =N (X)=b(X U B)~ b(B,) — A (X U B,)—A(B,) > € (u,0).

On the other hand for some ut-set X
&(4,9) = ¥, (X) > (X U B)+ 7,(X N By) = ve(Biyy) > 0+ €. (u,0) +0,

that 15, €(u,0) =y, (X N B;,). It is shown similarly that €, (u,0)= vy(Z) where
= (X N B,)U B, Now

€ (1.0)=b(Z) = A(Z)=B(Z\B;) = b(B,) ~ A (Z\B,) + A,(B,) > &,(u,0).

By Theorems 6 and 7, our algorithm can be used to optimize over any face of a
submodular flow polyhedron, provided that the number of sets X for which we require
A (X)= b(X) is not too large.

3. Feasibility and optimality criteria. A combinatorial primal feasibility theorem
was given in [8]. Here we formulate combinatorial conditions for dual feasibility; they
extend similar conditions for network flows.

Let B be a (0, = 1) matrix with rows corresponding to sets X with 5”(X) < o0 and
columns corresponding to arrows e € E, defined by b, , = +1 if e enters X, —1 if e
leaves X, and 0 otherwise.

Then (1) can be written:

maxdx subjectto Bx <b”; f<x<g (H
The linear programming dual is
minb”y + gz — fw subject to

B
I
-1

Here the components of g correspond to sets X with b”(X) < oo, the components of z
correspond to elements of E with g(e) < o, and the components of w correspond to
elements of £ with f(e) > — co. Furthermore / denotes the identity matrix of appropri-

)
=d; y,z,w>0.

256 WILLTAM H. CUNNINGHAM & ANDRAS FRANK

ate size. Define a digraph H = (V, E’) and a cost function d’ as follows:
e=uv &€ E if uo € E and g(uv) = 00; d’(e} = d(e).
e=vu e E'1f uvo € E and f(uv) = —o0; d’(e) = — d(e).
e=uv € E'if ¢f(uv) = +c0; d'(e) = 0.

THEOREM 8. The linear program dual 10 (1) has a feasible solution if and only if H
has no directed circuit of positive cost.

By Theorem 5 it is enough to prove Theorem 8 when P is defined by a fully
submodular function b.

PROOF OF NECESSITY. Suppose that H has no directed circuit of positive cost. By an
elementary lincar programming result, it will be enough to prove that the I.p. problem
max(dx : Bx <0, f' < x < g') is unbounded, where B denotes the constraint matrix of
(1) and where f" (g') is O-wherever f (g) is finite, and agrees with f (g) otherwise.
Denote by x° the incidence vector of the subset of those arrows of a positive-cost
directed circuit which correspond to original arrows of G. (Here x%uv)=1 or —1
according to whether the arrow uv arises from arrow uv or vu of G.) Then dx® > 0 and
Bx® < 0. Hence max(dx: Bx <0, f' < x < g’) is unbounded, as required.

The proof of sufficiency in Theorem 8 will be a consequence of the algorithm and
appears in §4. :

By Theorem 8, only a simple shortest path calculation is required to decide whether
a submodular flow probiem is dual feasible. Moreover, to do this we need, instead of
the submodular oracle, only an oracle to decide whether there exists a u-set X with
b"(X) < o0 for each uv € V. (Our algorithm would detect dual infeasibility, but it is
technically more convenient to check it ahead of time.)

Henceforth suppose that the submodular flow polyhedron P is determined by a fully
submodular function 5. As usual, appropriate values for the dual variables Z,w can be
determined from these for y. Namely, where a(e) denotes the column of B indexed by
e € E, z(e) = max(d(e) — ya(e),0) and w(e) = max(ya(e) — d(e),0). So the comple-
mentary slackness conditions for (1) and (2) can be written:

d(e) —Myar(e) >0=x(e) = g(e) (<) for ee€ E; (3a)
d(e) — ya(e) < 0=>x(e) = f(e) (> ~) for e€ E; (3b)
Y(F)>0=A[(F)=b(F), FCV. (3¢)

A set F for which v, (F) (= b(F) — A (F)) =0 is called b-tight or briefly tight with
respect to x € P.
Claim. The union and intersection of tight sets are tight.

ProoF. Let X,Y be tight. Then 0+ 0=y (X)+ v(Y) > v (X 0 V) + y (X U
Y) > 0 + 0 whence equality follows everywhere. #

It will turn out that y can be chosen in such a way that the sets for which y(X) >0
form a chain B, C B, C - - - C B,. One idea, introduced in [6), is that a chain of sets
can be represented by a vector 7 € R”, called a potential. To be more precise let x be
a submodular flow and » € R a vector so that, where d(uv) denotes d(uv) + 7(u) —

a(v):

For e E c?(e) <0=x(e) = f(e) (> —oo); (4a)
For e€E d(e)>0=x(e)=g(e) (< o0); (4b)
For uveEV 7{u) > T{v)=> €, (4,0)=0. (4c)

Let 7y <@y < - -+ < m be the distinct values of = and let B, denote {fve€V:a(v)

PRIMAL-DUAL ALGORITHM FOR SUBMODULAR FLOWS 257

>m) (i > 1). Let # =% (w)={B,B,,..., B.). By (4c) and the Claim, each B. is

tight. Define p(X)== ~#,_, if X=B, (i> 1) and y(X) =0 otherwise. Then y,x

satisfy (3)(a)(b)}(c). Furthermore y (and hence z, w) are integral if 7 and d are.
Therefore our purpose is to find vectors x, 7 satisfying (4)(a)(b)c).

4. The algorithm. The optimality conditions (4)}(a)bXc), of course, resemble and
generalize network flow optimality conditions, and the optimal submodular flow
algorithm can be viewed as extending classical network flow algorithms. Suppose that
we are given a feasible flow x and a potential = such that (4c) is satisfied. (Any feasible
x and 7 = 0 can be used initially.) Choose an arrow J which violates (4b); the case in
which (4a) is violated is similar. The Inner Algorithm is an algorithm which finds a new
pair (x',7") such that j no longer violates (4b), such that every arrow e satisfying
(4)(a)(b) before still does, and such that (4c) is maintained. It ensures that no new
violations of (4)(a)(b) occur by imitating the classical primal-dual approach to mini-
mum cost network flows, that is, it allows flow changes only on the distinguished
arrow j and on arrows e € E for which d(e) = 0. Similarly, it keeps (4c) by requiring
that, for a given =, the tightness of each B, be maintained.

The Inner Algorithm consists, as usual, of a sequence of flow changes and potential
changes. We begin by concentrating on the attempt to remove the violation of (4b) by
arrow j using flow changes only. (If this succeeds, the Inner Algorithm terminates. If it
fails, it suggests a potential change.) Thus we are led to the following optimization
problem (whose analog in the ordinary network flow case is a simple maximum flow
problem);

maximize fj subject to (5)
M(FYSP(F)y for FCV; (52)
f<i<y; (5b)

| £(e)=x(e) for e#*; and d(e)#0; (5¢)
-~ M(F)=b(F) for Fe%(x). (5d)

As we have seen in §2 (Theorem 6), (5) defines a submodular flow polyhedron
Q={x :fé X< £ MN(F)<b(F) for FC V) where f(e) = f(e) and g(e) = g(e) if
d(e) =0 and f(e) = g(e) = x(e) if d(e)+ 0. Therefore we can apply the maximum
submodular flow algorithm given in [8]. We describe it here but without proof.

Given a feasible flow £, construct an auxiliary digraph H,, having vertex-set ¥ and
three types of arrows uv with capacities ¢(uv):

(i) A forward arrow up for each arrow uwv € E for which X(uv) < g(uv); uv is given
capacity g(uv) — £(uv).

() A backward arrow vu for every arrow uo € E for which £(up) > f(uv); tu is
given capacity X(uv) — f(uv).

(it)) A jumping arrow up for every pair u,0 € V such that €:(u,0) > 0; uv is given
capacity €. (u, v).

The algorithm needs an oracle to compute € (u,0). In our case by Theorem 5 this
oracle is indeed available.

Where j = 5, a directed path P in H; from s to ¢ having as few edges as possible,
together with j, yields a directed circuit in H;. Given such a dicircuit C, let A be the
minimum capacity of its edges. Increase £(e) by A on arrows e & E corresponding to
forward arrows of C and decrease %(e) by A on arrows e € £ corresponding to
backward arrows of C. The resulting x is feasible. (If A = oo, then there exist feasible
solutions having X(;) arbitrarily large, so the maximum flow problem is unbounded.)
The procedure is then repeated and terminates if unboundedness is discovered, orif no

258 WILLIAM H. CUNNINGHAM & ANDRAS FRANK

more such augmentations can be performed because, for some X, H; has no directed
path from s to .

The main result of [8] is that the algorlthm terminates after at most »> augmenta-
tions, independent of the values of f £, b, provided only that the successive paths P are
found using a slight modification of the usual labelling algorithm. Namely, one scans
the vertices in the order that they are labelled, and the vertices labelled from a vertex
being scanned are labelled in an order consistent with a fixed linear order of V. (The
vertex sequence of the resulting path is then lexicographically least with respect to this
order among all shortest paths.) The latter rule would automatically be satisfied, for
example, if the graph were represented by an adjacency matrix with scanning per-
formed in the natural way. Thus, like the modification to the labelling method which
yields a polynomial bound for the network maximum flow algorithm, this one is “so
simple that it is likely to be incorporated innocently into a computer implementation”
[4]. This lexicographic technique was introduced by Schonsleben [16] and Lawler and
Martei [13]. It then was applied to the submodular flow problem in [8], and it also has
found an application [1] on a quite different level. So the method may become a
standard technique.

Theorem 7 shows that it is not necessary to deal explicitly with boré ' (u,v), and the
auxiliary digraph can be defined in terms of the original vectors x,#. Namely,

(i) uv is a forward arrow if x{uv) < g(uu) and d(uv) = 0; c(uv) = g(uv) — x(uv).

(it) vu is a backward arrow if x(uv) > f(uv) and d(uv) = 0; c(uv) = x(uv) — f(uv).

(i) wo is a jumping arrow if € (u,0) > 0 and w(u) = 7(v); c(uv) = € (4, v).

We consider the two possible ways in which the algorithm terminates. First, suppose
that there is a dicircuit C arising in the algorithm, all of whose arrow capacities are co.
We shall prove in this case that (1) is unbounded. Such a dicircuit is a dicircuit in the
graph H of Theorem 8. Moreover, it has cost > (d'(uv): uv € C) = >)(d'(uv) + w(u) —
7(v): up € C). But for every forward arrow uv 7 j, d'(uv} + w(u) — 7(v) = d(uv) =
and d'(j) = d(j) > 0; for every backward arrow uv, d'(uv) + 7 (u) — 7(v) = — d(vu) +
a(u) — 7{v)y= — c?(uv) = 0; for every jumping arrow wuv, d'(uv)+ 7w(u)— 7(v)=
m(u) — w(v) = 0. Thus C has positive cost d(j) in H, and by the “only if” part of
Theorem 8 already proved, the dual of (1) is infeasible so, since (1) is feasible, (1) is
unbounded.

Now suppose that the algorithm terminates with a submodular flow x such that
there is no directed path from s to ¢ in H, . If x(j) = g(}), then we have succeeded in
removing the violation by j of (4b); otherwise we show how this case leads to a
potential change. Let T be the set of vertices reachable from s by a directed path in
H,. Then T has the properties:

x(e)=g(e) or J(e) #0 forevery e € §(T); (62)
x{e)=f(e) or d(e)*0 forevery ee&p(T); (6b)

there exists a b-tight uv-set’ or w(u) # 7 (v), forevery ueT, v&T. (6c)

Then we decrease 7(v) by 8 for every v € T, where 8 = min($,,8,,8,,8,) and

8, = mm(d(e) e € p(T), x(e) > f(e), d(e) > 0);

8, = min(—d(e): e € 8(T), x(e) < gle), d(e) < 0);

63 =min(r(v) —w(w):u €T, v €T, w(v) > 7(u), there exists no b-tight ut-set);

8, = d(j).

It is a consequence of the definitions that & > 0 and that either § = §, or the set of
vertices reachable from s in the new auxiliary digraph properly contains 7. (Hence
there can be at most # — 1 consecutive potential changes.) We must check that no new
violation of (4)(a)(b) is caused by the potential change, and that (4)(c) continues to

PRIMAL-DUAL ALGORITHM FOR SUBMODULAR FLOWS 259

hold. (Note, however, that the potential change may make some old violations worse.)
A new violation of (4)(a)(b) could occur only if some d(e) becomes positive or negative
as a result of the change in 7. Suppose that d(e) becomes negative. (The other case is
similar.) Then e € p(T)\{j}. If d(e) was zero before the change, then by (6b),
x(e) = f(e), so e does not violate (4a) after the change. If d(e) was positive before the
change, then d(e) < 6 < &, implies x(e) = f(e), and again, by the definition of 8,, (4a)
1s not violated. Now suppose that (u,v) violates (4c) after the change in 7. Then u € T,
v € T and so by (6¢) 7(u) < w(v) before the change. But then § < 7(v) — 7(x) by the
definition of §; and (4c) is not violated after the change.

First, we are going to show that the procedure is finite regardless of the data. In §5
we present a scaling method to make the procedure polynomially-bounded if the cost
function d is integer-valued. If § = §,, the potential change ends Jj’s violation of (4b) by
lowering d(j) to zero. If § < 84, we continue searching for flow augmentations. We
- know that there will be at most »* flow changes between potential changes and at most
n— 1 potential changes between flow changes. Therefore, to show that the Inner
Algorithm is finite, it is enough to show that the number of “breaking” potential
changes, that is, those which are immediately followed by flow changes, is finite.
During the whole procedure #(s) never changes and 7(f) decreases monotonically.
When a flow change occurs, the directed path P from s to ¢ satisfies (by the same
argument as was used to prove unboundedness) w(f) — 7(s) = 3}(d(e): e corresponds
to a forward arrow of P) — 3 (d(e): e corresponds to a backward arrow of P).. Since
there are only finitely many paths and #({/) is monotone decreasing, the number of
breaking potential changes is finite, as required. Since we can begin with 7 =0 and a
flow x found by the method of [8], by using the Inner Algorithm at most | E| times, we
have a finite algorithm to solve (1). .

Although the computation bound provided by the above argument is not too
attractive, it is valid without any assumptions on 4, f, g,b. A modification described in
the next section provides a polynomially-bounded algorithm in the case when 4 is
integer-valued. Meanwhile, we can use the finiteness of the algorithm to prove
sufficiency in Theorem’8.

Suppose that the dual of (1) is infeasible. Where M is a sufficiently large positive
number, replace each b(F) by b(F)+ M, each f(e) by f(e)— M, and each g(e) by
g{e) + M. The resulting version of (1) is now feasible but its dual is still infeasible, so
this version of (1) is unbounded. The algorithm, therefore, will terminate with a
directed circuit in an auxiliary graph, yielding a directed circuit of positive cost in H of
Theorem 8. But the changes we have made to f, g, and b do not affect the properties of
this circuit.

Notice that to state the algorithm we do not need (explicitly) to mention maximal
submodular flows. But because the steps of the algorithm can be regarded as maximal
submodular flow calculations, we were able to use the results of [8] to provide a
relatively short justification of the algorithm. Another proof, more direct but more
complicated, can be found in [9).

5. Scaling. In this section we assume that d is integer-valued. For simplicity, we
require that no arrow e = up exists with f(e) = —o0. Otherwise, if g(e) # o0, we can
replace e by ¢’ = vu with f(e') = —g(e), g(e') = 0, and d(¢') = —d(e); if g(e) = oo,
we can replace e by e, = uv and e, = vu with fle)) = f(e,) =0, g(e,) = g(e,) = o0,
d(e,) = d(e), and d(e,) = —d(e).

The idea behind the scaling method is the following. Suppose that d is integer-
valued and we have a submodular flow x and integer-valued potential 7 satisfying
(4¢c), and we apply the Inner Algorithm to j € E violating (4b) with d(=1 (equiva-
lently, violating (4a) with d(;) = —1). Then the Inner Algorithm will perform at most

260 WILLIAM H. CUNNINGHAM & ANDRAS FRANK

one potential change, since the amount & of any such change will be 1, and so J(j) =0
after the change. So in this case the Inner Algorithm requires at most n° flow changes.
It follows that if flow x and integer-valued potential = satisfy (4)(a)(b)}(c) with respect
to integer-valued objective vector d, and d’ differs from d by a change of 1 in exactly
one component, then we can find flow x" and integer-valued potential 7’ satisfying
(4)(a)(b)(c) with respect to d’ after at most #> flow augmentations. Moreover, if x,7
satisfy (4)(a)(b)(c) with respect to d, then x, 27 satisfy (4)(a)(b)(c) with respect to 2d.

Now it is quite easy to reach the vector 4 from the zero vector by a sequence of
operations of the two kinds mentioned: changing a component by 1 and doubling the
vector. Namely, let us suppose that each component of d is given in base 2 and that
the biggest nonzero digit is 2¥~"; that is, max(|d(e)|: e € E) consists of K digits. (The
complexity of the algorithm will be proportional to this K.} Let d°=4 and for
1 < i< K letd' be defined by d'(e) = [d"~'(e)/2). Thus

S [~ @) <0;
(e)_{ 0 if d(e)>0.

Moreover, for each &, d’ can be obtained from 2d’*' by changing a single component
by 1 at most | E| times.

We remark that the scaling technique was introduced by Edmonds and Karp [5] to
solve the minimum cost flow problem. They scaled the capacities and demands. It is
not difficult (see [18}, for example) to scale the objective function instead, but this
seems to have advantages only in the special case of irrational capacities. In the
present context, however, a straightforward attempt to scale & will destroy its sub-
modularity.

We can now state the algorithm.,

Scaling Algorithm for (1).

Step 1. Using Theorem 8 and a shortest path method, test (1) for dual feasibility. If
it is not dual feasible, stop.

Step 2. Use the algorithm of [8] to find a feasible solution x of (1). If none exists,
stop.)

Step3. Putr=0,i=K,d=0.

Step 4. While there exists j € E with d(j) # d'(), replace d(jj) by d'(j) and (if x,
violate (4)(a)(b)), apply the Inner Algorithm.

Step 5. If i = 0, stop. Otherwise, replace i by i — 1, # by 27, and d by 24, and go to
Step 4.

There is one difficulty which may seem to arise in this approach. Namely, what if
the original problem is dual feasible but, with respect to an intermediate cost function
d’, the problem becomes dual infeasible? We show that this cannot be the case. Since
we assume that f(e) = — oo for every e € E, for nonpositive d’, d'x will be bounded
above, that is, maxd’x exists. (This assumption was made for just this purpose.) This
means that this difficulty cannot occur while i = K. Furthermore, 2d' < d'~' for -
1 < i < K; therefore if maxd'~'x exists then max2d’x exists, so maxd'x exists, too,
and the difficulty cannot occur for 0 < i < X either.

The scaling algorithm requires at most #° augmentations in Step 2 and at most | £|n’
in Step 4 for 0 < i < K, so it needs at most (K + 1)|E|n* + n° augmentations alto-
gether.

6. Crossing submodular functions. Let 5”, b’, and » be as in Lemmas 3 and 4. The
algorithm developed for fully submodular functions needs an oracle to compute
€.{u,v). Theorem 5 shows that in order to compute a vector x € P and a potential
satisfying the optimality criteria in (4) that algorithm can be used without any change
for crossing submodular functions as well. There is a little complication however in

PRIMAL-DUAL ALGORITHM FOR SUBMODULAR FLOWS 261

getting the dual solution y from #. The next lemma, from [7], follows simply from the
definition of b, b’ and b".

LemMA 9. For x € P, a b-tight set X partitions into b'- tight sets A;. The complement
of a b'-tight set A; partitions into the complements of b”-tight sets A,.

As a consequence a b-tight set B, = | J,4, = |J,N ;A4;;, where each A4, is b”-tight. Let
2 (B,) = {4;}. Define y(X) to be 37, — 7, _,, where the sum is over subscripts k for
which X € 9% (B,) (the empty sum is 0). It is not hard to see that ya(uv) = 7(v) —
7(u) and hence that x, y satisfy (3). From the algorithmic point of view we have to be
able to construct the family 2 (B). Here we outline the method of [7].

We need a slightly stronger oracle which computes not only € (u,v) = min{(y,(F): F
a uv-set) but also determines a set F where the minimum is attained.

By Lemma 9 for v € B, B(v):= (X : X is b”-tight, v € X) is b’-tight and B(v) can
be computed. The components of the hypergraph {B(v):v € B} partition B into
b’-tight sets A4,.

LemMMa 10 [7). A b'-tight set A, for which the hypergraph H = {B(v):v € A) is
connected, can be obtained constructively as the intersection of pairwise co-disjoint
b"-tight sets.

Proor. This is obvious for a set 4 = B(v) and for 4 = V, Suppose that X and Y
are crossing b’-tight sets and we have co-disjoint &”-tight sets X, and co-disjoint
b"-tight sets ¥, such that X = NX,, Y = ¥, Then XU Y=(Z:Z=X, U Y, X,
and Y; are crossing). Here any set Z is ”-tight and the minimal sets Z are co-disjoint,
that is, we have obtained X U Y in the required form. The lemma now follows from a
simple induction. #

Applying Lemma 10 to the components 4,, we get the members of %~ (B).

References

[1] Cunningham, W. H. (1984). Testing Membership in Matroid Polyhedra. J. Combinatorial Theory B36
161--188. =
[2] Dunstan, F. D. J. (1976). Matroids and Submodular Functions. Quart. J. Math. Oxford 27 339-347.
[3] Edmonds, I. (1970). Submodular Functions, Matroids, and Certain Polyhedra. R. K. Guy et al., eds.,
Combinatorial Structures and Applications. Gordon and Breach, New York, 69-87.
and Giles, R. (1977). A min-max Relation for Submodular Functions on Directed Graphs,
Ann. Discrete Math. 1 185-204.
and Karp, R. M. (1972). Theoretical Improvements in Algorithmic Efficiency for Network
Flow Problems, J. ACM 19 248-264,
{6] Ford, Jr, L. R. and Fulkerson, D. R. (1962). Flows in Networks. Princeton University Press, Princeton,
N.J.
[7] Frank, A. (1982). An Algorithm for Submodular Functions on Graphs. Ann. Discrete Math. 16
97-120.
. (1984). Finding Feasible Vectors of Edmonds-Giles Polyhedra. J. Combinatorial Theory B36
221-239.
. (1984). Submodular Flows. in: W. R. Pulleyblank, ed. Progress in Combinatorial Optimization.
Academic Press, 147-165.
. {1984). Generalized Polymatroids. in: A. Hajnal et al., eds. Finite and Infinite Sets, Eger 1981.
North Holland, 285-294.
{11] Fujishige, S. (1978). Algorithms for Solving the Independent Flow Problems. J. Oper. Res. Soc. Japan
21 189-203.
. (1984). Structures of Polytopes Determined by Submodular Functions on Crossing Families.
Math. Programming 29 125-141.
[13] Grotschel, M., Lovasz, L. and Schrijver, A. (1981). The Ellipsoid Method and its Consequences in
Combinatorial Optimization. Combinatorica 1 169-197.
{14] Hassin, R. (1982}, Minimum Cost Flow with Set Constraints. Networks 12 1-21,
[15} Lawler, E. L. and Martel, C.U. (1982). Computing Maximal Polymatroidal Network Flows. Math.
Oper. Res. T 331-347, :

(4]
(5]

18]
9

(10]

(2]

262 WILLIAM H. CUNNINGHAM & ANDRAS FRANK

[16) Lovasz, L. (1977). Flats in Matroids and Geometric Graphs, P. J. Cameron ed., Combinatorial Surveys,
Academic Press, New York, 45-86,

[17] Lucchesi, C. and Younger, D. H. (1978). A Minimax Theorem for Directed Graphs. J. London Math.
Soc. 17 369-374.

[18] Rock, H. (1980). Scaling Techniques for Minimal Cost Network Flows. U. Pape ed., Discrete
Structures and Algorithms, Carl Hanser, Munchen, 181-191.

[19] Schonsleben, P. (1980). Ganzzahlige Polymatroid—Intersektions—Algorithmen. thesis, ETH, Zurich.

[20] Schrijver, A. (1984). Total Dual Integrality from Directed Graphs, Crossing Families, and Sub- and

Supermodular Functions. in: W. R. Pulleyblank (ed.) Progress in Combinatorial Optimization,
Academic Press.

CUNNINGHAM: DEPARTMENT OF MATHEMATICS AND STATISTICS, CARLETON UNI-
VERSITY, OTTAWA, ONTARIC, CANADA K18 5B6

FRANK: RESEARCH INSTITUTE FOR TELECOMMUNICATION, BUDAPEST, HUNGARY

