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Dedicated to the memory of G. A. Dirac

Directed counterparts of theorems of Rothschild and Whinston and
of Lovhss concerning Eulerian graphs are proved. As a consequence,
a polynomial time algorithm is presented to solve the integral two-
commodity flow problem in directed graphs in the case where all ca-
pacities are ‘Eulerian’.

1 Introduction

Connectivity results in graph theory start with Menger's theorem which has
(at least) four versions, according to whether we are interested in the maxi-
mum number of edge-disjoint or node-disjoint paths from s totina directed
or an undirected graph. The max-flow-min-cut (MFMC) theorem can be
considered as an extension of the directed edge-version of Menger's theorem.
T. C. Hu [4] proved a max-flow-min-cut theorem for two-commodity flows
in undirected graphs. Unfortunately, in this case the maximum flow is not
necessarily integer-valued, Rothschild and Whinston [14] found an integer-
valued version of Hu’s theorem for Eulerian graphs. Two other interesting
confectivity results concerning Eulerian graphs are due to L. Lovisz [71-
The purpose of the present note is to prove directed counterparts of

these results. We also describe a polynomial time algorithm for integral
two-commodity flows in directed graphs when the capacities are Eulerian
(that is, at every node the sums of out-going and in-going capacities are
equal).

*Supporied by a grant from the Alexander von Humbealdt Stiftung and by the Institute
of Econcmetzics and Operstions Research of the University of Bonn.
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The proofs make use of the operation of splitting off incident edges
ww a Momw. ”H.Emu powerful technique was used in [14] and in [7]. It also
played a basic role in connectivity r i
D o e . y results of Mader ([8] and [9]) concerning

In an undirected graph G = (V, E), splitting off two edges wu and ut
means replacing vu and ut by a new edge vt. Similarly, in a directed graph
splitting off two edges vu and ut i an operation that replaces vu and ,Ew
by a new edge vt. If v = ¢, we leave out the resulting loop vt.

Throughout, we work with connected loopless graphs (directed or undi-
rected) on node set V. For X C V, put X := V — X. Note that A C B
nwmwum.;wa AC B,but A# B. Fors,t €V, a subset X C V is called an
st-set if s € X and ¢t ¢ X. We do not distinguish between an element v
and the one-element set {v}.

For a graph G = (V, E), dg(X,Y) denotes the number of edges with
one end in X — Y and one end in ¥ — X. (When it is not ambiguous, we
leave out the subscript G). We use dg(X) for dg(X,X). For two mnmhw_um
G = (V,E) and H = (V,F), G+ H denotes a graph with node set V and
edgeset EUF. In a directed graph G, p(X) (respectively g(X)) denotes
the number of edges entering (leaving) X. For a function ¢: F — R,

2 X) = M?T& : e enters X).
We will use the following two equalities.

06(X) + ea(Y) = ea(X NY) + og(X UY) + d(X, Y) (1)
de(X)+dg(Y)=da(X NY) +da(X UY) + 2dg(X,Y) (2)

The connectivity ¢(X,Y) between two disjoint subsets X
of an undirected graph is the maximum uaE.“vmu of &mm-&&opwﬂ” W\NMMM MMM
necting X .ﬁa Y. In a digraph, the di-connectivity de(X,Y) from X to Y
is the maximum number of edge-disjoint directed paths from X to Y.

An ==mm32mm graph G = (V, E) is Eulerian if dg(v) is even for every
v e V. A digraph G = (V, E) is Eulerian if pg(v) = éa(v) for every v € V
A graph G is called acyclic if it does not contain directed circuits. .

2 Edge-disjoint paths

The edge-disjoint paths problem is as follows: Given an undirected graph
G =(V,E) mum. k pairs ﬂ. nodes, find k edge-disjoint paths in G connecting
the corresponding terminals. In general, the problem is A"P-complete [6]

b
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but for fixed k it is polynomially solvable [13]. For arbitrary k, some im-
portant special cases are well characterized ([3), [12], [10], [11], and [18]).
See also Schrijver’s survey paper [15}.

Sometimes the following reformulation is useful. Mark each terminal
pair by an edge. The graph # = (V, F) of marker edges is called a demand
graph, while we call the original graph G a supply graph. The edge-disjoint
paths problem is: In G + H, find k edge-disjoint circuits such that each of
them contains one demand edge.

A natural necessary condition for the solvability is the

Cut Criterion. da(X) > dg(X) forevery X C V.

If H consists of k parallel edges, then the cut criterion is sufficient
(: undirected-edge Menger). The following result of Rothschild and Whin-
ston is a strengthening of Hu’s two-commodity flow theorem [4].

Theorem 2.1 ([14)). If H consists of two sets of paralle! edges and G+ H
is Eulerian, then the cut criterion is necessary and sufficient for the solv-

ability of the edge-disjoint paths problem.

The directed edge-disjoint paths problem can be defined analogously.
Here we formulate only the corresponding second version: Let G = (V, E)
and H = (V, F) be directed graphs. Find |F| edge-disjoint directed circuits
in G + H, so that every circuit contains one edge of H. Such a circuit will
be called a good circuit.

Again, the following criterion is obviously necessary.

Directed Cut Criterion. 06(X) > 6p(X) forevery X CV.

If H consists of parallel edges of the same direction, the cut criterion
is sufficient; this is exactly the directed-edge version of Menger’s theorem.
If H consists of two oppositely directed edges (i.e., if H is a two-edge
circuit), the directed edge-disjoint paths problem is A'P-complete [2], and
the directed cut criterion is not sufficient. Even if G + H is Eulerian, the
directed counterpart of theorem 2.1 does not hold in general. This can be
seen from the graph of Figure 1. Here the solid lines denote the edges of H;
G + H is Eulerian, and the directed cut criterion holds, but there is no
solution. However, we have the following theorem.

Theorem 2.2. Suppose that G+ H is an Eulerian digraph, H consists of
two sets of parallel edges, and H is acyclic. Then the directed cut criterion
is necessary and sufficient for the solvability of the directed edge-disjoint

_paths problem.
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Figure 1.

Proof. Let G+ H be a minimal counter-example. Assume that H consists

of k; edges from &. to 83 and k2 edges from 1 to s;. Let T = {81,82,t1, 82}

be the set o*” terminal nodes. By Menger’s theorem, k; > 0 and mﬂ W o,
Call a pair {vu, ut} of edges feasible if splitting them off does =ow mmmmuow

the directed cut criterion. Since G i inj
. 4+ H is a minimal counter-ex
cannot be feasible pairs {vu,ut} forue V- T. mple, there

Call a set X tight if pa(X) = 65(X).
CramM 1. If X is tight, then s0 is X.
Proor. Since G + H is Eulerian,

ec(X) + on(X) = 66(X) + ép(X),

whence the claim follows,

CLaM 2. If X and Y are tigh
. ght sets, then dg(X,Y) > d )
equality holds, then both XY and XuY E_.mm@&u.v 2 dalXoX), and if

Proor. Using (1) and the directed cut criterion, we immediately get

06(XNY)~eu(XNY)+06(XUY) - og(XUY) +da(X,Y) - du(X, Y)
=06(X) — on(X} + 0c(Y) — pu(Y)
=0+0,

from which the claim follows.

CLaM 3. If X and Y are tigh
ght, thendyg(X,Y) > da( X , .
holds, then both X —Y andY — X are M@EWJ 2 da(X.F), and if equaliy

PRrooF. Immediate from Claims 1 and 2.
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CLAIM 4. Fori=1,2, sit; is not an edge in G.

ProoF. Otherwise, a demand edge t;s; and s;t; form a good circuit C.
After deleting the two edges of C, the hypotheses of the theorem continues
to hold, so the resulting digraph contains |F'|—1 edge-disjoint good circuits.
These circuits, together with C, constitute | F| edge-disjoint good circuits
in G + H, a contradiction.

Cramm 5. TCV.

PROOF. Let T = V. Since k; > 0 and sy is not in G, there are two edges
sz and 2y in G such that sy # z # y # 1. Since every pair is infeasible,
there is a tight set A for which € A and 81,y ¢ A. Since ég(A) > 0 and
A is tight, pg(A) > 0. Similarly, §u(4) > 0. Hence, t18; leaves A, and
1,82 enters A. By Claim 4, t; # z. So we must have y = 1z and & = 32,
contradicting Claim 4.

Since G is connected, there is a node v € V — T such that us € E for
some s € T'. The next lemma immediately implies the Theorem. o

Lemma. There ezists an edge vu in E such that {vu,us} is feasible.

Proof. Assume that s = ¢, (the other possibilities are analogous). If there
is no tight si-set, then any vu edge will do. Assume first that there is
exactly one maximal tight sT-set, denoted by X. We claim that there is an
edge vu € E such that v ¢ X. Otherwise, we have

ec(X + u) < pg(X) = (X)) =éu(X+ u),

contradicting the directed cut criterion. Note that the pair {vu,us} is
feasible.

Next, suppose that there are two maximal tight s%-sets, denoted by
X and Y. Since their union is not tight, by Claims 1 and 2, duy(X,Y) >0
and dg(X,Y) > 0. Since & € X NY, among the two edges of H only 1252
can contribute to dg(X,Y). Therefore, we cannot have three maximal
tight sz-sets, X1, X2, X3, since otherwise szt; would connect X; — X; and
X;—X;, 1<i< j< 3, whichis impossible. Assume that &; € X —Y and
s € ¥ — X. We claim that there is an edge vu in E such that v ¢ XUY.
Otherwise, §g(X) = 0 (since X is tight), and

oc(Y +u) < 06(Y) = 6u(Y} = 6u(Y +u),

contradicting the directed cut criterion. Now the edge pair {vu,us} is
feasible. m|



184 A. Frank

Notice that Theorem 2.2 easily implies Theorem 2.1. Indeed, a theorem
by Ford and Fulkerson [1] says that the undirected edges of a mixed graph
can be oriented in such a way that the resulting digraph is Eulerian if
and only if every node has an even number of incident edpes (directed or
undirected), and every cut contains at least as many undirected edges as is
the difference between the numbers of entering and leaving directed edges
in this cut. Apply this result to the mixed graph obtained from G + H by
directing the edges of H from ¢; to s; and from 12 to 82. By the undirected
cut criterion, the necessary and sufficient condition above is satisfied, so
there is an Eulerian orientation of G+ H. The undirected cut criterion also
implies the directed cut criterion for this orientation, Thus, Theorem 2.1
follows from Theorem 2.2.

By a star we mean a digraph in which either all the edges enter the
same node or all the edges leave the same node. ’

Theorem 2.3. If G + H is an Eulerian digraph, and H is the union of
two stars, then the directed cut criterion is necessary and sufficient for the
solvability of the directed edge-disjoint paths problem.

Proof. We derive this result from Theorem 2.2 by using an elementary
construction. Assume that H is the union of two stars, H; and Hj. If every
edge of H; leaves t;, adjoin a new node s; to V. For every edge t;z of H;,
add a new edge s;z to G, and in H;, replace t;z by #;s;. Analogously, if,
in Hj, every edge enters s;, adjoin a new node t; to V. For every edge zs;
of H;, add a new edge zt; to G, and in H;, replace zs; by #;¢;. In the
resulting problem, the directed cut criterion continues to hold, so we can
apply Theorem 2.2. a

A kind of converse to Theorem 2.3 is also true. A digraph # = (V, F)
is called suitable if, in G + H, the directed cut criterion is sufficient for the
directed edge-disjoint paths problem for every digraph G for which G+ H is
Eulerian, Theorem 2.3 says that the union of two stars is suitable.

Theorem 2.4. If H is suitable, then H is the union of two stars.

Proof. First, observe that a subgraph H' = (V, F*) of a suitable H is also
suitable. Indeed, assume that G’ + H’ is Eulerian for a certain G’, and
the directed cut criterion holds, but there are not | F’| edge-disjoint good
circuits in G’ + H’. Then the same statement is true for G + H, where
G arises from G’ by adding the edges in F — F* oppositely directed. In
Figure 2, we list some digraphs (along with G), which are not suitable.
The edges of H are drawn by solid lines.
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Figure 2.

It is an easy exercise to see that if a digraph H ao.mm not contain any M.
these graphs as a subgraph, then H is the disjoint union of two stars.

Theorems 2.3 and 2.4 can be considered as a counterpart to a ﬁ?u.oawu_n
by Papernov [12], saying that in the :5&.32& case, a mnw.vv m is M.Eg. M
if and only if it is the union of two (undirected) stars, or it E,wmmw aoEm
(complete 4-gon) or C (circuit of five edges) by adding parallel edges. See
w_mo%wﬂwwm other hand, we cannot be overjoyed with our nbmw@mﬂw&mwﬂon
since there is another natural necessary condition for the edge-disjoint paths

problem:

Covering Criterion. For any subset F' C F of the demand edges, the
good circuits, using an element of F’, cannot be covered by less than

| F'| edges of G.

This criterion immediately implies the cut criterion, ?ﬂ Ema the other
way around. The graph G+ H in Figure 1 satisfies the cut criterion, vﬁ%aoﬂ
the covering criterion. Note that in the E_&Hwnﬂmﬂm case, the (corresponding)
covering criterion is equivalent to the cut criterion .?m_.

It is tempting to try to find classes for 2..6 Q.:mo.ﬁ&. case, idmno :MM
covering criterion is sufficient, while the cut n.:ﬁmﬂow is u_oﬂ.. 1 noP_monsH !
that the covering criterion is sufficient if the &mn.ﬁuw Q +H is m&ﬁ.mg mba.
planar. (By a theorem of Seymour {18}, if G+ H is undirected, mnwmuﬁﬂvmﬁ
planar, then the cut criterion is sufficient.) ._.Hoimé? C. Hurkens (Tilburg
University) found the counter-example of Figure 3. . -

(Relying on the above theorem of Seymour, one can easily mro.i .a. at i
every face of G + H is a directed circuit, then the directed cut criterion is

sufficient.)
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Figure 3.

3 Two-commodity flows

_H._wm m:.ooﬁ of Theorem 2.2 suggests an algorithm to find the required good
m:nduzm. Actually, the theorem itself gives rise to an algorithm, since it
implies that if the directed cut criterion holds, then either the anvE. of
mmmmm in G from s; to t; is at least k; (i = 1, 2), or there is a feasible
pair of &..mmm in G. In order to find feasible pairs, we have to be able to
gﬂ a pair of edges for feasibility. This can be done if the directed cut
nﬂﬂma.n.b can be checked efficiently. By Menger’s theorem, the directed
cut criterion is satisfied (for G and H in Theorem 2.2) if mbﬁm only if, in G

there are k; edge-disjoint paths from s, to t;, and there are k; mamm-mw&.omﬁﬂ.
paths from s to t;, and there are &, + k; edge-disjoint paths from {31,873}
to {t1,22}. Therefore, the directed cut criterion can be checked by L:.Mm
max-flow-min-cut computations.

Begin the algorithm with checking the directed cut criterion. Second
repeat the following procedure as long as there is a node u € V for iEnm
2G(u) > 0 and ég(u) > 0: Choose an edge us € E. One by one, check
m<mww pair {vu,us}, wvu € E, whether it is feasible. By Theorem ,m.w, we
mnmm.woﬁm Mqﬁmw MMHW” Mm..?m.mﬁ one of these pairs is feasible. Once a feasible pair

When the splitting phase terminates, the resulting digraph contains
k; edges from s; to t; (i = 1, 2). Each of these edges corresponds to a path
of G from which the edge has arisen during the splitting phase.
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Let us consider the following directed two-commodity flow problem.
We are given a digraph G = (V, E) endowed with a non-negative integral
capacity function ¢: E — Z. Two (ordered) pairs of terminals s;,2; (i = 1,2)
are specified along with a prescribed flow value k;. The problem is to find
two flows z; and 2 such that z; > 0 is a flow from s; to ¢; of value k;, and

z1(e) + x2(e) < c(e)
for every e € E. We solve this problem under the assumption that

p(v) = 8c(v) if v # 85,8

and

ou(si) + ki = 6u(s:) and gut) = St +hi  (i=1,2).

Theoretically, the problem goes back to the uncapacitated case by re-
placing each edge e by c¢(e) parallel edges. This reduction gives rise to an
algorithm that is not polynomial, since the required number of splitting
operations is proportional to the maximal capacity.

This difficulty can be overcome if we split off a feasible pair {vu,us}
more than once at a time. How many times can a pair be split off, without
violating the cut criterion? If M denotes this number, then

M = min(c{vu), c(us),m)

where
m = min{g.(X) - §5(X) : u ¢ X and v,s € X).

Like the way we tested the directed cut criterion, m can be computed by
three max-flow-min-cut computations.

By a weighted splitting we mean an operation that, given two edges
vu and us, reduces c(vu) and c(us) by M and introduces a new supply
edge from v to s of capacity M. We say that a weighted splitting operation
is critical if M = m.

Now, the weighted algorithm is the same as the unweighted one, except
that each time we perform weighted splittings. That is, the algorithm
begins with checking the directed cut criterion. The second part consists
of iterating the following procedure for » = v, i=1,2,...,[V]: Perform
a weighted splitting for every pair {vw,us}. The third part builds the two
required flows z; and z; by iterating the next procedure: Assume that
z1(e) and z3(e) have already been computed for an edge e = vs having
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arisen by splitting off vu and us. Increase z;(vu) and z;(us) by z;(e)
fori =1, 2, and reduce z;(¢) to 0.

Although this algorithm is a natural extension of the uncapacitated
algorithm, proving that the number of weighted splittings is bounded by
a polynomial in |{V| and | E| requires some more work. First, observe that
during the weighted splitting phase, once a subset of nodes becomes tight,
it remains tight throughout. Consequently, once a pair of edges becomes
infeasible, it never again becomes feasible.

Lemma. In the course of the weighted splitting phase at most O(|V|?)
weighted splittings are critical.

Proof. Let 7' = {s1,3,%;,%2} be the set of terminal nodes. Let F denote
the family of tight sets. For Z C T, let Fz = {X : X € Fand XnT = Z}.
By Claim 2 (in the proof of Theorem 2.2), Fz is a ring family. (A family of
subsets is called a ring family if it is closed under union and intersection.)
Thus, F is the union of at most 16 ring families, _

It is well-known that for every ring family R € 2" for which 0,V € R,
there is a unique (transitive) digraph D; = (V, Ey) such that

where 6;(X) is the number of edges leaving X in D;. (Namely, put
E, := {uv : there is no u¥-set in R}.) Consequently, for a sequence R; C
Rz C --- € Ry of ring families, we have & < |V|2. Thus, if & C
F3 C --- C Jiis a sequence of families of tight sets during the weighted
splitting phase, then I < 16/V|2. Since a critical splitting operation strictly
increases the family of tight sets, the number of these operations is at
most 16|V |2, o

Since at a node u, at most
e(u) - 6(z) < |E?

non-critical weighted splittings can occur, the total number of weighted
splittings is at most
V] |E[® + 16|V

4 Connectivity in Eulerian digraphs

In this section we prove directed counterparts of two theorems of Lovisz [7].
Let G = (V, E) be a directed graph. Throughout this section, G is used to
denote the underlying undirected graph of G. Let A = {v;,1,... W} CV

On Connectivity Properties of Eulerian Digraphs 189

be a specified subset of nodes. A path conmecting two distinct elements

of A is called an A-path. Let di = de(vi, A~ v;) for i = 1,2,..., k.
Theorem 4.1. Let vz be an edge of an Eulerian &.mag G such that v m A.
There exists an edge yv such that splitting off yv and vz does not recuce
de(vi, A —vi) fori=1, 2, ..., k.
Proof. Call a set X i-critical for somei=1,2, ..., kif XN A= {v}and
§(X) = de(vi, A — vi).
CramM. If X and Y are i-critical, then so are X D Y .n;a Xuy, M:.&
d(X,Y)=0. IfX s i-critical, and Z is j-critical (i # j), then X —- Z 13
i-critical, and Z — X is j-critical, and d(X ,Z)=0.

i G tions 6 and dc concern G.
Proor. Functions d and ¢ below concern G, func ern
Since G is Bulerian, d(X) = 26(X) and ¢(X,Y) = 2de(X,Y) for disjoint
sets X and Y. Thus, it suffices to work with G. By (2), we have

wnﬁe..,\» - )
= d(X) +d(Y)
=d(XnY)+dXuY)+ 2d(X,Y)
> 2¢(vi, A — vi) + 24(X,Y)

whence the first statement follows. Similarly,

e(vi, A —vi) +e{vj, A - v;)
=d(X)+d(2Z)
=dX-Z)+dZ-X)+ 2(X,Z)
> e(v, A —v) + c(vj, A — v;) + 24(X,Z)

which implies the second statement, and thus proves the claim.

The edges yv and vz can be split off without reducing d; if and only WM
there is no f-critical set X, for which either v € X E& z,y ¢ X,orv m X
and z,y € X. Thus, if there is no critical set M with :e,nw.a K_rl L
then for any edge yv, the pair {yv,vz} can be split off. If there is such set,
we have two cases to consider.

Cast 1. There exists a critical vT-set M. .
Let M be minimal, and suppose that M is i-critical m.E. some t = 1,
2, ..., k. There is an edge yv such that y € M, for otherwise

de(vi, A = ;) < 8(M —v) < §(M) = de(vi, A — i)y
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a contradiction. We claim that yv and vz can be split off. Indeed, there is
no i-critical z%-set C, since then d(C, M) > 0 contradicts the claim. There
is no i-critical v¥-set C, for otherwise C' N M is i-critical, contradicting
the minimality of M. Similarly, there is no j-critical y¥-set C, since then
M — C would be i-critical, contradicting the minimality of M, and there is
no j-critical vF-set, since d(M,T) > 0.

CASE 2. There is no critical »Z-set, but there is a critical z%-set M.

Let M be maximal, and suppose that M is i-critical for some ¢ = 1,
2, .-+, ¥, Then there exists an edge yv such that y ¢ M. We claim that
yv and vz can be split off. Indeed, by assumption there is no critical
vE-set. Similarly, there cannot be a critical yF-set C, since C is i-critical;
then C'U M is also i-critical, contradicting the maximality of M, and if C is
Jj-critical (§ # ©), then d(M,C) > 0, contradicting the claim. 0

The following theorem is immediately implied by Theorem 4.1.

Theorem 4.2. In an Eulerian digraph G = (V, E), the mazimum number ¢
of pairwise edge-disjoint A-paths is

k
min ) _ 6(V7), (3)

=1
where Vi, Va, ..., Vi are disjoint subsets of V and V,N A = {v;} (i = 1,
2, ..., k). Furthermore, t = ¥ d;, and if M; denotes the minimal set for

which M; 0 A = {v;} and 6(M;) = d;, then the sets M; (i=1, 2, ..., k)
are pairwise disjoint, and they form an optimal solution to (3).

Remark. Lovisz's theorem on A-paths of an undirected Eulerian graph [7]
easily follows if we apply Theorem 4.2 to any Eulerian orientation of G. On
the other hand, the converse derivation is not difficult either.

Let G = (V, E) be an Eulerian digraph, and let G denote the underlying
undirected Eulerian graph. We show that there are ¢ directed edge-disjoint
A-paths in G, provided that there are ¢ edge-disjoint A-paths in G.

For a directed A-path or circuit P, we say that an internal node v of P
is in-bad (on P) if both edges of P incident to v enter v; v is said to be
out-bad if the two incident edges on P leave v. Let b( P) denote the number
of bad nodes of P. Let P be a decomposition of E into undirected A-paths
B, P, ..., P, and some circuits such that

S_((P): PeP)
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is minimal. We claim that every path P is a directed path in G {although
not necessarily a simple path). Suppose, indirectly, that a path P € P
contains an in-bad node v (say). Since G is Eulerian, ¥ must ,a.m an Oﬁ.?vw&
node of another member @ of P. At least one of the two possible m.iznrmm
of P and Q at v gives rise to another partition P’ of E into ¢ @mmm_Ew not
simple) A-paths and some circuits for which S (&(P) : P € P’} is smaller,

a contradiction. See Figure 4.

. . g P
v vy Ve Ui 5 k

Figure 4. Switch of P and Q at ».

Remark. From an algorithmic point of view, the edge-disjoint b-vﬁmwm
problem and its capacitated version (when to every edge a norn-negative
capacity is assigned such that g.(v) = 8c(v) for every v € V) can be muu?mm
quite analogously to the two-commodity flow problem analysed in Section 3.

‘We leave out the details.

Theorem 4.3. Let G = (V,E) be an Eulerian digraph and vz € E.
There ezists an edge yv € E such that splitting off yv and vz does not
reduce dc(s,t) for any s,t€V —v.

Proof. Call aset ' critical with respect to a pair of nodes s, “A# v} if C is
a t3-set and dc(s,t) = ¢(C). I C is critical for s,¢, then ' is critical for t,s.
The set C is said to be critical with respect to s, in G if :.P& n C _ =1
and ¢(s,t) = d(C). Obviously, C is critical in G if and only if C is critical
in G. The next lemma concerns G.

Lemma. If X and Y are critical, then either
(i) XNY and X UY are critical and d(X,Y} =0, or

(i) X —Y and Y — X are critical and d(X,¥)=0.
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Proof of Lemuma. Let X be critical for #;,z2, and let ¥ be critical

for y1, y2. We have three possibilities to consider.

(a) XNY separates one of the pairs {z1,22}, {31, %}, and XUY separates
the other. (A set 4 is said to separate z and y if |[A N {z,y}| = 1.)

Then

d(X)+d(Y)=dXNY)+dXUY)+2d(X,Y)
> d(X) + d(Y) + 24(X,Y)

from which (i) follows.

(b) X — Y separates one of the pairs {z1,23}, {11,%:},and ¥ - X sepa-
rates the other. Applying (a) to the sets X and Y, we obtain (ii).

(¢} X separates {y;,y:}, and Y separates {21,232}, and one of the pairs
{z1,22}, {$1,¥2} is separated by both X NY and X U Y. Now

d(X) = c(21,22) 2 d(Y) = (1, 33) 2 d(X).

Suppose that the pair {y1, 4.} is separated by b
? t
Then we have } p y both XNY and XUY.

4(X) = d(Y) = (31, ¥2)
and
dX)+d(Y)=d(XnY)+d(XUY)+24(X,Y)
>y, v2) + nﬁﬁu,ﬁuv + w&ﬁk‘vu\u
=d(X) +d(Y) +2d(X,Y)
from which (i) follows.

This completes the proof of the lemma. a

The lemma implies the corresponding assertion for i
N. m.bm Y are critical in G, and the edge ew enters both, ﬂm.w W wqum“.wmm
critical. Hence, there is a unique maximal critical z¥-set M (if there is one
at all), If bo.mﬁnw M exists, any edge yv can be split off. If we have such
an M, there is an edge yv with y ¢ M. Indeed, if M is critical for s, and ¢
and the required edge yv did not exist, then ,

de(s,t) = o(M) > o(M + v) > de(s, 1),

a moaum.&.ns.on. By the construction of M, the edges yv and vz can be
split off without reducing de(s, ) for any s,t € V - v. o

A. Frank
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Remark. W. Mader proved [9] that, given a not necessarily Eulerian di-
graph G = (V, E) and a node v such that de(s,t) > k for every 8,1 € V —v
and g(v) = §(v), a pair of edges yv,vz can be split off such that the con-
nectivity from any s€ V —vtoany te V — v continues to be at least k.

Remark. B. Jackson [5] also proved Theorems 4.1 and 4.3.
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