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Polyhedra related to matroids and sub- or supermodular functions play a central role in com-
binatorial optimization. The purpese of this paper is to present a unified treatment of the subject.
The structure of generalized polymatroids and submodular flow systems is discussed in detail
along with their close interrelation. In addition to providing several applications, we summarize
many known results within this general framework,
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CHaPTER I. PRELIMINARIES

1. Iatroduction

The first relationship between matroid theory and what is now called combinatorial
optimization was a theorem by Rado (1942) on the existence of independent
transversals of a family of sets. As a next significant contribution Rado (1957)
proved that the greedy algorithm works correctly not only on graphs but on matroids
as well.

In the middle of the sixties investigations by J. Edmonds (1965a) and (1965b)
further emphasized the role of matroids in combinatorial optimization. Edmonds’s
matroid intersection and matroid partition theorems along with Rado’s theorem
became prototypes of matroid min-max theorems. These three results are somehow
on the same level in the sense that they can be derived from each other by elementary
constructions, The weighted matroid intersection problem of J. Edmonds, seems to
be on a higher level. Edmonds also developed polynomial-time algorithms for the
matroid partition and for the weighted matroid intersection problems.

A second fundamental idea is the use of linear programming in combinatorial
optimization. The idea goes back to works of Dantzig, Ford, Fulketson and Hoffman,
who applied linear programming to derive combinatorial results concerning
networks. Later, Edmonds realized that linear programming can also be used in
cases when the constraint matrix corresponding to the combinatorial problem is not
necessarily totally unimodular.

The principle of using linear programming is nowadays rather well-known:
Associate points in R” with combinatorial objects to be investigated, determine the
linear inequalities describing the convex hull P of these points, and apply the linear
programming duality theorem in order to obtain a min-max result for the optimal
object.

Matroid polyhedra were amongst the first polyhedra defined this way by Edmonds
(1971). The independent sets of a matroid are the combinatorial objects to be
investigated. The convex hull of their incidence vectors defines the matroid poly-
hedron. Edmonds (1971) showed that the matroid polyhedron is described by
{x€ Ri: x(A) = r(A) for every Ac S}, where r is the rank function and § the ground
set of the matroid. A much deeper result of Edmonds ( 1970} establishes the polyhe-
dron of common independent sets of two matroids.

As a natural generalization of matroid polyhedra Edmonds (1970} introduced
polymatroids. A fundamental feature of polymatroids is that the optimunt of a linear
objective function over a polymatroid can be calculated by a greedy algorithm.
Furthermore, the defining linear system is totally dual integral (TDI). Edmonds
also established the polymatroid intersection theorem (1970) stating, roughly, that
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the defining linear system of the intersection of two polymatroids is also TDI
Further problems on polymatroids have been investigated in a thesis by R. Giles
(1975) (written under the supervision of J. Edmonds).

A drawback of the concept of polymatroids is that the role of sub- and super-
modufar functions is asymmetric and, also that only bounded and non-negative
submeodular functions are considered. This is why other models, similar to poly-
matroids, have been introduced: contrapolymatroids by Shapley (1971), base poly-
hedra by Fujishige (1984c), submodular systems by Fujishige (1984d). Some other
disadvantages of polymatroids are: a face and a translate of a polymatroid are not
polymatroids (although they are “nice” integral polyhedra), the intersection of a
polymairoid and a box is a “polymatroid-like” polyhedron but it is not a polymatroid.

In order to overcome these difficulties and to unify the above-mentioned models
the concept of generalized polymatroids or g-polymatroids has been introduced by
Frank (1984c). The two most important features of polymatroids—the validity of
the greedy algorithm and the intersection theorem—also hold for g-polymatroids.

In this paper we discuss properties of g-polymatroids in detail. We also reveal
an interrelation between g-polymatroids and a more sophisticated model called
submodular flows. This concept was introduced by Edmonds and Giles (1977) in
order to give a general framework for network flows, polymatroid intersections and
a theorem on covering of directed cuts by Lucchesi and Younger (1978). Other
interesting models were defined and investigated by Hoffman (1982) and his co-
workers. Since these pioneering works many other models concerning submodular
functions and graphs have been introduced. Among them are polymatreidal network
flows by Hassin (1982) and Lawler and Martel (1982), independent flows by Fujishige
(1978), kernel systems by Frank (1979) and a very general model by Schrijver
(1984b). An excellent survey on these models and their relationship can be found
in Schrijver (1984a).

The general purpose of the present paper is to analyse generalized polymatroids,
submodular flows, their relationship and various applications. We strive to summar-
ize known results, as well.

The paper is divided immto six chapters. In this first introductory chapter we present
the required terminology and notation, and outline some :nown fundamental results
on polymatroids and submodular functions. Chapter II infroduces the concepts of
truncation and bi-truncation of submodular functions. The concept of g-poly-
matroids along with basic features are also presented here. Chapter I offers
constructions, characterizations and examples of g-polymatroids. In the fourth
chapter we briefly review the greedy algorithm for g-polymatroids and exhibit some
new applications of it. (Except in this chapter we are not concerned with algorithmic
aspects of submodular functions. It should however be remarked that in the recent
years many important papers appeared on this topic.) Submodular flows are investi-
gated in Chapter V. We show that submodular flow polyhedra are exactly the
projections of intersections of two g-polymatroids. Furthermore, various construc-
tions and applications of submodular flows will be provided. The final sixth chapter
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inctudes polyhedral results concerning g-polymatroids and submodular flow poly-
hedra. In particular, we characterize adjacent vertices of the intersection of two
matroid polvhedra.

Finally, let us draw attention to a paper by Lovisz (1983) which surveys the basic
@8@ of submodular functions. That paper also exhibits various important construc-
tions of submodular functions, the knowledge of which is very useful in studying
the present theory. (Here we do not repeat those constructions.)

2. Notation, preliminaries

The elements of polyhedral theory can be found in Pulleyblank (1983). For a detailed
theory see Schrijver (1986). Here we shall need the following concepts and results
._(Q A be an m x n matrix and b an m-vector. An inequality cx< g (ceR" wm@.
15 a consequence of Ax<<bifcisa nen-negative combination ¢ = yA (y =0, w\m R™)
of the woim of A for which yb=<g. If y can be chosen integer valued we say that
€x < g 1s an integral consequence of Ax<h,

Farkas® Lemma 2.1. An inequality cs < g is a consequence of Ax=b if and only if
every x satisfying Ax < b satisfies cx < £

If both ex=<g and cx=g are consequences of Ax=<b we say that ex<g is an
implicit equality (with respect to Ax =< b).

Let Q={xeR": Ax< b} be a polyhedron. A Jace of Q is a polyhedron Q. =
{xe Q, Apx = b} where Ar is an mg X n submatrix of A and by is the corresponding
:mz._u<ooﬂon.. of b. We shali also consider the empty set to be a face. A maximal face
which is not Q is called a facet. If {v} is a face for ve @, then v is called a vertex,
,__,10 vertices u, v are adjacent if the segment spanned by u and v is a face. The
Q_Em.:z.oa dim Q of Q is the maximum number of affinely independent points of
..m.. minus 1. The co-dimension co-dim Q of Q is the maximum number of linearly
independent implicit equalities { with respect to Ax < b). This quantity depends only
om Q and dim Q+ co-dim Q=n. Every facet has the same dimension namely
dim Q@ —1. Similarly, every minimal face has the same dimension. Let g ._um a _.csw
of A. We say that an inequality ax < b, is Sacet-inducing if Q, ={xe Q:ax=58,}is
a facet of Q where b, is the component of b corresponding to a. A no:\:nmaﬁ.: is
nm:mn integral if each of its faces contains an integral point. (In particular, its
vertices are integral.) .

We say that a linear system Ax=b is fotally dual integral as introduced by
Edmonds and Giles (1977) or TDI if, for any integral d =R", the dual of the linear
program (max dx: Ax<b) has an integer optimal solution vector whenever it has
an optimal solution. The following fundamental result was proved by Hoffman
(1974) when the polyhedron {x: Ax<b} is bounded and by Edmonds and Giles
(1977) in general:
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Theorem 2.2. If the entries of A and b are integers, a TDI system Ax < b defines an
integral polyhedron.

We call a linear system Ax < b box TD] if for every f, g€ R" the system {f=x=<
g, Ax= b} is TDL

Suppose that Q is a full dimensional rational polyhedron. Then there is a uniquely
determined matrix A for which Q ={x: Ax= b} for some b, the rows of A are in a
one-to-one correspondence with the facets of @, and each row of A is an integral
vector so that the greatest common divisor of its components is one. Schrijver (1981)
proved that Q has a unique minimal TDI system describing Q. }f the minimal TDI
describing system is the above minimal describing system Ax=b, we say that Q is

facet-TDI.
The following simple observation will prove useful.

Proposition 2.3. If a linear system, that arises from Ax < b by adjoining some integral
consequences, is TDI, then so is Ax<b.

For two polyhedra P, and P, in R® the polyhedron P ={x: x = x, + x, for some
x, € P, x;€ P,} is called the sum of P, and P, and denoted by P,+ P;. Let
{8,,8,,..., 5.} be a partition of § (S, =®). To every vector x in R® we assign a
vector z=¢(x}eR", called the homomerphic image, by the definition z(i) = x(8;).
The homomorphic image ¢(P) of a polyhedron P< R® is defined by ¢(P):=
{p(x): xe P}.

Throughout the paper we use a finite ground set S. We do not distinguish betweer.
a subset X < § and its characteristic vector yx € R® (defined by yx(s)=1if s X
and =0 if s£ X). X denotes the complement S—X of X. A singleton {v} is ¢
one-element set. We shall denote {v} by ¢. ““X < §” means that X is a subset of §
“X < 85 means that X € § but X # 8. For two elements &, ve S a set X is callec
a ub-set if ue X, ve X, Two subsets X, Y= § are said to be

co-disjoint if X 0 Y =S8,

intersecting if none of X - Y, Y-X, XY is empty,

crossing if they are intersecting and X 0 Y # §.

A family & of subsets of S is called a ring-family if X, Ye & implies X~ Y
X v YeZ Fis an intersecting (crossing) family if this implication is required onl
for intersecting (crossing) X, Y.

A family F is a chain or chain family if X, Y e # implies that X< Y or Y= X
F is a laminar (cross-free) family if it does not include intersecting {crossing) subsets

With every family % of subsets of S we associate a directed graph G{F) = (S, E
where E = {up: there is no ub-set in F}. We call G the digraph of F.

It is easy and well known that, if & is a ring family with 5, @€ %, G(F) uniquel;
determines & Namely, F={X c S, no edge of G leaves X}.

Let %' be an intersecting family with ie #'. Define = {X: X = X, for som
sets X, e F'}. The proof of the following statement is straightforward and so w

omit it.
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13._5@52. 24. F is the smallest ring Samily including %', F consists of those sets
which are unions of pairwise disjoint members of %' Furthermore, G( %) = G( F),

Let #" be a crossing family with @, §< %". Define % = {X: X = X, for some
sets X, € F}, .
One can see that % is an intersecting famil "} = ! i
y and G(F")=G(F"}). Appl
Proposition 2.4 to %' we have: 77 Applying

—v_.ﬁ.._vom:mc: 2.5. Let " be a crossing family with 9, S F". The smallest ring family
.ﬁwi&:&.:ﬂ F'is F={X: X is the union of some disjoint subsets X, i=1,2
where each X; is the intersection of pairwise co-disjoi ” oreover
i -disjoint members of F"). M
= G, if F'}. Moreover,

For a vector x e R® and a subset Ac § we use the notation x(A) =¥ (x(v): v A).
Let b:2% >R U {+0} be a set function. We shall suppose throughout that (@) =0.
Let us define F(b)y={X:b(X) is finite}. b is called finite if F(b)=2% For T §
the restriction b|7:2T>R U {oo} of b to the subsets of T is bl (Xx)= h(X)forXcT

We associate three kinds of polyhedra with b: o

S(b)={xeR", x(A) =< b(A) for every Ac §},

B(b)={xeR® x(S) = b(S), x(A) < b(A) for every Ac S},

P(b):={xeR% x=0, x(A) < b(A) for every Ac S}

A set-function b is called Sully submodular (or submodular) if the submodular
inequality .

B(X)+b(Y)=b(X Y}+b(XuY) (2.1)

holds for every X, Y < §.

b is intersecting (crossing) submodular if (2.1) is required only for intersecting
{crossing) X, Y,

H.nﬂ. b be a submodular function. It is easy to check that #(b) is a ring-, intersecting-
n_dmmm:m family, respectively, if b is g fully-, intersecting-, crossing mc_u_.:oa:_mn,
function. Consequently, it is equivalent to speak about a fully submodular function
defined on 2° and about a finite fully submodular function defined on a ring family.
An analogous statement holds for intersecting and crossing submodular functions.
We find it more convenient to work with functions defined on 27,

¢<o. shall use the notation 5", b’, b for crossing, intersecting, fully submodular
functions, respectively. In applications the following constructions of crossing
submodular functions will prove useful.

Let b" be an intersecting (in particular, a fully) submodular function. Let b; be
a function obtained from b’ by reducing b'(X} by a positive constant on every X c §
except X =§. Let b} be a function obtained from b’ by reducing 5'(X )} on mmnmmnzﬂsm
(by possibly different non-negative values). Similarly, let b” be a crossing (in
particular, intersecting or fully) submodular function. Define bz by reducing b"(X)
by a positive constant on every X except X =@ and X = § and define bi{X) by

A. Frank, E. Tardos [ Generalized polymatroids 495

reducing 4"(X) on singletons and on complements of singletons by non-negative
values.

Proposition 2.6. b} and b} are intersecting submodular functions. b” and b’ are crossin
P 2 2 g
submodular functions.

If b is a fully submodular function, S(b) is called a submodular polyhedron
(Fujishige (1984d}) and B(b) is called a base-polyhedron (Fujishige (1984c)). If
b(8)=0, B(b} is a 0-base polyhedron. If b is fully submodular, non-negative,
monotene increasing (i.e., b(X)=b(Y) if X2 Y), and finite, then b is called a
polymatroid function and the polyhedron P(b) a polymatroid (Edmonds (1970)).
The base polyhedron of a polymarroid P(b) is B(b). Edmonds introduced (the concept
of) polymatroids as compact subsets of RS with certain properties and proved that
the two definitions of polymatroids are equivalent. Since submodular functions play
a central role in applications we found it more appropriate to use them in the
definition of polymatroids.

The rank function r of a matroid M is a polymatroid function and P(r) is called
the matroid polyhedron. An integer-valued polymatroid function b with b(X)<|X|
(X < 8) is a matroid function. Using this fact and the next theorem it follows that
an integral polymatroid in the unit cube is a matroid polyhedron. Edmonds (1971)
proved that the vertices of P(r) are exactly the (characteristic vectors of) independent
sets. He also showed that the vertices of B{r) are exactly the bases of M, We call
B(r) a matroid base polyhedron.

A set function p is (fully, intersecting, crossing) supermodular if —p is (fully,
intersecting, crossing) submodular. A contra-polymatroid is a polyhedron {xe
R: x(A) = p(A) for every A< S} associated with a supermodular function p. See
Shapley (1971).

A set function m is modular if (2.1) holds with equality everywhere. It is trivial
that finite modular set functions m (with m(@} =0) and vectors are essentially the
same and we do not distinguish between them.

Let p:2°sRu{-o0}, b:2° >R u {o} be set functions. We say that p and b are
compliant if they satisfy the following cross inequality

(X}-p(Y)=b(X-Y)-p(Y-X) (2.2)

for every subset X, Y of §. If (2.2) is required only for intersecting X, ¥, we say
that p and b are weakly compliant.

With the pair of set-function ( p, b) we associate a polyhedron Q(p, b), as follows:
Q(p, b)={xeR® p(A}=x(A)= b(A) for every Ac S}.

A pair (p, b) is called a strong pair if —p and b are fully submodular and p and
b are compliant. For a strong pair (p, b) the polyhedron Q(p, b} is called a generalized
polymatroid. A pair (p, b) is called a weak pair if —p and b are intersecting
submodular functions and p and b are weakly compliant,
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Let b be a set function. An evaluation vracle for b provides the value 5(X) for
any subset X and tells G(F(B)). A minimizing oracle for b solves the problem
min{b{(X)-m(X): Ac X = B) where fc A< Bc § are given subsets and m is a
(finite) vector. A minimizing oracle for b, when appliedto A={u}, B=S—0, m=0,
can be used to decide whether an edge uv belongs to G(F(b)). We note that
Grétschel, Lovdsz and Schrijver (1981), relying on the ellipsoid method, constructed
a polynomial-time minimizing oracle for any submodular function & (given by an
evaluation oracle).

Let G={(V, E) be a directed graph with node set V and edge set E. We say that
an edge uv enters A= V if A is a vii-set. An edge leaves A if it enters A, The number
of edges entering (leaving) A is denoted by p(A) (8(A)). For a vector x=RE,
p{A):=3 (xle): ec E, e enters A). For a subset Fc E, (A) is the number of
clements of F entering A. 5.(A) and 8:(A} are defined analogously. We denote
the difierence p.(A)~8,(A) by A_(A). For A,BSV and x:E->Ru{c) let
d.(A, B}=Y (x(e): ec E, e enters one of A and B and leaves the other). If x = y,,
we use d(A, B) for d.(A, B). p,eR" {84 R¥)is a (0, 1) vector for which pale)=t
(84(e) =1} if e enters (leaves) A. Set Ay = pa—84. We do not distinguish between
the set of edges entering A and its characteristic vector pa.For X < V, E(X) denotes
the set of edges with both ends in X.

Proposition 2.7. For xeR%, A,:2Y>R is a finite modular function. For fiE->
Ru{~o}, g: E-Ru{} and f=g, the set function b{A) = p,(A) - 8,(A) satisfies:

wm>v+zmvucﬁlDwv+walcmu+&w¢m}. B). (2.3)

In particular, b, p,, 8, (where x=0) are Jully submodular.

This is proved by showing that each edge has the same contribution to both sides
of (2.3),

We call a directed graph G =(V, E) h-strongly edge-connected (h =0 is an integer)
if p(X)= h forevery X,0c X< V. {Equivalently, by Menger's theorem, if there are
k edge-disjoint directed paths from u to v for every pair u, v of nodes.)

Here we list some basic results on polymatroids and submodular functions.

Proposition 2.8 (Edmonds (1970)). For every polymatroid P there is a unique poiy-
matroid function b for which P = P(b), namely, b{A)=max(x(A): xc P),

Theorem 2.9 (Edmonds (1970)), Let b'=0 be an intersecting submodular function
(b’ need not be monotone or finite). Then P(b') is a polymatroid. Its unique defining
polymatroid function b, is

b(X) =min(} b(X;): U X, 2 X, X,'s are disjoint).

Let g:§>R, {0} be a vector and b a polymatroid function, Proposition 2.6
and Theorem 2.9 imply
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Theorem 2.10 (Edmonds (1970)). P(b)~{xeR5: x < g} is a polymarroid. Its unique
defining function b, is
LH{(X)=min(b{Y)}+g(X-Y): Y= X).
In particular (choosing g=1) a family F={F< 5:|X|< b(X) for every X S F} is
the family of independent sets of a matroid whose rank function is
r(A)=min(b(X)}+|A-X): X c A).

Perhaps the most important result for polymatroids is the Polymatroid Intersection

Theorem of Edmonds (1970). See Chapter V. .
The following useful theorem concerning crossing submodular functions is due

fo S. Fujishige (1984a).

Theorem 2.11. For a crossing submodular function b” the polyhedron B(b") is non-
empty if and only if
(a) X b"(Z)=b"(S) and
(b) L b"(Z)= (k—1)b"(S)

(2.4}

for every partition {Z,,Z,,..., Z.} of S

An interesting relationship between sub- and supermodular functions is the

Discrete Separation Theorem 2.12 (Frank (1982)). Let p and b be fully super- and
submodular functions, respectively. There is a finite modular function m for which
p=m=b if and only if p<b. If p and b are integer-valued, m can be chosen
integer-valued, too.

In Section V.3 we give a new proof. In Section IV.4 we shall present a new
algorithmic proof.

We call a non-negative function y:2% R, a weighted chain if the family &=
{X: p(X)> 0} is a chain. With every weighted chain y we associate a non-negative
vector w =Y o y{A)ya (eRE), called the depth vector of v.

This is a one-to-one correspondence: for a non-negative vector 7w cR7 let 0=
<+ <<, be the distinct values of # and let X;={s: #(s}=m}. Define
¥WX)=m—-m (X=X, (i=1,..., k) (where m, is 0). Obviously y is a weighted
chain and its depth vector is 7. We call this y the weighted chain of .

Let b be a fully submodular function. There is a natural way to extend b to all
non-negative vectors. Namely, let 7 € R$ be a non-negative vector and y its weighted
chain. Define m?v =¥ (3(X)}- b(X): y(X)>0).

woviously b is (positively) homogeneous, i.e., mfiutmﬁi for every
positive .
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Theorem 2.13 (Lovdsz (1983)). The extended b is convex, ie., b{a)+ b(B)=
2b((a+pB)/2). Equivalently {by the homogeneity), b is subadditive, i e., m?& + ma_mv =
b(a+p8).

The extension b is strongly related to the greedy algorithm. Call an ordering
81, 82,..., 5, of the elements of S compatible (with 7 and b) if w(s)=x(s,)
(i=2,3,...,n) and b(S,) is finite for Si={s1,5,...,8}(i=1,2,... , ). Suppose
515 83,..., 5, is & compatible ordering.

Define a vector x,€ R® by x,(s;) = b(S:)—b(S,_,) (Sy:=0).

Greedy Algorithm Theorem 2.14, (a} (Edmonds (1971)). If b is a polymatroid func-
tion, then x,€ P(b) and b(7) = max(=x: x e P(b)) = ™.

{(b) (Fujishige and Tomizawa (1983)). Ifbis an arbitrary fully submodular function,
then x,e B(b) and m?i =max(7x: x€ B(b)) = mx,.

Corollary 2.15. The linear systems {x=0, x(A)y= b(A) for every Ac S} and {x(S)=
5(8), x(A) =< b(A) for every Ac 8} defining P(b) and B(b), respectively, are TDI.

Let S, and 5, be disjoint sets and b 2% R (i=1,2) arbitrary set functions.
Define b:25“%: >R by b(X) = bi(X NS} +by(X 1 S,). We call b the direct sum of
b, and b,. Obviously, if b, and b, are fully submodular then so is b,

Proposition 2.16. For a non-negative integer vector e Z5 and a Sully submodular
Jfunction b the set function b, defined by b, (X):= 8 (r+xx)—b(x)is Sully submodular.
Furthermore, b, depends only on the level sets of .

Proof. Let 0 my< iy, <. .. < @ denote the distinct values of 7. We can suppose
that 7, =0, for otherwise reduce ¢very component of 7 by 7, and observe that for
the resulting »’ ane has b,=b_. If #=0, then b.(X)=b(X) so we can suppose
that k> 0. Let S, = {v; ()= m}(i=0,1,..., k) be the level sets. Assume first that
mi—m_=2forsomei=1,2,..., k Then S;isalevelsetof w + y, mo?na.‘ualkm_.
we have b_=b,_. and the second part of the theorem follows. Now we can suppose
that 7, =7 (i=0,1,2,..., k).

Define b;: 2555 7 (i= 0,1,...,k)byb(X)=b(X U S:)—b(S;) (where S, =
@). Obviously each b; is fully submodular and b, is the direct sum of b's. O

A, Frank, E. Tardos [ Generalized polymatroids 499

CHAPTER II. Generalized polymatroids

1. Truncation, bi-truncation
Let b':2% >R U {0} be an arbitrary set function. Define b:2° >R u {oc} as follows:
b(X)=min(}¥. b'(X;): {X;} a partition of X). (1.1)

We call b the lower truncation of b'. (Sometimes it is calied Dilworth truncation).
If in (1.1} min is replaced by max, we call b the upper truncation of b'.

Truncation Theorem 1.1 (Lovisz (1977)). The lower truncation b of an intersecting
submodular function b’ is fully submodular. Moreover, 3(b) = §(b").

(The theorem can be stated analogously for supermodular functions and upper
truncation.)

Proof. The second statement is straightforward since obviously &< &’ and hence
8(b)<= 8(b’). On the other hand any inequality x(A)= b(A) is an (integral) con-
sequence of certain inequalities x{A;) = b'(A;) where {A;} partitions A and b(A) =
2 b'(A;). Consequently S(b)=S(b"). .
To prove the submodularity of b let A, B< 8. Let b(A)=Y TC.»L for a certain
partition {A,,..., A} of A and b(B) =Y b’(B,) for a certain partition {B,, ..., B,}

of B,
Let F#={A,,..., A, B,,..., B,}. Then ¥ satisfies the following:

every ve Am B is covered twice, every ve{A— B)u (B-A) (1.2)
is covered once by &

Denote b'(F)=F {b'(X): X € F). If there are two intersecting sets A,, B; m.n Z,
revise ¥ by replacing A, and B, by A; ~ B, and A, u B;. The new family &, satisfies
{1.2) and since b’ is intersecting submodular b'(%,) < b'(F). . .

Apply this uncrossing operation as long as there are intersecting sets. Since in
every step Y. {|X[*: X € &) strictly increases (check!) after a finite number of steps
we obtain an , satisfying (1.2) for which b'(Fp)} =< b(F) and %, is laminar, .ﬂ,nn
Fo=Pyw P, where P; and P, are disjoint, P, is a partition of An B and 2, is a
partition of AU B.

By definition b{A ~ B) < b'(P,) and b{A U B) < b'(P,) so we have b(A)+b(B)=
b(F)= b'(Fo) =b(P)+b'(P)=b(An B)+b(Au B), as required. [

The Truncation Theorem easily implies Theorem 1.2.9.
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Proof of Theorem 12.9. Let b be the truncation ‘'of . Then b=0, b is fully
submodular and since S(b) = S(b') also P(b}=P(b'). This b may not be monotone.
Set bi(A)i=min(b(X): X o A). It is easily seen that b, is a polymatroid function
and P{b)=P(b,). (1

Remark. In the proof b, was constructed in two steps. One was truncation, the
second was monotonization. In Section 2 we shall slightly extend the concept of
truncation and the extension will involve monotonization as well,

A combination of Theorems 1.2.12 and 1.1 is

Theorem 1.2 (Frank (1982)). Ler P’ and b’ be intersecting super- and submodular
JSunctions, respectively (— P, b 25 sRy {o0}). There is a finite modular Junction m for
whichp'= m=b' if and only if TP(F)<Y b'(G;} holds whenever both Jamilies {F,}
and {G,} consist of disjoint subsets of S and UF=UG.Ifp", b are integer-valued,
m also can be chosen integer-valued. [

A third application of Theorem 1.1 is “bi-truncation™.
, The following theorem was proved by Fujishige (1984a) and implicit in Frank
1982).

Bi-truncation Theorem 1.3. Ler 5":255 Ry {00} be a crossing submodular Junction
nw& Q=B{b"). If Qis non-empty, there is a fully submodular Junction b (cailed the
bi-truncation of b") for which Q=B(b). If b" is integer-valued, so is b.

Proof. We are going to construct b from b” by using truncation twice. (This Jjustifies
the name bi-truncation). Let k = 5"(S) and define p” by p"(X )=k —5"(§—X). Then
P" is a crossing supermodular function and obviously Q= Q"= {xeR®; x(S)= k,
x(A)=p"(A) for every Ac S}, Let p' denote the upper truncation of p". Clearly
Q"= Q= {xe R® x(8)=k x(A)=p'(A) for every A= cS}. Applying the trunca-
tion theorem to P’|X U Y we see that P’ is supermodular on X and Y whenever X
and Y are not co-disjoint. Furthermore, we claim that P(S)=p"(8)=k Indeed,
for upper truncation pP'(8)=p"(8) holds in general, but Q= Q' is not empty, so we
cannot have p(8)> k.

Letusdefine b'by b'(X) = k—p(S-X).Fisan intersecting submodular function
(6'(6) =01) and B(b") = Q'=Q. Let b be the lower truncation of b'. From a second
application of the Truncation Theorem we see that & is fully submodular and
B(h)=B(b)=Q. 0O

Remark. The bi-truncation p of a crossing supermodular function p" can be intro-
duced analogously. {p is the negative of the bi-truncation of -p").
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Proposition 1.4. The bi-truncation b of a crossing submodular function b” with b"(8) = k
is
b(X)=min(L "(X;)+ (n~ m)k) (1.3)

where m is the number of sets X, the sets X, =(; X, i=1,2,..., 8 forma partition
of X, and, for fixed i, the sets X;,, X,, ... form a partition of X,. (Z denotes § - Z.)

Proof, From the proof of Thearem 1.1 5(X) =min T (5'(X): {X;} a partition of X).
Furthermore, b'(X;)=k—p'(S—X,) and p(Z,)=Y% max(p"(Zy): {Z;} a partition of
Z,) where Z,=§ - X,. Since p"(Z;) =k — b"(5— Z,) the statement follows. [J

Remark. (1.3) becomes simpler if k=0.

Remark. Observe that Proposition 1.2,5 is a special case of the Bi-truncation
Theorem. Namely, define "(X) =0 if X € %" and = otherwise.

Remark 1.5. Let & ={X_} be a family where the minimum in (1.3} is attained. Then
b(Z)=b"(Z) holds for Zec &

From the proof of Theorem 1.3 we have:

Corollary 1.6. If b is the bi-truncarion of b”, an inequality x{A) < b(A) is an integral
consequence of the inequalities x(X)< b"(X) (X = 8) and x(S)=b"(8§). (That is,
there are integers yx associated with subsets X < § which are non-negative if X = §
such that 7, yxxx = x4 and ¥ y,b"(X) = b(A)).

2. Generalized polymatroids

Let (p, b) be a strong pair. The polyhedron Q= Q(p, b) is called a gereralized
polymatroid or briefly a g-polymatroid. If p and b are integer-valued, Q is called an
integral g-polymatroid.

For convenience we consider the empty set as a g-polymatroid. The concept of
g-polymatroids was introduced by Frank (1984c). See also Hassin (1982). In this
section we present some basic features of g-polymatroids.

Proposition 2.1. Polymatroids, contra-polymatroids, base polyhedra and submodular
polyhedra are generalized polymatroids,

Proof. From the definition one easily sees that if p is identically zero, a pair {p, b)
forms a strong pair if and only if b is a polymatroid function. Then Q(p, b)
determines an ordinary polymatroid. If p is fully supermodular and b= o, then
(p, b) defines a contra-polymatroid. If b is fully submodular and p is defined by
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P(X)=b(8)—b(S-X),then{p, b)isa strong pair and ‘Q( p, b) is a base polyhedron,
If b is fully submodular and p = —co, then {p, b} is a strong pair and Q(p,b)isa
submodular polyhedron. [

Propesition 2.2. Where (p, b) is a strong pair, the g-polymatroid Q= Q(p, b) is
non-empty. If Q is integral, it contains integer points.

Proof. Induction on |S[. Let sc Sand S, = S —s. For pi=p|S and b, =p|S, (p,, b,
is a strong pair so, by the induction hypothesis, there is a vector xeQ(p,b)
{(ER™), We claim that m:= min(b(X) —x(X): s€ X € §)= M= max(p(Y) -
x(Y): se Y= §). Indeed, for seX, Y= 5 we have HX)-p(Y)=b(X-Y)-
PY—-X)=x(X - Slxm:\l.x,vuk_nkvlu:ﬂwq. Define xe RS in such a way
that x| $,=x; and m=x(s)= M. Then x ¢ QAP b). O

Proposition 2.3, max(x(A): xe Q)= B(A) and min{x(A): xe Q) =p(A)} for Ac S.

Proof. Because p and b play a symmetric role we prove only the first equality.
Obviously, max(x(A): xe Q)= b(A). If the maximum here is infinite, then b(A) =0
and we are done. So suppose that the maximum is finite and consider the following
dual pair of linear programs.

max{x(A): x(X)=p(X),x(X)=b(X) for X =5) (2n
min( 5 3b(Y)= 5 2p(2): 250,
Ycs ZoSs
L Yy — Y NF&NH&SV. (2.2)
Yc§ Ze5

(To be more precise, if p{X) = - or if b{X) = +oo for some X < §, the correspond-
ing primal constraint in (2.1) and dual variable in (2.2) is meant not to occur.)

Since the primal program has now a finite optimum, by the linear programming
duality theorem, so does the dual. Making use of the well-known uncrossing
technique (for an excellent survey, see Schrijver (1984a}) and the fact that ( pb)is
a strong pair one can see that there is an optima) dual solution (y, z) such that both
families {Y: y, >0} and {Z: z, > 0} form a chain and Y nZ =0 whenever y, >0
and zz > 0. Obviously, exactly one such dual solution exists, namely, y, =1 and all
other dual variables are zero. Consequently, the common optimum of (2.1) and
{2.2) is b(A), as required. [J

An important corollary of Proposition 2.3 is:

Proposition 2.4. For a non-empty g-polymatroid Q the defining strong pair (p, b) is
unigue. [J
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Specializing this result to polymatroids we have Theorem 1.2.8. For g-polymatroids
the generalization of Theorem 1.2.9 is as follows

Proposition 2.5 (Frank (1984¢)). For a weak pair (p', b'), Q=Q(p"b) is a g-
polymatraid.

Proof. Since the empty set is by definition a g-polymatroid we can assume that
Q#0. Extend the ground set § by a new element s and define b} on the subsets
of §'=8+s by letting
, b'(X) ifXcS,
bi(X)= ﬁ'\ .
~-p(§—-X) ifseX

Then by is a crossing submodular function and Q is the projection of B(b”) along
5. Let by be the bi-truncation of b and for any X < § let p(X)=—b,(5'—X) and
b(X)=b(X). Then (p, b) is a strong pair and by the Bi-truncation Theorem we
have B(b7)=B(b,) and hence Q(p',b)=Q(p, b). O

Call the strong pair {p, b) constructed in the proof the truncation of (p’, b").
Theorem 1.2 provides a characterization for Q(p’, 4") to be non-empty.
Making use of the weak compliance of p’ and b’ this can be simplified:

Proposition 2.6. For a weak pair (p’, b') a g-polymatroid Q = Q(p', b) is non-empty
if and only if

(a) ZTb'(Z)=p' (U Z) and (b) Tp(Z)=b{(U2Z) (2.3)
Jfor every family of non-empty disjoint subsets Z,,. .., Z, of S. If Q is non-empty and
P, b are integer-valued, then Q contains an integer point,
Proof. From Theorem 1.2 Q is empty if and only if there is a family F=
{Fi, Fp,..., F} and a family $={G,, G,, ..., G,} such that

(a) both F and ¥ consist of disjoint subsets,

® UF=1UG (2.4)
Fe# GeF
© Z w.AEAnMeEQ.

If there are two intersecting sets Fe % and G € %, then
b (F)-p'(G)=b'(F-G)-p(G-F)
and redefining

F=(F-{FHU{F-G}, 9=(9-{GHu{G-F}
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statement (2.4} continues to hold. Furthermore, | (F: F e %) has become smaller
{by F~ G). Applying this uncrossing step as long as possible, finally we get an %
and ¥ satisfying (2.4) and no more intersecting sets Fe &, G e 4 exist.

For any maximal member X of FU 9 the members 2Ly, 7, of FLE
{properly) included in X form a partition of X, (If X € &, then Z, ¢ % if X € $then
Z,€ 9) Since every set in Fu ¥ is either maximal or belongs to the partition of
exactly one maximal set of FU %, property ¢ implies that for at least one maximal
member X of 1 ¢ the partition {Zy,..., Z} of X violates (2.3). O

Remark. Observe that the proof is a simple polynomial-time algorithm provided
that starting % and ¥ satisfying (2.4) are available. In Section IV.4 we describe a
method to construct such an % and 4,

One may wonder if crossing sub- and supermodular functions can define g-
polymatroids. If p” and " are crossing super- and submodular functions, respec-
tively, which are compliant, then Qup", b"} may have fractional vertices so it need
not be a g-polymatroid in general. (For example, let S={a, b, ¢}, p"= —00, b"(X)=1
if [ X|=2 and = otherwise). However, we have

Proposition 2.7 (Frank (1984¢ i Fujishige (1984b)). Ifb" is a crossing submodular
Junction, then B(B") is a g-polymatroid {actually, a base polyhedron).

Proof. Immediate from the Bi-truncation Theorem. O

Proposition 2.6 easily implies Fujishige’s theorem (Theorem 1.2.1 1). (The converse
implication is equally simple.)

Proof of Theorem L.2.11. Let s€§ and define p' on the subsets X of §—s by
P(X)=b"(S)=b"(S—X). Let b'(X) = b"(X) for X = § — . This definition implies
that " is a crossing submodular function if and only if (p’, b') is 2 weak pair.
Moreaver, Q is non empty if and enly if Q(p’, b") is non-empty. From Proposition
2.6 the statement follows. O

Remark. Notice that if 7 is an arbitrary integer and b is a crossing submodular
function, the polyhedron {xcR*: x(§) =1, X(A)= b"(A) for Ac S} is a g-poly-
matroid. Indeed, apply Proposition 2.7 to the crossing submodular function b?
where b{(X)=b"(X} if X = S and b!(§) =1,

Using Proposition 1.4 one can express the truncation (p, b) of a weak pair ( pLb).

Proposition 2.8. p(Y) = max(Y; p(Y;) 50 (X) X2 Y, YA Xyri=1,2,..}
is a partition of Y and for each i the sets Xy (i=1,2,...) are disjoint), b(X) =
min(}, b'(X;) =%, p'( Y;): Yy X AXAU, Yy i=1,2,.. .} is a partition of X and for
eachithe sers Y, (i=1,2,...) are disjoinr).
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Remark 2.9. In the special case when

0 if|X[=1,
-0 otherwise,

p'iX)= .ﬂ
and b’ is an arbitrary non-negative intersecting submodular function (in which case
(p', b') is automatically a weak pair) the formula becomes simpler. Namely, p= 0,
b(X)y=min(L b'(X;): X = J X, the X,’s are disjoint). In this case Q(p’, w_v is an
ordinary polymatroid, b is its unique polymatroid function. If, in ma&:o.:. the
starting &’ is fully submodular (but not necessarily monotone), the truncation of
(p', b} is (0, b) where b(X}=min{b'(Y), X c Y). This formula is well-known to
make a submodular function b’ monotone. The present approach tells us that

monotonization can be considered as a special truncation.
We mention two special cases where the truncation formula in Proposition 2.8 is

considerably simpler.
First, let @ €R and g € R such that p($)=<a =< 8 =< b(S) and let (p, b) be a strong

pair. Define

, p(X) ifX#S o [ BIX) ifX %S
P@Tr :xumsa FQTF m;um

Then (p], b} is a weak pair.
Proposition 2.10. The truncation (p,, b,) of the abouve (p}, b}) is given by

(X)) =max(p(X), a —b{5- X)),
bi(X}=min(b(X),B8-p(§-X)). O

(2.5)

Second, let f:5>Ru{—} and g: 5+Ru {0} be two vectors with f= g and let
(p, b) be a strong pair. Define
) _Jp(X) if|X|>1,
3@7?2@3:& ETE.

and
, b(X) if|Xi>1,
?QT?ES&&?: if X = {o}.
Then (p’, b") is a weak pair. The next formula easily follows from either of
Propositions 1.4 and 2.8.

Proposition 2.11. The truncation (p,, b,) of the above (p}, b)) is

Exvuawiuﬁxihkl Y)—-g(Y—-X)),
(2.6)
bi(X) = min(b(Y)+g(X ~ Y) —f(¥ - X}).
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The following can be proved with the help of the greedy algorithm (Fujishige
and Tomizawa (1983), Hassin (1982)). (See also, Chapter 1V.)

Proposition 2.12. For a strong pair ( p, b) the linear system {x(A)=p(A), x(A)< b(A)
Jor every A< 8} is TDI.

Let (p, b) be the truncation of a weak pair (p’, ') and let b, be the bi-truncation
of a crossing submodular function b} . By Corollary 1.6 and the proof of Proposition
2.5 we have the following consequence of Proposition 2.12.

Corollary 2.13. The linear systems {x(A) =p'(A), x(A)< b'(A) for every A< S} and
{x(8)=b7(S), x(A)=b](A) for every A< S} are TDI.

Let us close this section by mentioning that a much deeper result, the intersection
theorem, is also true for g-polymatroids. See, Section V.1.
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CuartER III, CONSTRUCTIONS, CHARACTERIZATIONS, APPLICATIONS

1. Constructions and examples

In Chapter II we have seen that ordinary polymatroids, contra-polymatroids, base
pelyhedra, submodular polyhedra are special g-polymatroids. It was also mentioned
that weak pairs and crossing submodular functions can define g-polymatroids, as
well. In this section we show that the class of g-polymatroids is closed under various
operations and several examples will also be mentioned. Throughout we suppose
a g-polymatroid Q = Q(p, b) is defined by a strong pair ( p, b). Ali operations below
when applied to an integral g-polymatroid resuit in an integral g-polymatroid
provided that the parameters defining the operation are integer-valued,

1.1. Reflection. Q is a g-polymatroid defined by the strong pair (—b, —p).

1.2. Translation. For a vector ve R® the translate Q+uv is a g-polymatroid defined
by (p1, b1) where p(X)=p(X}+v(X), b(X}=b(X)+ v(X).

Notice that if Q is the base polyhedron of a matroid and v=(1,1,...,1)& R,
then Q'= —Q+ v is the base polyhedron of the dual matroid,

1.3. Intersection with a plank, Where a, 8 € R U +{0}, a < g, the intersection Q, of
Q and the “plank” P={xcR®: o = x(§)= B} is a g-polymatroid. Q, is non-empty if
and only if a < B8, a < b(S), B=p(8). If Q, is non-empty, its defining strong pair is
given by (11.2.5).

1.4. Intersectionwithabox. Letfe(Ru{—o0})5 ge(Ru {«0))®, f=< g Theintersection
Q, of Q(p, b) and a box B={xcR® f=x<g} is a g-polymatroid. Q, is non-empty
ifand only if f<g, f<b, p< g Its defining strong pair (p,, b,) is given by (I1.2.6).

Proposition 11.2.11 shows’ that a g-polymatroid Q(p, b} B is nonempty if and
only if f(X)=b(X) and g(X}=p(X) for X = S. Hence the following corollary
immediately follows.

Proposition 1.5. Let B,={xeR% f=x}, B,={xcR® g=x), f<g and Q a g-poly-
matroid. Then Q ~ B, B, is non-empty if and only if neither Q B, nor Qn B, is
empty.

In Section [11.3 we show some applications of this proposition.
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Remark. A central algorithmic problem is the minimization of a fully submodular
function b. As an application of the ellipsoid method Grétschel, Lovdsz and Schrijver
{1981) gave a polynomial-time algorithm for this problem. Here we can derive a
good characterization. Consider the intersection Q of S{b) and B, ={xeR%: x=0).
From (IL2.6) we see that Q=S(b,} where b(X)=min(b(Y): Y X). By
Proposition I1.2.3 we have the following formula for the minimum:

min(5(Y): Y < 8) =max(x(S): xe §(b), x=<0),

Remark 1.6. A general matroid construction—due to J. Edmonds (1970)—can be
viewed as a special case of this construction. Edmonds showed that, given a
polymatroid function b, the family F={X: b(Y)= | Y| for ¥ < X} forms the family
of independent sets of a matroid M. Now let the box B be defined by f=0 and
g{s}=1for se S Then Q,= Qn B (the intersection of a polymatroid and the unit
hypercube) is the matroid polyhedron M. The rank function b, of M comes from
the above formula, namely, &,(X) = min(b( Y}I+|X-Y]: Y X).

More generally, Edmonds showed that given an intersecting submodular (not
necessarily monotone and finite) function »'=0, family F={X: ¥(Y)=|X Y|
for Y = §} is a family of independent sets of a matroid M. The rank-function b, of
M is

PCSHBEAM v,?v+T|Ok_\nx:xe...memv

In the present approach this formula immediately follows by considering the
truncation of (0, b"). {See Remark I11.2.9.)

Relying on bi-truncation a matroid construction was given by Frank and Tardos
{1984a):

Proposition 1.7. For a crossing submodular function b" and Jor an integer k a family
B ={D:|Dn X|=b"(X) for every X < S, |D| =k}, if non-empty, forms the set of
bases of a matroid,

L8. Projection. For a subset T of § the projection Qr ={x;eR": (xy, x5 1) Q for
somexs_ 1R 7} of Qinto RT is @ g-polymatroid defined by the strong pair (p,, b,)
where p,=p|T, b,=b|T.

Indeed, Q(p,, b} = Qr obviously holds. The reversed containment immediately
follows from the proof of Proposition I11.2.2. [J

Let s be a new element outside S and let §,=S5+s. The following proposition
will be useful. Its proof is straightforward.
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Proposition 1.9 (Frank (1984c) and Fujishige (1984b)). There is a one-to-one corre-
spondence between strong pairs ( p, b) (with ~p, b:2° >R U {o}) and fully submodular
functions by:2% - R {co} with b,(S5,} =0, namely

b(X)=b(X) if XSS and b(X)=-p(S~X) ifse X< S+s. (1.1)
Moreover, any g-polymatroid Q{ p, b) is the projection (along 5) af a 0-base polyhedron
B(b). O

While proving statements for g-polymatreids Proposition 1.9 will often make it
possible to restrict ourselves to 0-base polyhedra.

Proposition 1.10. A g-polymatroid Q= Q(p, b) is a base polyhedron if and only if
p(S)=5(S).

Proof. By Proposition I1.2.3if Q is a base polyhedron, then Pp(8)=b(8). Conversely,
let p(8)=b(S). We claim that Q = B(b). Indeed, obviously Q< B(b). On the other
hand for x€ B(b) and Ac S we have x(A)< b(A) and x(A)=b(S}-x(§—-A)=
b(8)-b(S—A)=p(A). Hence x¢ Q. s0 @=B(b). O

Propositions 1.3 and 1.10 immediately imply:

Proposition 1.11. Let us be given a strong pair {p, b) and a constant k for which
p(Sy=k=b(S). Then Q(p, b) ~{x cR%: x(S) =k} is a hase polyhedron. O

1.12, Face. Every face of a g-polymatroid is a g-pelymatroid,

Proof. Let (p, &) and b; be given as in (1.1). A face of Q(p, b) is the projection of
a face of B(b,). Thus it suffices to prove that a face of a 0-base polyhedron, is a
0-base polyhedron. Let b:2° >R u {0} be a fully submodular function with b(S) =0.
It is enough to prove for a fixed T< § that a face Qr={xcR®; xe B(b), x(T)=
b(T)} is a 0-base polyhedron. (By Proposition I1.2.3 Q7 is non-empty.) Define

br(X)=b(X A T)+b(X W T)—b(T). (1.2)
It is easily seen that by is fully submodular and b(S)=0.
Claim. Qr=B(br).
Proof. Let x € Qr. Then
#(X)=x(XnT)+x(XuT)—x(T)
SHXnT)+b(X U T)-b(T)= b (X),

hence Qr< B(b;). To see the other direction let xe B{b;). Since x(S)=0
we have b(T)=br(T)=x(T)=~x(5~T)=—br(§—T)=b(T), ic., x(T) = b(T).
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Furthermore, for X € S,

(X)=br(X)=b(X N T)+b(X 0 T)-b(T)<b(X).
Conscquently, x€ Qr and hence Q= B(b;). O

Let b be a fully submodular function with b($) =0, Any face Q, of B(b) is defined
by a family & of subsets by Qi={x:x€ B(b), x(T)=b(T) for Te g}, Let 7=
Lxr:Ted) and b(X):= m?.+kxvlmma.v. In Chapter I we showed that b, is
fully submodular. Repeated applications of formula ( 1.2) show

Proposition 1.13, Q, is non-empty if and only .“\,MTLHM (B(X):Xed). IfFQ, is
non-empty, Q= B(b,). O

Remark 1.14. For a matroid M = (8, r} the matroid polyhedren of a deletion
M\(S - T) is the projection of the matroid polyhedron Q of M into R™. The matroid
polyhedron of a contraction M <+ (S—T) comes by projecting the face @ defined
by x(§—T)=r($—T) into R",

L.15. Homomorphic image. Where v: S — §' is a surjective mapping, the homomorphic
image y(Q) of the g-polymatroid Q is a g-polymatroid. The strong pair ( p,, b,) defining
¥(Q) is py(X) =p(y™' (X)), b){X) =b(y '(X)). Furthermore, Jor an integral veetor
y€¥(Q) there is an integral vector x € Q for which y=¥(x) if Q is integral

Proof, Obviously (p,, b,) is a strong pair and Q(p,, b,) = ¥( Q). It suffices to prove
the reverse containment for the special case when §'= §—{u, v} + w {u,ve s wes)
and

5 ifseS—{u v},
w ifsef{u v}

i&u,ﬁ

Let x, € Q(py, b)), Define p}: §+Ru{—o0} and b}:85-+Ru{oo} as follows:
x(S) f X=8,
PilX)={x(s) if X={s}, seS—{u, v},
p(X) otherwise;
x(8) f X=8,
biX)={x(s) if X ={s}, se S—{u, v},
b(X)} otherwise.

Then (py, b) is a weak pair. Applying Proposition I1.2.6 we see that Q(p}, b)) is
non-empty so it has an integer point x. Since x Q and y(x) =x, we are done, [

L16. Inverse homomorphic image. Let v: S~ 5 be the same as before and Q, a
g-polymatroid on §' whose defining strong pair is (p,, b;). Then v~ '(Q,) is a g-
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polymatroid. Its defining strong pair (p, b} is as follows. PlAY=p (A ifA=y"(A)
Jor some A'C 8" and =—00 otherwise. b(A)=b,(A'} if A= ¥ (A" for some A'c &'
and = otherwise. [

The next result immediately follows from results of Edmonds (1970) and was
explicitly stated by Lovdsz (1977).

Proposition 1.17. Any integral polymatroid P is the homomorphic image of a matroid
polyhedron.

Proof. To see this suppose P={xeRY, x(A)<b(A) for AC §}. Set S={v;: ve &,
i=12,...,b(v})} and define ¥ by ¥(v,) = v. By the above construction Yy W(P)isa
g-polymatroid. Denoting the unit cube by B, one can easily see that Bny~'(P) is
a matroid polyhedron and P=y(Bny~Y(P)). O

In Section II1.2 this result will easily be extended to g-polymatroids.

1.18. Direct sum. Let §, and S, be two disjoint sets and let (p,, b;) be a strong pair
on S; (i=1,2). The “direct sum” QDQ: of Q)= Q(p, b)) and Q:=Q(p,, b,)
defined by

QP Q={x=(x, x;) eR*"2; €@, x€ Q)

is a g-polymatroid. Iis defining strong pair {(p,b) is p(A)=p,(ANS)+p (AN S:)
and b(A)=b{ANS)+b(ANS). O

L19. Sum. Let Q;= Q(p,, b,) be g-polymatroids on S defined by the strong pair (p;, b;)
(i=1,2). The “sum™ of Q, and Q, defined by Qi+ Qyi={x: x=x,+x, for some
X €Qy, X6 Q,} is a g-polymatroid Its defining strong pair is (p,+p,, b +b,).
Furthermore, for any integral vector g< Q,+ Q, there are integral vectors q,€
4:€  so that q= g, + g, provided that Q,, Q, are integral.

Proof. Let S, and §, be two disjoint copies of S and let ¥ be a map of 8,4 S, onto
§ defined by v{v,) = y(v,) = vfor v & §. Then Q1+ @y = ¥(Q, P Q,) and the statement
follows from the properties of the homomorphic image. [

1.19 was proved by Giles (1975) for polymatroids.
The sum of more than two g-polymatroids can be defined analogously,

Remark 1.20. It is known (Edmonds (1965a), Nash-Williams {1967)) that, given k
matroids M, M,, ..., M,, the family F={X: X=FuF,u---uF, FecM}
forms a family of independent sets of the matroid M called the sum of M,..., M.
By the preceding construction and Remark 1.6 the matroid pelyhedron Q(M) of
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M is BnY Q(M;) (B is the unit cube) and its rank function is r(X)=
min{y r(Y)+|X - Y|: YcX).

1.21. Cone g-polymatroids. A g-polymatroid Q defined by the strong pair ( p, b) Jorms
a cone if and only if p(A), b(A}e {—o0, 0, +00} Jor Ac S.

Proof. Obviously such a pair defines a cone. Conversely, b(A) =max(x(A): xe Q)=
0 since 0e Q. If b{A) >0 for some Ac S, thent x(A)> 0 for some xe Q and then
AxeQ far A>0. Consequently b(A)=+c0, That p{A)e{0,—x} can be seen
similarly. O

1.22, Dominant. For a g-polymatroid Q= Q(p, b) defined by a strong pair (p, b) the
dominant Q+R5 of Qisa g-polymatroid. Its defining strong pairis (p, b,) where b, = co.

Indeed, RS is a g-polymatroid so 1.19 can be applied to RY and Q. 0O

2. Characterizations

In this section we are going to provide two kinds of characterizations of g-poly-
matroids. The first one extends Proposition I11.1.17. The second characterization
extends those for polymatroids given by Edmonds (1970).

Proposition 2.1. Every g-polymatroid Q is the sum of a bounded g-polymatroid and a
cone g-polymatroid.

Proof. It suffices to prove this statement for base polyhedra B(b). The following
lemma is easy to prove.

Lemma 2.2, For every fully submodular Junction b with b(8) < co there is a Jinite fully
submodular function b, such that b(X) =b,{X) whenever b(X} <, namely

?Cmvuam:ﬁwﬁu\v+m>\~_uxl.x‘_n Yo X)
where M =max(|b(X)|: X = §, b(X) <), O

Define b, by

0 if b(X) <o,

ba(X) = AB if B(X)= 0.

Now b, is fully submodular, B(b,) is a cone, B(b,) is bounded and B(b)=
B(b)+B(b). DO
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Remark. It is well-known that a pointed polyhedron P (i.e., a polyhedron which
does not include a straight line) is the sum of the convex hull of the vertices of P
and a cone. S. Fujishige noticed that the convex hull of the vertices of a pointed
g-polymatroid is not a g-polymatroid in general. His example: $={1,2}, b(1)=1,
b(2)=co, b(8) =2, p(1)=—0c0, p(2}=p(S)=0.

Proposition 2.3, A bounded base polyhedron B(b) is the translate of the base polvhedron
of a polymarroid function.

Proof. Let b be finite and fully submodular. Let M =2 max(|b(A), Ac S) and
denote ¢ a vector each component of which is M. It is easy to see that b,(X)=
b(X)+ M|X| is a polymatroid function and B(b)= B(b,})—v. ]

Summing up these propositions we have

Theorem 2.4. Every g-polymatroid is the sum of a bounded g-polymatroid and a cone
g-polymatroid. A bounded integral g-polymatroid can be obtained Jrom a marroid base
polyhedron by taking a homomorphic image, a translation, and a projection.

Edmonds’ fundamental theorem on characterizing polymatroids is as follows.

Propositioa 2.5 (Edmonds (1970)). The Sollowing are equivalent:
(a) Pis a (not-necessarily integral) polymatroid
(b} Pis a compact non-empty subset of RS such that

(i) for every zeR, y € P with y <z the maximum of (x(S): x¢ P y=x=z)is
independent of the choice of y (that is for every maximal vector y in P below z the
value y(5) is the same).

(ii) 0O=x<yc Pimpliesxc P,

(Actually, Edmonds used property (b) to define polymatroids.) Notice that in b,
convexity is not assumed.

For a vector xe R® and a subset A5 S let x|4 denote a vector y € R* for which
¥{5)=x(s) for every s A.

The corresponding characterization for g-polymatroids is:

Proposition 2.6, The following are equivalent:
(a} Qis a (not-necessarily integral) g-polymatroid
(b} Q is a closed subset of R such that
(i) forevery ze (Ru{xco})®, Ac Sandy € Q for which y| < z|, andyls.a=z|s-a
the maximum of

(x(A):xe @ yla= X{a=12|4 and .v_miamwk_mlaw 2| 5-a)
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is independent of the choice of y, and

(ii) property (i} holds when —Q is substituted for Q
The proof of this statement goes along a similar line to that of Proposition 2.5 (See
Welsh (1976) and Giles (1975)) so we do not include it.

One may wonder whether or not there is an analogous characterization for the
set of integral points of an integral polymatroid or more generally, of an integral
g-polymatroid.

Propesition 2.7. The following are equivalent:

(@) Q is the set of integral points of an integral g-polymatroid,

(b) Q< Z% is such that (i) and (ii) in Proposition 2.6 hold when z e (Z L {+0})®
(rather than z e (Ru {£ac})s,

To prove a=>b is easy. The other direction can be proved similarly to that in
Proposition 2.6, One (small) difficulty to be overcome comes from the fact that in
the proof of Propositions 2.5 and 2.6 a certain e-increasing is used (e <1) (see
Welsh (1976) and Giles (1975)) while here we have to work with integral vectors. [

There may be examples where the integral vectors of a (suspected) polymatroid
are defined in a special way and one has to prove that the given structure is indeed
an integral g-polymatroid. To do that Proposition 2.7 may be advantageous. Such
a situation will be mentioned in the next section {Proposition 3.8).

3. Applications

In this section we exhibit several results in combinatorial optimization that are
related to g-polymatroids.

Orientations

Let G=(V, E) be an undirected graph and m:V - Z an integer-valued function.

Lemma 3.1. There is an orientation of the edges of G such that p(v) = m(v) for every
ve Vifand only if

m(X)=|E(X)| forevery X<V and

1
m(V)=|E|. (3.1
(Here p denotes the in-degree function of the orientation and E(X) denotes the
set of edges induced by X.) This lemma appeared in Frank and Gyirfis (1978) and
it is an easy consequence of Hall's theorem. We remark that |E(X)] is fully
supermodular and the vectors m satisfying (3.1) form a base polyhedron.

We derive the following classical result of Nash-Williams:
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Theorem 3.2 (Nash-Williams (1969)). An undirected graph has an h-strongly edge-
connected orientation if and only if every cut contains at least 2h edges,

(A digraph is h-strongly edge-connected if there are at least h directed edge entering
any non-empty proper subset of nodes.) (Actually, Nash-Williams proved his
theorem in a stronger form, We were not able to derive that version.)

Proof. The necessity is straightforward. To see the sufficiency let P(X)=h+{E(X)
if 0c X<V and p"(@)=0, p"(V)=|E|. Then p" is an (integer-valued) crossing
supermodular function. Let Q={meR": m{X)}= p"(X) for every X<V, m(V)=
p"(V)} be a base polyhedron. @ is nonempty since (the possibly fractional) vecter
d/2 is in Q by the hypothesis (d(v), ve V, is the degree of v in &). Indeed,

MA%“ amxv =3d(X, X)+1E(X)|= h+|E(X)|

and

MAEN&“ cm <vu:m_.

By Proposition 11.2.2, Q contains an integral point m. This m satisfies (3.1) s0
by Lemma 3.1 there is an orientation for which p(v) = m{v) for v V. This orientation
is  h-strongly edge-connnected since p(X)=Y (p(ov): veX)-|E(X)|=
m(X)=|E(X)|=k forevery fc X< V. O

The following more general orientation problem was investigated by Frank
{1980). Let h:2V » Z, L {0} bea non-negative, integer-valued function (with (@) =
h(V)=0) which is “crossing G-supermodular”, that is, A(X)+A(Y)sh(XnY)+
E(X wY)+d(X, Y} whenever X, Y< V are crossing sets. (d(X, Y) denotes the
number of edges between X — Y and Y — X))

Theorem 3.3. There exists an orientation of the edges of G for which
p(X)=h(X) forevery XV (3.2)
if and only if
(a) ep=T h(V)),
_ (3.3)
(b) es=F R(V)

for every partition ?={V,, V,,..., V,} of V where e denotes the number of edges
connecting distinct V's.

(Theorem 3.2 is indeed a special case of Theorem 3.3 since if in this latter theorem
function A, in addition, is symmetric, that is #(X) = h(X) for X V, then it suffices
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to require (3.3) only for n = 2. That is, the required orientation exists if and only if
2d(X) = h(X) for every X c V).

Proof. The neccessity is straightforward. To see the sufficiency let p"(X)=
h(X)+|E(X). Since [E(X)|+|E(Y)|=|E(X ~ Y)|+|E(X U Y)|-d(X, ¥) and h
is crossing G-supermodular, p*(X) is crossing supermodular. By (3.3} for a partition
{Vi,..., V,} of V we have

Lp (VD=L h(V)+|El-es <|E|=p"(V)
and
Lp(V)=% ‘_:aci:|:‘m_lm@m?lz_m%u?lzu..:\v.

Applying Theorem 1.2.11 to b"=—p” we obtain an integral vector m: V- Z for
which

m(X)=p"(X) forevery X< V and m(V)=IE|. (3.4)

Since h =0, m satisfies (3.1) and therefore there is an orientation of G for which
p(v)=m(v) for every veV, This orientation satisfies (3.2) since p(X)=
Llp(v): ve X)—E(X)|= m(X)~|E(X)|= h(X). O

The vectors m satisfying (3.4) form a base polyhedron Q. Since the proof of -

Lemma 3.1 is algorithmic in Frank and Gyarfis (1978) in order to construct the
required orientation it suffices to find an integral vector of Q. In Chapter IV we
present a version of the greedy algorithm which either finds such a point or finds
a partition violating (1.2.4) (providing this way a new constructive proof of Theorem
1.2.11). This algorithm will need a certain oracle to minimize b"(X)~x(X) for
certain (fixed) vectors x. Tn special cases such as Theorem 3.2 above and 3.4 below
this oracle can be built up from a max flow min cut algorithm.

We note that in Frank (1984a, 1984b) this orientation model was derived from
the submodular flow theory. The present approach, including the algorithm given
in Chapter IV, is better since it relies on g-polymatroids, a simpler structure than
submodular flows. On the other hand, the problem of finding a h-strongly edge-
connected orientation of a mixed graph, which was solved also by means of
submodular flows by Frank (1984b), does not seem to be reducible to g-polymatroids.

From Theorem 3.3 one can derive (see Frank {1980)) a necessary and sufficient
condition for the existence of a h-strong orientation which satisfies fe)=plv)=glv)
for every ve V where f and g are given vectors in Z¥ with f< g We do not repeat
here this result but oniy mention the following version of it.

Corollary 3.4. A graph G has a h-strongly edge-connected orientation for which
fw)=p(v)y=g(v) for ve V if and only i f=g and G has a h-strongly-connected
orientation satisfying f(v)<p(v) for every ve V and there is a h-strongly edge-
connected orientation satisfying p(v) < g(p) Jor every ve V.
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This theorem immediately follows from Proposition 1.5 when it is applied

to Q.

Edge-disjoint arborescences

The next application concerns the problem of packing arborescences. Let G=(V, E)
be a directed graph, k a positive integerand m: V+ Z, a non-negative ::nm.n_. vector
for which m( V)= k We rely on the following theorem of Edmonds.

Theorem 3.5 (Edmonds (1973)). In G =(V, E) there are k edge-disjoint arbores-
cences, exactly m(v) of which are rooted at v for every ve V, if and only f m(V)=k
and

p(X)zk-m(X) forp#XcV 3.5)

We call a vector m in (3.5) a root vector (of k arborescences). Since p is fully
submodular the function p’ defined by p'(X) =k —p(X) for@# X = V and p'() = 0
is intersecting supermodular. Thus the root vectors are precisely the integer points
of the g-polymatroid Q={xeR": x(A)=p'{A) for AC V, x= 0, x(V)y=k}

Let f and g be non-negative integral vectors in R” with f < g and let B, ={xcR":
f=xLB,={xeR":x=<g} BothB,nQand B,n Q are g-polymatroids {see I11.1.4).
By Proposition I1.2.6 B, @ is non-empty iff M”u_ P(Vi}+f(Vy)=k for every
partition {V,, V|, ..., V.} of V.

Similarly, B, ~ Q is non-empty RM”H_ p'(Vi}=k for every collection {V,, ..., V}
of pairwise disjoint subsets of V and p'(X)=g(X) for every X < V. Finally, by
Proposition 1.5 B, B, Q is non-empty if and only if neither B, Q nor B, Q
is empty.

From these observations one can obtain the following theorem:

Theorem 3.6, In G =(V, E) there are k edge-disjoint arborescences such that:
a. (Cai Mao-Cheng (1983)). At least f(v) of them are rooted at v for every ve V
if and only if

S p(V) —k(t—1)=£( Vo) 3.6)

i=1
Jor every partition {Vy, V;,..., V,} of V (where only V, may be empty),
b, (Frank (1981b)). At most g(v) of them are rooted at v for every ve V if and
only if
p(X)+g(X)=k and T p(V)z=k-(1-1) (3.7)
Jor every family {V,, V,, ..., V} of pairwise disjoint nonempty subsets,
¢. Atleast f(v) and at most g(v) of them are rooted at v for every ve Vif and only
if (3.6} and (3.7) hold O

We remark that Cai Mao-Cheng (1983) found anocther characterization for c.
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Since the 0-1 vectors of a base polyhedron form the characteristic vectors of bases
of a matroid and the root vectors are the integral points of a base polyhedron we have:

Corollary 3.7. Given a digraph G =(V, E), the set B={X < V:|X|=k, there are k
edge-disjoint arborescences with distinct roots from X}, if non-empty, is the Jamily of
bases of a matroid.

From an algorithmical point of view the above argument reduces the problem to
deciding whether a g-poiymatroid defined by a weak pair is empty or not. In Chapter
IV we are going to show how the greedy algorithm can be used for this purpose.
(On the other hand each of the methods in Cai Mao-Cheng (1983) and Frank (1978,
1976), is algorithmic).

The phenomenon which appeared in Coroliary 3.4 and Theorem 3.6c has been
known for a long time. An old result of this type is due to Ford and Fulkerson
{1962): Let G=(V, E) be a digraph, f;, g, />, & functions on V. There is a subgraph
of G for which (a) fi(v)<p(v), 8(v)=< g(v) and (b) p(v) =g, (v), 8(0)=f(v) if
and only if there is one satisfying (a) and one satisfying (b}, The reader will easily
show this theorem to be a consequence of Proposition 1.5. So is the following
result: Where M is a matroid on § and {S,, S,,..., 8.} is a fixed partition of §
there is a basis B of M for which (a) f;<|Bn S| and (b) [B~ S;{=g (i=1,2,... L)
if and only if there is one satisfying (a) and one satisfying (b). (Here fi=g,
(i=1,2,...,t} are integers.) To see this apply Proposition 1.5 to the g-poly-
matroid which arises from the matroid basis polyhedron by applying homomorphic
image defined by partition {S,,..., §,}.

Matroid reinforcement

In Remark 1.20 we derived a known formula for the rank function of the sum
of matroids. From this it follows that a matroid M has k disjoint bases if and only
if k- t(X)=|X| where 1(X) is the co-rank function (i.c., HX)}=r(8)~-r(§-X))
due to Edmonds (1965b).

Let us consider the following optimization problem. Suppose there are no k
disjoint bases in M and we want to adjoin parallel elements in order for M to have
k disjoint bases. What is the minimum cardinality (or more generally, the minimum
cost) of the required new elements? This matroid reinforcement problem was intro-
duced and solved for graphic matroids by W. Cunningham (1985). To describe a
solution z let z(s) denote the number of new elements parali¢l to s to be adjoined
to § (s .S). We call z feasible if the enlarged matroid possesses k disjoint bases. z
is a feasible solution if and only if z(A)= k- t(A)—|A|. Thus feasible vectors are
precisely the integral points of the g-polymatroid Q={xeR% x=0, x(A)=
k- 1(A)-]Al}

Consequently, the greedy algorithm for g-polymatroids {Chapter IV) provides a
solution to the problem.
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G-matroids

We briefly summarize some applications taken from a recent paper of Tardos (1985).

Parallel to the relation between matroids and polymatroids the notion of g-
matroids was introduced by Tardos (1985). We say the set .$ of integer vectors of
a g-polymatroid Q in the 0-1 unit cube is a g-matroid. A simple example for
g-matroids is the following. Let §,,8,,..., 5, be a partition of § and f<g;
non-negative integers {(i=1,2,...,k). Then F={X:f=<{XnS§|=<g} is 2 g-
matroid.

If (p, b) is the strong pair defining Q, then there are two matroids M, M’ on S
with rank functions r, r', respectively, such that b=r, p(X)=r'(§)—r'(§—X) and
M’ is the strong map of M (for a definition see Welsh (1976)). Moreover, the integer
points of Q correspond to a set system F ={X < §, X is independent in M and a
spanning set of M’'}. Here is a relation between g-matroids and Higgs' (1968)
theorem on factorization of strong maps, see also in Welsh (1976).

(A strong map (induced by the identity function) is an ordered pair (M', M) of
matroids on the same ground set S such that r(X)—r(Y)=r'(X)—r'(Y) whenever
YeXc8 1tis elementary if r(M)—r'(M)=1.)

Proposition 3.8 (Tardos (1985)). Fora g-matroid # and an integerk, r'(S)< k< r(S),
the family %, ={X ¢ #:|X| =k} is the collection of bases of a matroid M,.. Moreover
M, is a strong map of My, (r'(8)=k < r(8)) and these matroids vield a factorization
of the strong map (M’, M) through elementary strong maps.

The second application from Tardos (1985) concerns supermodular colourings
introduced by Schrijver (1985). Let p':2° > Z U {—c0} be an intersecting super-
modular function for which p'(X)<|X| (X< 8) and p'(X) <k

A partition {5, 5,,..., S} of S is called a good colouring of § if every subset
X = S meets at least p'( X} colour classes.

Proposition 3.9 (Tardos (1985)). For every j, 1=j<k, the family ,={X, X =80
Syue U S where {8,,8,,...,8,..., S} is a good colouring} is @ non-empty g-
matroid.

This proposition can be proved by showing that there exists one good colouring
and then using the characterization given for the set of integral points of a g-
polymatroid (Proposition 2.7). (Another, more direct proof was provided by Tardos
(1985).} Proposition 3.9 will be used to prove Schrijver's supermodular colouring
theorem. See Section V.

Matchable subsets

Balas and Pulleyblank (1983) described the convex hull @ of perfectly matchable
subsets of nodes of a bipartite graph G =(A, B; E). Define Q,={xeR*®: 0=x=<



520 A. Frank, E. Tardos / Generalized polymatroids

L x{Ay=x(B), x(X}=x(I'(X)) for X = A} where I'(X)= {ve B: uv c E for some
ue X}.

Theorem 3.10 (Balas and Puileyblank). Q= Q,.

Proof. Since obviously Q< Q,, it suffices to show that the vertices of Q, are
integer-valued. (An integer-valued vertex x of ¢ is 0-1 valued and the set X =
{ve Au B: x(v) = 1}is perfectly matchable by Hall theorem). Let Q; be the reflection
of Q, through R that is Q,={(x4, Xs): X4 € R", x5 € R® (x4, —x5) € Q). Now we
show that Q; is an (integral) g-polymatroid from which the integrality of Q, follows.
Let us consider G as a directed graph with every edge directed from A to B.
Obviously, F={X c AU B, no directed edge ieaves X} is a ring family and Q,:=
{xeR*™E: x(AUB)=0, x(X)=0 for Xc F}is a g-polymatroid. Now @, is the
intersection of Q, and the box

{x:—l=x(v)<0forveB mnaomievmw?aem.}v 4

Arrangement polyhedron

Let a,>a,> - ->a,>0 be n numbers, By an m-arrangement (M = n) we mean a
vector of m dimension whose components are distinct numbers among a,, ds,. .., @,.

Theorem 3.11 (Yemelichev-Kovalev-Kratsov (1984)). The convex hull Q of m-
arrangements is described by {x eR™: p(A) <= x(A)<b(A) forAc{1,2,..., n}, 1A|=
m} where p(AY=a,+a,_,+-- “+ &y_aper and bB{A)=a,+a,+- - cta. O

Observe that Q is a generalized polymatroid. The above result was proved for
m =n by Edmonds and Giles (1977) and Balas (1975).

Alternating vectors

Let G=(V, E) be a directed graph. A vector x: E - {0, +1} is called an alternating
vector if every node veV has an incident edge ¢ with x(e)=—1 and E:=
{ee E: x(e)=0} is a forest each component of which contains exactly one positive
edge.

Theorem 3.12 (Groflin and Liebling (1979)). The convex hull Q of alternating vectors
is{xeR": x(A)=| V(A)|—|A| for A= E} where V(A) denotes the set of nodes incident
to some edges of A. [

Observe that Q is a g-polymatroid. Gréflin and Liebling also proved anintersection
theorem concerning the convex hull of alternating vectors. This turns out to be a
special case of the g-polymatroid intersection theorem (see Theorem V.1.4),
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Cuarter IV. THE GREEDY ALGORITHM AND ITS APPLICATIONS

1. Introduction

The greedy algorithm is one of the most studied procedures in combinatorial
optimization. In this chapter we briefly summarize the greedy algorithm for g-
polymatroids, but our main purpose is to show some apparently new applications
of the greedy algorithm. (The emphasis will be on the existence of (simple) com-
binatorial algorithms with polynomial complexity and we do not go into details to
obtain the best complexity results.)

The greedy algorithm stems from a procedure of Boruvka (1926) to find a maximum
weight spanning tree of an edge-weighted connected graph. Extending this R. Rado
(1957) showed that a maximum weight independent set of a matroid can be found
in a greedy way. (See also Edmonds (1971), Gale (1968) and Welsh (196R8).) Namely,
order the elements of the ground set so that w(l})=w(2)=---=wlk)=0>
w(k+1)= - - - = w(n) (throughout this section we adopt the notation w(i) for w(v,;})
and, one by one in this order, consider the elements of {v,, v, ..., t}. Choose or
discard an element according to the rule that the already chosen elements form an
independent set.

Edmonds (1970) observed that the greedy algorithm extends to polymatroids. See
Theorem 1.2.14. That theorem tells us that a linear objective function can be
maximized over a polymatroid P in a greedy fashion if P is defined by its unique
polymatroid function. An important consequence of this result is the following
geometrically more transparent version of the greedy algorithm. Let us be
given a polymatroid P and a weight function w=(w(1), ..., w(n)) for which w(l) =
w(lz--zwk)=0>wk+1)= - =w(n), zeR% is a solution to max{wx: x €
P) if z is defined as follows. Suppose that z(1), z(2), ..., z(§) have already been
defined (f< k) and set z(j+ 1) =max{x(j+1): x{i)=z{i) for i=1,2,...,], x€ P).
For i>k let z(i)=0.

To distinguish between the two versions let us call this second one the greedy
principle. Observe that the greedy principle is a statement concerning P as a
polyhedron and has nothing to do with the linear system defining P.

It is not surprising that the greedy principle and algorithm can be further general-
ized to g-polymatroids. This was done by R. Hassin (1932) for bounded and by
S. Fujishige and N. Tomizawa (1983) for arbitrary g-polymatroids.

This extension goes along the same line except that a minor difficulty has to be
overcome. This difficulty arises from non-boundedness and consists of finding an
appropriate ordering of the elements.

After reviewing the algorithm we shall show special cases where the values z(j)
can be computed somehow but not so trivially as above. In other words these special
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cases are non-trivial instances where the greedy principle can be turned into a
polynomial-time algorithm.

2. Greedy algorithm and principle

Let Q be a g-polymatroid and w a weight function. The problem is to maximize
wx over x € .

We can suppose that Q is a 0-base polyhedron since each g-polymatroid is a
one-coordinate projection of a O-base polyhedron.

Let Q={x: x(8)=0, x(A)= b(A) for every Ac §) where bisa fully submodular
function with b(S)=0. Later we discuss what can be said if Q is defined by a
crossing submodular function b”,

Since x(S$) =0 for every x ¢ @ we can suppose that w = 0. The following claim is
simple:

max{wx: xe Q) is finite if and only if mﬁivr\.oo 2.n

(i.e., B(X) < oo for every level X of w). Recall the notation of digraph G = G(F(b)).
To describe b we suppose an evaluation oracle (that tells us the value b(A) for any
required set A< S) along with G (that tells us the places where b is finite).

Call two elements u, ve S equivalent if both uy and vu are in G. Since G is
transitive this is an equivalence relation. Denote the equivalence classes by
81,8,,..., 8. These are precisely the strongly connected components of G. We
can suppose that

each §; has cardinality one. (2.2)

For otherwise let 8" = {5, s,, ..., sc)beasetandlet y:S— S'bea mapping defined
by y(x)=1s if x€ 8, The homomorphic image ¥(Q) of Q is 2 0-base polyhedron
and from an optimal solution to max{y{w} - x": x'c y(Q}) an optimal solution to
max{w- x: x € Q) can easily be constructed. {Notice that both the evaluation oracle
for the fully submodular function b, defining ¥{Q) and the graph G(F(h,)) can
be obtained from those belonging to &).

If both (2.1) and (2.2) hold, then one can easily find an ordering v,, v,, . .. s Uu
of the elements of S for which w{v:)=w(v,.,) and b(ov,,... st} <o for i=
1,2,...,n—1. Call such an ordering compatible.

Remark 2.1. In a later section we discuss how the greedy algorithm can be extended
if Q is given by a crossing (in particular, an intersecting) submodular function ",
To show how a compatible ordering can be found in this case let us denote by b
the bi-truncation of b", By Proposition 2.5 G(F(b)) = G(F(b")). Consequently
if G(#(b")) can be constructed (for example, if a minimizing oracle for b” is
available), then both (2.1) and (2.2) can be assumed and a compatible ordering can
be constructed.

A. Frank, E. Tardos | Generalized polymatroids 523

Let Xo=fand X, ={v,,..., o;}and z(i} = b(X,) - b(X;_ ) fori=1,2,... , . Then
every z(i) is a well-defined finite number.

Proposition 2.2 (Fujishige and Tomizawa (1983)). z=(z(1), z(2), ..., z(n)) is an
optimum solution to max(wx: x € Q).

Proof. First we show that ze Q. Obviously z(S)=0. To prove z{A) < b(A) we use
induction on [A|. Let i be the maximum subscript for which v, € A. By definition
7(X;) = b(X,), z(X; 1}=5b(X,_,). By the induction hypothesis (A —1,)= z(A—1,)
and we have b(A)+b(X,,)=b(AN X} +b(AU X)) =b(4d—1)+b(X;} from
which b(A)=z{A) follows.

To see that z maximizes wx over @ let us consider the following dual pair of
linear programs:

x(Ay=b(A) forAe F(b) Yaya=w
x(S)=0 yaz0 for Ae F(b)— {8}
max wx min} vy b(A)
Define
w{n) ifA=S5,
ya={w(i)—w(i+1) ifA=X, i=12,...,n-1,
0 otherwise.

Obviously, this is a dual feasible solution and wz =Y y,b(A). This shows that z is
primal, y is dual optimum. (Observe that y is nothing but the chain vector of w

and ¥ y4b(A) = b(w) if w=01is integral) O

Note that the proof above is an alternative {algorithmic) proof for Proposition
I1.2.2,

Let us suggest the reader to deduce Edmonds' original greedy algorithm, in
particular, to show how the rule, that z(i} has to be chosen 0 if w(i)<0, follows
from the general procedure.

The greedy algorithm discussed above is applicable only if an evaluation oracle
is available for the defining fully submodular function. There are special cases where
in order to construct an evaluation oracle one needs other, more sophisticated
algorithms. Let us exhibit such an application. Recall the minimum-weight matroid
reinforcement problem (see Section I11.3). We have seen that feasible vectors form

the integral points of a g-polymatroid

Q={xeR’ x=0,x(A) = k(r(S) - 1S - A))—|A|}
where r is the rank function of the matroid M in question. The strong pair (p, #)
defining Q is p(A) =max(k- (r(8)—r(S—X)}~|X|: X < A) and b(A)=w (for A<
S}. The greedy algorithm can be applied provided that p(A) can be computed. To
this end one has to minimize kr(S— X}+|X| over all subsets X of A.
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Let r, be the rank function of the matroid M, =M/(8 - A), that is, n(Z)=
HZUu{S—AY)-r(S—A)for Zc A,

For X =A-Z we have k- r(Z)+HA~Z|=k r(S—X)+|X|-k- r(S—A)soit
suffices to minimize (k- r{Z)+|A—Z|) over all subsets Z of A. This minimum is
exactly the maximum cardinality of the union of k independent sets of M, which
can be computed by a matroid partitioning algorithm {Edmonds ( 1965a)).

Parallel to polymatroids (see Edmonds {1970)) Proposition 2.2 implies:

Corollary 2.3 (Greedy principle). Let Q be an arbitrary g-polymatroid, w =0 a weight
Sunetion such that w(iy= w(i+ 1) fori=1,2,...,n—1, Define the components (1),
z(2),..., z{n) of a vector z as foliows.

NSuamxg..vém_oégung forj=i-1) (2.3)

If every z(i) is finite, the vector z is an optimal solution to max(wx: x € Q).

Remark. The greedy principle can be used in 2 concrete situation if there is a way
to compute the values z(i} and to decide for every u, ve § whether there are ud-sets
X, Y with b(X) <00, p(Y)> —cc. (This latter requirement is needed to compute z
compatible ordering of the elements of S.)

In the next sections we shall provide some consequences of the greedy principle.

3. Truncation algorithm and applications

Let b' be an intersecting submodular function and let b denote its truncation. That
is, for Ac §

b(A) HE:AM. ¥'(A;): {A} a partition of .&v. (3.1)

We present a method, called truncation algorithm, that computes b(A) for a specified
subset A< § provided that a minimizing oracle for b’ is available. The algorithm
also constructs a partition of A for which b{AY=Y b'(A)).

Let p = —co. Then { p, b') is a weak pair, (p, b} is a strong pair and by the Truncation
theorem Q(p, b'}= Q(p, b). By Proposition I1.2.3 b(A) =max{x(A): xec Q(p, &),

Apply the greedy principle to the weight vector w=y,.

By Remark 2.1 one can check ahead of time whether b(A) is finite, If it is, we
can construct a compatible ordering, that is an ordering v, v,,..., t14 of the
elements of A such that b({v,, v,, ..., vl <eofori=1,2,...,|Al

For the value z(i) in (2.3) we have

z{i) =min(b'{B)— z( B — v} Be{v,...,0},,e B) (3.2}
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and therefore, using the minimizing oracle for b’, z(i) can be computed. Since by
Theorem 1.2.14 z(i)=b({v,,..., o} =-b{{v),...,v,;}) and v, v,,..., D4 is a
compatible ordering we see that each z(i) (v; € A) is finite.

Having vector z at hand we can determine a partition {A,, A,,..., A} of A for
which 8(A}=¥ (b'(A):i=1,2,..., k) in the following way.

Consider the set B; where the min is attained on the right-hand side of (3.2). Let
Ay, Az, ..., A, be the components of the hypergraph formed by the hyperedges B,,
i=1,2,...,|A A, Az, ..., A, is a partition of A. By definition each B, is tight,
that is z{B;) = &'(B;). Since the union of intersecting tight sets is tight every A; is
tight. Thus

b(A)=z(A)=% (z(A)i=12,...,k)=Y (b'(A ) i=1,2,..., k),
as required.

Note that the ellipsoid method provides a polynomial algorithm {as shown by
Grdtschel, Lovasz and Schrijver (1981)) both for the problem of minimizing b'(X ) —
m(X) over X< § and for the problem of minimizing ¥ b'(X;) over partitions
{Xi,..., X,} of S. The main content of the truncation algorithm above is that the
latter minimization problem can be solved combinatorially whenever the first ane
can be. We show two applications where this first minimizing oracle is available.

A. Generic freedom

L. Lovisz and Y. Yemini (1982) proved that the generic freedom (see Lovisz and
Yemini (1982), for definition) of a graph G = (V, E) with n nodes is

2n—3-min(¥ (2|V(E)|-3):i=1,2,..., k)

where the minimum ranges over all partitions {E,, E,, ..., E.} of E(E; #8). Here
V{E;) denotes the set of nodes met by the elements of E,.

Since b,(X)=2|V(X}| (X < E) is fully submodular, b'(X)=b,(X)~3 for X £ @
is an intersecting submodular function. Consequently, the truncation algorithm can
be applied. A minimizing oracle for &' in this special case can be constructed as
follows. Let m € R® be a fixed vector. We have to minimize b'(X)—m(X) (8% X
E} or, equivalently, to minimize b,(X)—m(X).

Build up a nestwork N with a source s, a sink ¢t and an intermediate node-set
Ve u V. Here the elements of V: correspond to the elements of E. Define an edge
with oo capacity from v, € Vg to ve V if the corresponding edge ec E is incident
tovin G.

Define an edge from s to v, € Vy with capacity m(e) if m(e) > 0, define an edge
from v, to ¢ with capacity —m(e) if m(e) <0, and finally define an edge from ve V
to t with capacity 2.

It is easy to see that there is a one-to-one cotrespondence between the minimizing
sets X for b,(X)— m{X) and the minimum s — ¢ cuts of N. This latter can be found
by a max-flow-min-cut computation.
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B. Disjoint arborescences

Let us consider the problem of finding k edge-disjoint arborescences of a directed
graph G(V, E} in such a way that each node v is the root of at least f(v) of them.
See Theorem I11.3.6.a.

By Theorem II1.3.5 this is equivalent to finding an integer point m in the
g-polymatroid

Q={xeRl: x(X)=k-p(X) for every @# X c V, x=f x(V) =k},
Let

k—p(X) if|x|=2,

nk =
PiX) Tﬁ;l%ié if X = {o).

Then p’ is intersecting supermoduiar and
Q={x: x(X)=p'(X) for every = X c V, x(V) Hﬂ.

Let p denote the truncation of P’ Q is non-empty if and only if p(V) =k, ie.,
max(3 p'(V;): {V;} partitions V)= k. This is equivalent to (111.3.6). In order to apply
the truncation algorithm to —p we need an oracle, given xeR", to maximize
P{X)Y-x(X)over Xc V.

We leave it to the reader to show that such an oracle can be constructed from an
MFMC algorithm.

If not only lower but also upper bounds are imposed on the root vectors, then
the above algorithm cannot be applied directly. This problem turns out to be a
special case of the problem discussed in the next section.

Remark, Both applications are special cases of the following idea. Let & be a fully
submodular function and k>0 a positive constant. If there is an oracle to minimize
b(X)~m(X) for every modular function m, one can combinatorially minimize
2 (b(X;)—k) over all partitions {X;} (X, #@) of §. Indeed, apply the truncation
algorithm to b" where

B(X)=b(X)-k if X#6 and b(g)=0.

This idea was worked out earlier by Imai (1985} for the case where given a bipartite
graph G =(8, T; E), b(X) is the number of nodes in § adjacent with some element
of X (X < §). Such a b is a polymatroid function and the required oracle is available
again via an MFMC computation.

4. Bi-truncation algorithm: feasibility

Let us recall the concepts and results of Section IT.1. Let

Q={xeR% x(8$)= b"(8), x(A)= b"(A) for every Ac S}
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be a base polyhedron defined by a crossing submodular function b”, Q is non-empty
(see Theorem 1.2.11) if and only if

every partition {S;, 5,,..., 8} of § (5; = @) satisfies
a. Lb(S)=b"(S) and b. ¥ b"(8)=(k—1)b"(S).

By Theorem II.1.3 if Q is non-empty, there is a unique fully submodular function
b, called the bi-truncation of b”, for which Q@ ={xeR": x(§)= b(S), x(A)=b(A)
for every A< S}. Furthermore, we had b(A) =max(x(A): x € Q). First we are going
to describe an algorithm that either finds a vector in Q or proves that Q@ is empty
by constructing a partition violating (4.1). Then we show that given a weight function
w, a slight modification of this method results in an algorithm to maximize wx over
x€ Q. In particular, if w js the characteristic vector of a subset A4, the maximum
value of wx is just b(A).

We can suppose that b"(S)=0. For otherwise choose an element v of § and
define by as follows. b{(X)=5"(X)~b"(8) if ve X and b'(X)=b"{X) if ve X.
Obviously, by is a crossing submodular function, b7(8)=0 and the 0-base poly-
hedron {xeR% x(8)=0, x(A)= b/(A) for every A< 8} is the translate Q—z of
Q@ where z{u)=170 for ue §—v and z(v) = b"(S5).

Here we provide a new proof of the sufficiency of (4.1) which will give rise to
an algorithm. The algorithm will need a minimizing oracle for b". So assume that
(4.1) holds. Then b"(v)+ b"(85— ) =0 for every v€ S since otherwise the partition
{v, §— v} would violate (4.1). Use induction on the number of elements v for which
b"(v)+b"(8—v)>0. If this number is 0, that is, if b"(v}+b"(S~v) =0 holds for
every ve S, let us define zeR® by z(v)} = b"(v) (v€ §). We claim that z e Q. Indeed,
since (4.1a) holds for the partition P formed by the singletons we have x(8)=0.
To see that x{A) < b"(A) (A< §) apply (4.1b) to the partition consisting of the set
A and the singletons in A.

Suppose now that b"(v)+b"(S—v)>0 for an element ve S. By lowering the
values b"(v) and b"(§—v) by a certain amount we obtain another crossing sub-
modular function by satisfying (4.1) for which b7(0v)+b7(8 —») = 0. Then by the
induction hypothesis we shall be done.

Define

f)=min (T (b"(8;):i=1,2,...,k):{S,,..., S;} a partition of §— v}

(4.1)

and
g(v)=min (¥ (b"(8):i=1,2,...,k):{S,,..., S} a partition of §— ).

Note that both f(v)} and g(v) may be +c0.

Case 1. f(v)+g(v)=0. Choose any a (integer if £, g are integer-valued) —f{2) <
a<g(v) and let bj(v)=a and b](S—v)=—a. Elsewhere b” is the same as b".
Obviously b{ is a crossing submodular function. Moreover, if a partition 2 violates
(4.1} with respect to b, then, by the definition of «, P contains neither {v} nor
8 — v, therefore 9 would violate (4.1) with respect to b", as well.
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Case 2. f(v)+ g(v)<0. This will contradict (4.1). On the subsets X of §'=8§—p
define b'(X)=5b"(X) and p'(X)= —b"(S—X). Then (p',b') is a weak pair.
Obviously, (4.1} is equivalent to (I1.2.3). Let F={F,F,...,F} and 9=
{G\, G;,..., G} be partitions of S— v for which ) =L res b"(F) and g(v)=
Yoew b(G). If f(v)+g(v) <0, F and 9 satisfy (IL2.4). Applying the procedure
described in the proof of Proposition 11.2.6 we obtain disjoint subsets Z,, Z,, ..., Z,
of §—v violating (I1.2.3). Then the partition {Z,,...,2Z, 8- Z} violates (4.1).

In order to torn this proof into an algorithm first observe that, from a minimization
oracle for " a polynomially equivalent minimization oracle for b1 can be constructed
where b7 arises from b” by reducing its values on singletons and their complements,
(Notice that, b7 < b" and b} and b” differ at no more than 2{8| places.)

Second, minima f(v) and g(») can be computed with the help of the truncation
algorithm. Indeed, the functions b}(X) = (X)(XcS—v)and By X)= b"(8-X)
(X = §—v) are intersecting submodular functions on the subsets of S~ v and the
minimizing oracles for b}, b} can be obtained from that for b".

The above proof and these remarks verify the following algorithm.,

Bi-truncatioa algorithm
Input: b", crossing submodular function (along with a minimization oracle for
b"y such that b"(S)=0.
Output: Either a partition violating (a) or (b) in {4.1) or an integral vector ze Q.
Part 1. Choose any order v,, ta,..., v, of the elements.
Dofori=1,2,..., n:
L. Let (i) =b"(v,)+b"(S ~v)).
la. If s{i)<0, HALT. Q is empty and & ={v, §—~u;} violates (4.1).
Ib. If s(i)=0, define z(i)= b"(v,).
Ic. If 5,>0, let T={v,,va,...,0;_,} and define intersecting submodular
functions b and b} on the subsets X of §— v; as follows:

bi{X)=z(v} ifX={v}, veT and =b"(X) otherwise,
by(X)=—z(v) if X ={0v}, ve T and =b"(§ — X) otherwise.
Apply the truncation algorithm to compute
So)=min(T (bj(8): i=1,2, ... s k)i {S,,....8) a partition of §—~1,)
and
gw)=min(Y (b5(S,):i=1,2,..., k) {81,..., 8.} a partition of §—u,).

2. If f{e;)+g(v} <0, go to Part 2.
Otherwise let z(1;) be any integer « for which —flu)=sa=gly).
If i = n, the resulting vector z is in Q. HALT.
If i <'n, increase i by one and go to Step 1.
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Part 2. Let F={F,, F,,..., F}and $={G,, Gs,..., G,} be partitions of §— 1,
provided by the truncation algorithm for f{v;} and g(v,), respectively, in Step 1c.
Find a partition violating (4.1) in the manner shown in the proof of Proposition I1.2.6.

5. Bi-truncation algorithm: optimization and applications

Let us now consider the optimization problem max(wx: x € Q). By Remark 2.1 we
assume that a compatible ordering v,,..., v, of the elements of § is available.
Relying on this ordering apply the bi-truncation algorithm. In Step 2 choose z(z,)
to be as big as possible, that is z(»;) = g{v;). The assumption made on the ordering
of elements makes it sure that each g(v;) is finite. By the greedy principle the
resulting vector z is an optimal solution.

We close this section by mentioning three applications of the bi-trunction
algorithm.

A. Disjoint arborescences

In Section I1.3 we discussed the problem of finding k edge disjoint arborescences
of a digraph G =(V, E) such that each node v is the root of at least f(v) of them.
Suppose now, that not only a lower bound is imposed at every node » but also an
upper bound g(v) {=k). The problem is equivalent to finding an integer point in
the base polyhedron

{x: x(X)=p"(X) for 0% X c V, x(V}=k}

where p” is a crossing supermodular function defined as follows

k—p(X) if2=X|<|V|-2,
p"(X)={ max(k—p(v), f(v)) if X ={o},
max(k—g(X),k—p(X)) ifX=V-—yp

Via an MFMC algorithm the required minimization oracle again can easily be
constructed.

B, Orientations

Recall Theorem IT1.3.3 and its proof. There we showed that there is an orientation
of a graph satisfying (I11.3.2} if and only if there is an integer point in a certain
base polyhedron

Q={xeR": x(A)=p"(A) for Ac V, x(V)}=p"(V)}.

Consequently the bi-truncation algorithm applies to find such a vector provided
that the required minimization oracle is available. This is the case, via a maximum
flow-minimum cut (MFMC) algorithm, if one has to find a A-strongly edge-connected
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orientation of a graph that satisfies, if required, lower and upper bound restrictions
made on the indegree of nodes. We omit the technical details.

C. Submodular flows

Our last application of the bi-truncation algorithm concerns submodular flows. For
the definitions, see Chapter V. In Frank {1984) an algorithm was developed to find
a vector in submodular flow polyhedra. It consisted of two parts. The first part
described the algorithm for submodular flows defined by intersecting submodular
functions,

The second part contained a method to reduce algorithmically the problem to
the intersecting case when the defining function is crossing submodular. To this end
we needed to find a vector z, in a 0-base polyhedron defined by a crossing submodular
function b”. (Namely, b"(B)=b'(R) ~Ay(B} for Bc V, See p. 234 of Frank (1984)).
Such a z, was found by a previous application of the first part of the algorithm,
However, this can be avoided since Zy can be found in a much simpler way by
applying the bi-truncation algorithm.
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CHaPTER V. SUBMODULAR FLOWS

1. Preliminaries

The starting point of this theory is Edmonds’ matroid intersection theorem (1970)
stating that, given two matroids on a ground set § with rank functions r,, r,, the
maximum cardinality of a common independent set is min(#,(X)+r(§-X): X <
§). This is in fact a consequence of Edmonds’ polyhedral description of common
independent sets of two matroids:

Theorem 1.1 (Edmonds (1970)). The convex hull Q of common independent sets of
two matroids M,, M, is the intersection of the matroid polyhedra of M, and M,.
Furthermore, the linear system {x=0, x(A)=min(r,(A), r(A)) for every Ac S}
defining Q is TDL

Edmonds further generalized this result and showed the polymatroid intersection
theorem:

Theorem 1.2 (Edmonds (1970}). Let b} and b}, be intersecting submodular functions
that are non-negative. The linear system

{xeR%, x=0, x(A)<min(b{(A), bi{ A)}) for every A< S} (1.1)
is TDL O
In particular, if b and b} are integer-valued, the solution set of (1.1) is spanned

by its integral points. o
This latter statement was slightly extended by McDiarmid who showed

Theorem 1.3 (McDiarmid (1978)). The solution set to (1.1} and (1.2} is spanned by
its integer points where

c=x(8)y=d, flv)sx(v)=g(v) foreveryves§, (1.2)
where ¢, f(v)e Zu{—} and d, g(v)e Zu{o} (ves). O
Actually, (1.1) and (1.2) together are also TDI. This follows from the g-polymatroid

intersection theerem. To formulate this let (p{, b}) be a weak pair (i=1,2) (p!, b!
are integer-valued),
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Theorem 1.4 (Frank (1984¢)). The linear system

{pi(A)=x(A)< bj(A) forevery AC S, i=1,2} (1.3)
is TDL In particular, Q(p}, b)) n Q(p}, b}) is spanned by its integral points, [

This theorem turns out to follow from Theorem L6 of Edmonds and Giles. See
Proposition 4.1.
Another version of the g-polymatroid intersection theorem is

Theorem 1.5. Where b7, b are integer-valued crossing submodular functions with
b{(8)=b3(8) =k, the linear system

{x(8)=k x(A)= min{b{(X), b5( X)) for every X ¢ S} (1.4)
is TDIL

Edmonds and Giles (1977) introduced a general model, called submodular flow
polyhedron, concerning submodular functions and graphs,

Let G=(V, E) be a directed graph and b":2Y >Ry {oo} a crossing submodular
function. Let £ and g be capacity functions where f: E>RuU {-0}, g: E>Ru o)
and f=g,

Let xe R® be a vector. Recall the notation px(A), 8.(A) (AS V). Let A, (A) =
px(A)~8,(A). By Proposition 1.2.7 A:(A} is a finite modular function.

A polyhedron Q= Q(f, g; b") consisting of vectors x € R satisfying

.\.MHMW A_,mmv

and
A(A)=sb"(A) for every Ac V (1.5b)

is called a submodular flow polyhedron (Edmonds and Giles (1977)). If —f, g =0,
uzo mmn the notation Q(G: b*) for Q. We say that a submodular flow polyhedron Q
Is given in a nice form if Q= Q(G; b} where b is fully submodular with b(V)=0.
An element of Q is a submodular Slow. The linear system (1.5) is cailed a submodular
flow system. If £, g, b are integer-valued Q is an integral submodular flow polyhedron.

waim:r O.:n can suppose that b"(V)=0. If b"(V) <0, then Q is empty and this
case 15 not interesting. If 5"( V) > 0, we can reduce b"( V) to zero. This change does
not destroy the submodularity of b” and does not affect Q, either,

The basic result on submodular flows is:

Theorem 1.6 (Edmonds and Giles (1977)). The linear system in (1.5) is TDIL In
particular, if f, g b" are integer-valued, Q(f, g; b") is spanned by its integral points,

Since (1.5) already involves the inequality f < x = g, Thearem 1.6 states that (1.5)
is box TDI, as well.
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We are going to provide a proof different from the original one.

There is an important subclass of submodular systems. We say that (1.5) is a
one-way (submodular flow) system if b"(X} < oo (X = V) implies that either §(X) =
0, or p(X)=0. A submodular flow polyhedron @ is called one-way if there is a
one-way system defining Q. We say that (1.5) is strongly one-way if either §(X) =0
whenever b*(X) < (X = V) or p(X) =0 whenever b*{X) <o (X = V). Edmonds .
and Giles (1977} mention the following three special cases of their model.

1. If B*=0, linear system (1.5} describes feasible circulations.

2. Letp"(X)=1if 8(X)=0(3+# X < V), p"(@) = p*(V}=0and p"{ X) = —c other-
wise. Choose f=0, g=1. Then p" is crossing supermodular and

f=x=g A(A)=p"(A) forevery AC Y, (1.5

describes the convex hull of directed cut coverings and Theorem 1.6 implies a
famous theorem of Lucchesi and Younger (1978): the minimum cardinality of edges
covering all directed cuts is equal to the maximum number of edge-disjoint directed
cuts.

Analogously, a min-max theorem by Vidyashankar and Younger (1975) on the
minimum number of directed cuts covering all edges, and generalizations concerning
k-covers can also be derived.

3. The polymatroid intersection theorem (Theorem 1.2) follows from Theorem 1.6.

There are other interesting models concerning submodular functions. Among
them are Fujishige’s (1978) “independent flows™, Frank’s (1979) “kernel system”,
Lawler and Martel’s (1982) “‘polymatroidal flows™ (see also Hassin (1982)). Each
of these polyhedra turned out to be submodular flow polyhedra. See Schrijver
(1984a). (This does not imply that these models are useless since the reductions are
not quite straightforward and it may happen (and did happen} that a certain special
case is much more easily seen to belong to one of these models than to submodular
flows.)

Some other models are not known to relate to submodular flows (such as Hoffman
(1982) and Schrijver (1982)). And there is a very general model by Schrijver (1984b)
that contains all of these classes. For an excellent survey on the relationship of
different models, see Schrijver (1984a).

Among the above mentioned special cases circulation polyhedra may not be
one-way as is shown by Q={(x,, x;): x; = x,}. Directed cuts trivially gives rise to
a strongly one-way system. The reduction of polymatroid intersections of Edmonds
and Giles (1977) and kernel systems of Schrijver (1984a) and Frank (1984b) to
submodular flows show that these two are also strongly one-way submodular flow
polyhedra. But not the intersection of two g-polymatroids. Actually, even one
g-polymatroid may not be a strongly one-way submodular flow polyhedron as the
g-polymatroid B={(x, y)eR*, x, y=0, x+y =1} shows. (A strongly one-way sub-
modular flow polyhedron @ has the following property while B does not: for
Xy, %3 € @ the vector y defined by y(e) = min{x,{e)}, x;(e)) (e S) belongs to Q.) We
will show that the intersection of two g-polymatroids is a one-way submodular flow
polyhedron.
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2. Submodular flows in simpler forms

In the notion of g-polymatroids the role of sub- and supermodularity is symmetric.
The following proposition shows that the same is true for submodular flows. Let A
denote the (0, £1) node-edge incidence matrix of & (ie, a;=+1 (-1) if edge i
enters (leaves) node j and =0 otherwise).

Proposition 2.1. Any submodular flow polyhedron Q=0(/f g; b") can be written in
the form Q={xeR® f=x=g Axe B} where B = B(b") is a 0-base polyhedron. For
any g-polymatroid Q, the polyhedron Q = {x cR®; Sf=x<g Axe Q,} is a submodular
How polyhedron,

Proof. The first statement is nothing but a reformulation of the definition. The
second follows from the fact that y(V)=0 holds for any vector ¥ = Ax and from
Proposition 111.1.11. O

In particular, if p":2V > Ru {—o0} is a crossing supermodular function, the poly-
hedron Q ={x cR*: x satisfies (1.5} is a submodular flow polyhedron.

By this remark it would perhaps be better to speak about “semimodular flows”
rather than submodular flows. However, this latter term has been accepted in the
literature so we will also use it.

Since the face of a g-polymatroid is a g-polymatroid (Proposition II1.1.12),
Proposition 2.1 immediately implies:

Proposition 2.2 (Cunningham and Frank (1985)). The face of a submodular Hlow
polyhedron Q is a submodular flow polyhedron (which is integral if Q is integral). O

Another important consequence of Proposition 2.1 and Theorem 11.1.3 is

Proposition 2.3. If a submoduiar flow polyhedron Q=Q(f g, b") is non-empty, there
is a fully submodular function b, namely, the bi-truncation of b", for which Q=

Q£ G;b). D

The next proposition shows that submodular flow polyhedra can be described in
nice form. That is, the bounds f, £ can be “built into” the submodular function.

Proposition 2.4 (Frank (1984c)). For every submodular flow polyhedron Q=
Q(f, g:b") there is a graph G,=(S, E,) with a bijection between E and E,, and a
crossing submodular function by :25 >R U {0} such that (modulo the bijection) Q =
Q(G; by). Consequently, every non-empty submodular flow polyhedron can be given
in a nice form.
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Proof. Replace each node v of G by as many new nodes as there are edges incident
to v Denote by é(v) the set of new copies of v. For a subset X of V put
$(X)=UJ(¢(v): ve X). Denote ¢{V) by S and denote by e, and e, the elements
in § corresponding to an edge e = uv e E, Define b}:2% >R {+0) as follows. For

XcS§, let

B(Y) ifX=¢(Y)(YV),
gle) if X={e) (e=uveE),
~fle} if X={e,} (e=uvcE),
+0 otherwise,

bI(X) =

Let G,=(S, E,) be a digraph where E,={e,e,: e=uve E}. It is easily scen that b?
is a crossing submodular function and Q(f, g; #") = Q(G,, b"). O

Remark 2.5. If in the preceding proposition b” is fully submodular, the function b
in the proof is intersecting submodular.

3. Feasibility and optimality

Let Q be a submodular flow polyhedron given in a nice form Q= Q(G; b). Let B
denote the edge incidence matrix of the family F(b}={X: b(X) < oo}, that is, the
columns of B correspond to the elements of E, the rows correspond to the elements
of #(b) and the row vector of B corresponding to X € F(b) is Ay.

We are investigating the dual pair of linear programs

Bx<bh (3.1)
max dx
yB=4d
y=0 (3.2)
min yb.

(Observe, that (3.1) is the reformulation of (1.5).)

Proposition 3.1. The primal program (3.1) is feasible (ie., Q is non-empty) if and
only if b(X) =0 whenever Ay = 0. If b is integer valued and Q is non-empty, Q) contains
an integral point.

Proof. The necessity is trivial. To sec the sufficiency we use induction on the number
of edges. Let us choose an edge e=uv e E. Let m =min(b(X): px ={e}) and M =
max{—b(Y): 8y ={e}}. We claim that m = M. Indeed, if py = {e} = 8+, for some X,
Y, then Ax.y=Ax_,y=0 from which b(X~Y), B{X u ¥Y)=0 follows by the
hypothesis. From submodularity, b{X)+5s(Y)= kX Y)+b(X U Y) =0, that is,
b(X)z=—-b(Y), and so m= M. Let a be a number with m=a =M (integer if m,
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M are integers). Define G, = G~ e,

b{(X)—a ifeenters X,
B{X)={b(X)+a ifeleaves X,
b(X) otherwise,

By the choice of @ the induction hypothesis holds for Q1= Q(G,; b)), so Q, contains
a vector x, e R¥™°, Then {x,, «}eRE is in Q.

Proposition 3.2 (Cunningham and Frank (1985)), The dual program (3.2) has a
solution if and only if there is no positive directed circuit in the Jollowing graph
H =(V, F) with respect tv d':

e=uve Fifuwe E. Sert d'(e) =d{e) (forward edge).

e=vueFifuveE Set d'(e)=~d(e) (backward edge).

e=uv e F if there is no vii-set in F(b). Set d'(e) =0 {(jumping edge).
If d is integer-valued and (3.2) is Seasible, then (3.2) has an integer-valued solution.

Proof. Let C be a circuit in H of positive cost and let X0 RF be defined by xs{e)=1
(=-1) if e is a forward (backward) edge and =0 otherwise.

Then Bx,=<0 and dx,>0 so (3.2) cannot have 2 solution. Conversely, suppose
that H does not have a positive circuit, Then there is a vector m: V- R (integer
valued if d is integer-valued) for which 7 (v) — w(u)=d'(uv) for every up ¢ % (This
is an easy statement from network flows: the negative of the d'-distance from a
fixed node will serve as an appropriate a.) We can suppose that = = 0, since adding
a constant to every component of mw does not affect the properties required for 4.

By the definition of &' no jumping edge leaves any level of 7. Furthermore,
7 (v)— w{u) = d{uv) foreach uv e E, Consequently, each level of & belongs to F(b)
and the weighted chain of = is a solution of (32), O

Call a vector 7: VR, dual feasible if its weighted chain y is a solution to {3.2),
or equivalently

(A) w(v)—w(u)=d(uv) foruve E and

" 3.3)
(B} b(w)<o0,
{If Q is given in the form Q= Q(f, g; b) where b is fully submodular, then, by
Proposition 2.4, (3.3A) is replaced by
m(v)—w(u)<d(e) iff(e)=—w
(3.3A7
m(v}—w(u)=d{e) ifgle)=co, )
7 is optimal if y is optimal subject to (3.2). Since m?.vnu& this is equivalent to
saying that 7 minimizes () over (3.3) (when Q=0(G; b)).
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Proof of Theorem I.6. (Notice that Propositions 3.1 and 2.2 directly imply the second
half of Theorem 1.6.)

Let Q=0Q(f g;b") be a submodular flow polyhedron and suppose that the
corresponding dual program has a finite optimum. Suppose d is integral. Then Q
is non-empty so, by Proposition 2.4, Q can be given in a nice form Q(G, b). By
Corollary I1.1.6 and Preposition 1.2.3 it suffices to prove TDI-ness for such a form.
By Proposition 3.2 there is an integer-valued dual feasible vector. Let m, be an
optimal one and y, its weighted chain.

We claim that there is an xp€ Q for which x,(A) = b(A) whenever y,(A) > 0. {By
complementary slackness the existence of such an x, shows that y, is an optimal
solution to (3.2).) In other words we claim that the face @, of Q determined by the
equalities A{A) = b{A) whenever y,{A)> 0 is non-empty. .

By Proposition IIL1.13 Q,=Q(G; by} where b,(X)=5(my+xx)—b(m). By
Proposition 3.1 Q, is non-empty. Indeed, if b,(X,) <0 for a set X, with Ay, =0,
then ) = my+ xx, is dual feasible with m?.; Am?«oy contradicting the choice of
wo. O

Remark 3.3. Using the notion of dual feasible vectors Theorem 1.6 can be reformu-
lated as follows:

For a non-empty submadular flow polyhedron Q given in the form Q= Q(G,; b) (b is
Jully submodular)

max(dx: xe Q) Hamimﬁiu 7 15 dual feasible)

( provided that the maximum exists).
Moreover, if b is integer-valued, there is an integral optimum x. If d is integer-valued,
there is an integer-valued optimal .

Proposition 3.1 easily implies the Discrete Separation Theorem:

Proof of Theorem 1.2.12. Let p and b be given as in the theorem. We can suppose
that p(§) = b(S). Let §' and §" be two disjoint copies of S. (For a set X = § the
corresponding sets in 8’ and $” are denoted by X’ and X", respectively.) Define a
digraph G=(V, E) where V=5'U8" and E={e=s"s"1 se S}. Let by( X' Y"y=
b{X)-p(Y) for any X'c &', Y"=S". Obviously, b, is fully submodular and
Proposition 3.1 immediately implies the separation theorem. [

The Discrete Separation Theorem and Proposition I11.1.9 gives rise to:

Proposition 3.4. Let (p,, b)) and (p,, b,) be strong pairs. The g-polymatroid intersec-
tion Q= Q(py, b} Q(pz, b,) is non-empty if and only if p,(X)<b,_.(X) (i=1,2)
Jorevery X< 8 [
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rnﬂ. Q= Q(f, g; b) be a submodular low polyHedron where bisa fully submodular
function. Using Proposition 3.1, 2.4 and Remark 2.5 we have:

Proposition 3.5 (Frank (1984a)). Ifbis Jully submodular, Q= Q(f, g; b) is non-empty
if and only if

pr{A)—8,(A)=b(A) foreveryAcV, (3.4)

If 1. g, b are integral and (3.4) holds, Q has an integral point. []

Notice that if =0, Proposition 3.5 specializes to Hoffman's (1960) well-known
circulation theorem.

Applying the Truncation and Bi-truncation theorems, respectively, we obtain from
Proposition 3.5:

Proposition 3.6 (Frank (1984a)). (A) Ifb' is an intersecting submodular Junction, a
submodular flow polyhedron Q = Q{f & b') is non-empry iff

pr(lUJA) - 8. (A=Y b'(A)

Jor every family of disjoint subsets ALAz . LA of V.
(B) If b" is crossing submodular, a submodular Jlow polyhedron Q= Q(f g; b™) is
non-empty if and only if

prJA)-8,(J A) <X b"(A,)

whenever A, A,,..., A, are disjoint subsets of V and each A, is the intersection of
co-disjoint sets Ay, A, ..., A,

Iff. g b', b" are integer-valued and the corresponding submodular flow polyhedra
are non-emply, they contain integer points. [

Let us now investigate how Proposition 3.2 extends when the submodular flow
system 1s given in the general form {1.5). Let B denote the edge incidence matrix
of the family F(b"}={B: b"(B) <<oc}. Then (1.5) is equivalent to

f=sx<g
Bx=b" (3.5)
max dx. .
The dual linear program is

B
hzw)| I |=d(yz w)=0

-I

(3.6}

min yb + zg — wf,

g e

;
¢
i
i
!
P
{
g
4
k
f
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where the components of y correspond to the members of F(b”) and the components
of z, w correspand to the elements of E (so that w(e) =0 whenever f(e) = —co and
z{e) =0 whenever g(e) =0), Here [I] denotes the identity matrix of appropriate size.

Proposition 3.7. The dual linear program (3.6) is feasible (i.e., has a solution) if and
only if the following directed graph H = (V, F) does not possess a directed circuit of
positive cost with respect to d':

e=uvec Fifuve E and g(uv) = +00. Set d’(e) = d(e) (forward edge).
e=vue Fif (w,v)e E and f(uv) = —0. Set d'(e) = —d (e} (backward edge).
e=uve F if there is no vii-set in F(b"). Set d'(¢) =0 (jumping edge).

If d is integer-valued and (3.6} is feasible, then (3.6) has an integer-valued solution,

Proof. Although the present proof goes along a similar line to that of Proposition
3.2, in this case we cannot suppose that the submodular flow polyhedron is given
in 2 nice form since the primal program (3.5) may be infeasible and then the existence
of the bi-truncation of " cannot be guaranteed. Actually, we need only the bi-
truncation of the crossing family %(b"). (The proof by Cunningham and Frank
(1985)) considers only the case when the primal problem is feasible and therefore
the bi-truncation of b” exists.) Let C be a circuit in H of positive cost. Let x,e R
be defined by x(e)=1 (=—1) if ¢ is a forward (backward) edge of C and =0
otherwise. Then A, (A)=0 if Ac F(b"), x{e)<0 if gle)<co, and x,{e)=0 if
fle)= —o0. Therefore by (the trivial part of) Farkas Lemma (3.6) cannot have a
solution.

Conversely, suppose that H does not have a positive circuit. Then there is a vector
: VR, (integer-valued if 4 is integer-valued) for which =(v)— 7 (u) = d'(uv) for
every edge uv of H. Let y, be the weighted chain of . For a jumping edge uy,
w(v)— w(u)=d'(uv) =0, that is, no jumping edge leaves V,. Thus each level V, of
7 belongs to the bi-truncation of %(b"} and by Proposition 12,5 A{V,)=
2 z{(X}A(X) for some sets X ¢ F(b") and for some appropriate non-negative
integers z;(X). By the definition of d' we alse have, for uvc E, w(v) — w(u) = d(uv)
if glur)=c and w(v}-mw(u)<sd(uv) if f(uw)=-c. Define y by y(X)=
(V) z(X) (Xe F(b)Y) and let z(e):=max(0, d{e)—yB(e)) and wie):=
max{0, yB{e)—d(e)) for ec E. Then (y, z, w) is a feasible solution to (3.6) and
integer-valued if d is integer-valued. ([

As a by-product of Proposition 3.5 we have:
Proposition 3.8. Where Q is given in a nice form Q(G; b), a dual feasible vector  is
optimal if and only if Q(G, b,) is non-empty (i.e., b,(X)= 0 whenever Ay =) where
b{X)=b{m+xx)—b(x). O

If Q is given in the form Q(f, g; b), and b is fully submodular, Proposition 3.8
transforms into
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Proposition 3.8'. A dual feasible vector = is optimal if and only if Q(f,, 8.5 b)) is
non-empty (i.e., p; — 8, < b,} where

_ [ f(uw) ifw(v) —m(u) = d(u),
Siluw)= ,ﬁw?ew otherwise;

_J&(uv) ifm(v)~m(u)=d(uv),
giluv) = TA uv) otherwise. O

Let us investigate the optimality of a given submodular flow x,. Suppose that the
submodular flow polyhedron is given in a nice form Q@=Q(G,; b) and x,e Q.

Proposition 3.9. x, is an optimal selution to (3.1) if and only if (3.2) is feasible with
respect to d and b,:2V >R U {0} where

b(A) ifA. (A)=b(A),
@_Ewu“ (4) fA(4)=b(4)
oo otherwise, O
This is a straightforward consequence of linear programming.
A necessary and sufficient condition for x, to be optimal can be formulated
analogously if Q is given in the general form QS g b"):

Proposition 3.9°. A solution x, to (3.5) is optimal if and only if (3.6), with respect to
d, f1, g1, by, is feasible where

I x> fle),
file)= r.ﬂmv otherwise,
_ *8 ifx,< g(e),
gile)= gle)} otherwise forec F;
_[plA) i A (A)=b(A),
bi(4)= ﬁoo otherwise. O

Proposition 3.9 tells us that if x, is not an optimal submodular flow, there is an
appropriate circuit C in an auxiliary digraph such that augmenting by a certain
amount 4 along (the original edges of) Cx, can be improved. The proposition does
not say that 4 can be chosen integer-valued (if, say, ail the input-data are integer-
valued). Actually, this is not true for every augmenting circuit. However, it is true
for augmenting circuits of minimum number of edges. For convenience, we formulate
this result for submodular flow polyhedra given in a nice form Q=Q(G b) (b is
integer-valued). Let x,e Q be an integral vector. Call a set A tight (relative to X5)
if A(A)}=>b(A). The auxiliary digraph H =(V, F) arising from Proposition 3.2

i

i
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and 3.8 is:

e=uve F if uve E. Set d'(e}=d(uv) (uve E is a forward edge).
e=puc Fifuve E Set d'(e)=—d(uv) (uwe E is a backward edge).
e=uv e F if there is no tight uf-set. Set d'{e) =0 (uv is a jumping edge).

Proposition 3.10. Let C be a d’-positive directed circuit in H with a minimal number
of edges. Define x, e R by

xo{e)+1 ife=uve Eisforward and uve C,
x(e}=4xy{e}~1 ife=uve Eisbackwardand vue C,
xo(e) otherwise.
Then x,€ Q.

First we prove the following lemma.

Lemma. There is an ordering e, = w,v,, &;=u,0s, ..., €, = 1y, of the jumping edges
of C such that, for any 1<i<j=<k, there is no jumping edge in H from u, to v,.

Proof. If no such ordering exists, then there is a subset J of jumping edges of C
and a cyclic ordering f;=s1t,, 2= Sata, . . ., fou = Sunl Of J such that each st is a
Jjumping edge (i=1,2,..., m) (where t,., is {,). Let C; denote the arc of C from
ti+; to 8. By the minimal choice of C the d’-weight of directed circuit formed by
Ci and edge 5., is non-positive. It is easy to check that every non-jumping edge
of C belongs to the same number 1> 0 of arcs C;, Thus d'(C)=1t-d'(C,)=0,
contradiction. O

Proof of Propesition 3.10. Let y(X)=b(X)—A,(X) denote the “surplus” of X.
Obviously y(X) is submodular. Tight sets are closed under taking intersection and
union so we can speak about a unique minimal tight set P(») containing a node o.
Let 8,(X )} p;(X)) denote the number of jumping edges of C leaving (entering) X.
Since A, (X) =2, (X)+86,(X)—p;(X)= A (X} 68;(X), the next claim implies the
proposition

Claim, y(X)=6,{X).

Proof. Induction on &;(X). Since x,e @, ¥(X)=0 so the claim hoids when
8;(X}=0. Let 8,{X)>0and e, = w,v, a jumping edge of C leaving X for which the
subscript i is the least (in the ordering given by the Lemma). Let P = P(;). By the
minimal choice of i, §;,(X v P}=§,{X)}—1 so applying the induction hypothesis to
X u P we have

YX)+0=y{(X)+¥(P)Zzy( X nP)+y(X U P)
=1+y(XuP)=1+6;(X U P)=8,(X),

as required. This proves Proposition 3.10. [
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Remark. Proposition 3.10 has a fundamental significance from algorithmical point
of view. Here we do not go into details only mention that relying on Propositions
3.8, 3.9 and 3.10 one can easily construct a polynomial algorithm for the weighted
matroid intersection (see Edmonds (1979), Lawier (1975) and Frank (1981¢)} and
for the Lucchesi and Younger problem (see Frank (1981a) and (1982)).

4. Submodular flow polyhedrz and g-polymatroids

In Proposition 2.1 we described a relation between submodular flow polyhedra and
g-polymatroids. In this section we further investigate this relationship,

Proposition 4.1 (Frank (1984b} and Schrijver ( 1984a)). The linear system (1.3} is a
submodular flow system. In particular, the intersection of two g-polymatroids is a
submodular flow pelyhedron.

Proof. Let us form the same digraph G = {V, E) as in the proof of Theorem I1.2.12
(before Proposition 3.4). Define ":2¥ >R {co} by

b(Y) ifX=Yc§,

biix)ymd PV iX=Voy (o8,
b(Y) ifX=V-Y" (Y'cS,
—pY) fX=Y'CS"

Now b” is crossing submodular and the submodular system defined by G and b"
is exactly {1,3). O

The proof actually shows that (1.3) is a one-way submodular Aow system.

Proposition 4.2 (Frank (1984c)). Every submodular HAow polyhedron Q is the projection
of the intersection of two g-polymatroids.

Proof. By Proposition 2.4 we can suppose that ( is given in a nice form Q = Q(G, b).
We use the same notation as in the proof of Proposition 2.4, Let §, = {e,e=uve E}
Define two g-polymatroids on S, as follows. Let ={ze zhp\ﬁmvmi?vmﬁmv.
z{e,)+z(e,) =0 for cach e=uve E} and Q,={zc R": 2 X)=b{(X) for X< 8§,
z(S8)=0}. For a vector x € RE let h{x) denote the vector ze R® for which z{e,) =
x(uv) and z(e,)=—x(uv) (e=uve E). We can see that xe Q(f, g; b"} if and only
if h(x)e Q,n @, and hence Q(f, g; b") is the projection of Qi Q;along §,. O

Proposition 4.3. The projection of a submodular flow polyhedron Q is a submodular
flow polyhedron,

3
i

i N I T
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Proof. Suppose that Q is given in a nice form Q{G; b). Let E,c E and E,=E - E,.
We show that the projection Q, of Q along E, is a submodular flow polyhedron of
form Q(Gy; b,) where

400

b(X)

if 85,(X)+ pe,(X) >0,

Gy =(V. E,) and v.@mvu,ﬁ otherwise.

Here b, is fully submodular. Obviously @, < Q(Gy; b;). To see the other direction
let x; € Q{Gy; by). We need to show that there is a vector x € Q for which x{e) = x,{e}
for every e€ E,. This is equivalent to saying that the submodular flow polyhedron
Q(/, g; b) is non-empty where f(e}=g(e) = xy(e) for ec E, and —f(e) = g(e) =+
for e€ E,. Proposition 3.5 and the definition of b, show that Q(f, g; b) is non-
empty. [

Summarizing Propositions 4.1, 4.2 and 4.3 into one result we have

Theorem 4.4. The projection of the intersection of two g-palymatroids is a submodular
Alow polyhedron and, conversely, every submodular flow polyhedron arises this way. [

Remark 4.5. In Proposition 4.1 we showed that (1.3) is a submodular flow system.
Even if we start with two strong pairs (py, b,), (p,, b}, the crossing submodular
function b” constructed in the proof of Proposition 4.1 is not necessarily fully
submodular. But in this case the bi-truncation of b" {Proposition 11.1.4) can be
given in the following simpler form:

B(X'w Y™y =min(h,(X) - pL Y), bo( ¥) = p( X))
where X, Y& 5.

(4.1}

5. Operations on submodular flow polyhedra

Let Q be a submodular flow polyhedron. In previous sections we showed that the
face and the projection of Q is a submodular flow polyhedron. From the definition
we can see

Proposition 5.1. The intersection of a submodular flow polyhedron with a (not-
necessarily finite} box is a submodular flow polyhedron. O

Proposition 5.2. The translate of a submodular flow polyhedron Q is a submodular
flow polyhedron.

Proof. Let Q=Q(G; b) and ¢ R® Then ¢+ Q={xe R%: A, (A)< b,(A)} where
b {A)=b(A)+ A (A). Since A, is modular we are done. [
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Proposition 53. The direct sum QP Q, of wo submodular flow polyhedra is a
submodular flow polvhedron.

Proof. Let Q= Q(G;; b} where G, =(V, E;), by is fully submodular (i =1, 2) and
VinVo=0. Let G=(V,u V,, E, v E,) and BX)=b(X N V) +b(X A V,). Now
b is fully submodular and Q& Q,= Q(G; b). (1

. Unfortunately {and unlike g-polymatroids), the set of submodular flow polyhedra
is not closed under taking homomorphic image, as the following example shows:
V= mmw Nq .wm #wu €= AM. WVu €= ﬁwo L.Vu €= AH‘ Nv

b(X) =00 except that b(@h) = b(V) = 0,
b{2D=0, b({1,2,4)=0, ~f=g=c.

Let e,; be a new element and let ele)=ples) = ey m:a. ¢(e;) =e,. Now
(@) ={(x), x23) € R?; —2x,+ x5, = 0}

isnota submodular flow polyhedron. Itis an open problem to find a linear description
of ¢(Q). Likewise, we do not know a linear description of the sum @, + Q, of two
submodular flow polyhedra. However, if Q.= B is a box, we prove that Q,+ B is
a submodular flow polyhedron. Let Qi=Q(G; b)) and B=Q(fs, g; b,) be sub-
modular flow polyhedra on the same graph G =(V, E) where b, is an arbitrary fully
mc_w:._ovas_m_. function and 5,(X)=0 if @ X = V, by{(0) = b,(V)=0. (That is, B is
a box,

Proposition 5.4. Q = Q,+ B is a submodular flow polyhedron for which Q = Q(G; b)
where ._vCDH bi(X)+p (X)—8:(X). I £, g2, b, are integral, an integral vector
X € Q is the sum of certain integral vectors x, € Q,, x, B.

Proof. First observe that b is a fully submodular function and so Q(G;b)is a
submodular fiow polyhedron. Obviously, Q<= Q(G; b). To see the reverse contain-
ment let x,€ Q(G; b), that is,

A(BY<h(R) forevery Bc V.

(5.1)

We have to find a vector x, Q(G; b)) for which f<x,—x,=< g2. In other words
we have to find a vector x, in the following submodular flow polyhedron Q.=
Qfxo— g2, Xo—Jf2; by). By Proposition 3.5, Q, is non-empty if and only if p, (A)—
bwwﬁ>vluaaa>v+&mﬁbvm b {A) (A< V) which is exactly (5.1). If f3, g, by, x, are
integral, then Qs is integral so it has an integral point x,. [

In the special case when f=0, g =00, that is, when B=R}, Q+ B is called the
dominant of Q. Using the proof of Proposition 2.4 we have

ey
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Corollary 5.5. The dominant D of a submodular flow polyhedron Q is a submodular
flow polyhedron. If Q is given in the form Q(f, g; b) where b is fully submodular, then
D can be described by D={xe R, 5,(A)= pr(A)—b(A) for Ac V). In particular,
if —f=g=c0, then D={xe R, 5,(A)=—b(A) whenever p{A)=0}. [

The last statement immediately shows

Corollary 5.6. The dominant D of a submodular flow polyhedron Q is

{xe R®; x(A) = c(A) for every A< E} (5.2)

where c(A) = min(y(A): y € Q). Moreover, the linear system in (5.2) is box TDI. O

The first part of this corollary was proved by Edmonds and Giles (1977). Actually,
Edmonds and Giles proved that (5.2) describes Q+ RE whenever Q can be defined
by a box TDI system. One can pose the question whether the second part of Corollary
5.6 also holds true for such more general polyhedra. The answer is no. Although
W. Cook (1986} proved that the dominant D of a box TDI pelyhedron always has
a box TDI description A. Schrijver pointed out (personal communication) that D
need not have a 0-1 box TDI description.

In special cases function ¢ in {5.2) can be more specifically expressed.

Corollary 5.7 (Cunningham (1977}, McDiarmid (1978), Groflin and Hoffman
(1981)), Let Q# 0 be the convex hull of common bases of two matroids on S with
rank functions ri, r,. Then Q+ RS ={xe R%: x(A)= k—r,(§ — A) for every Ac S}
where k=r(S)=r.(8) and r;( X} (=minzcx{r(Z)+r{X — Z)) is the maximum
cardinality of common independent subsets of X. Moreover, the describing linear system
is TDI O

6. More applications

Frank (1982) has shown how submodular flows are applicable to graph orientation
problems. In particular, Nash-Williams’ (1969) h-strong orientation theorem was
derived with the help of submodular flows. In Chapter Il we could see that
Nash-Williams’ h-strong orientation theorem follows already from the theory of
g-polymatroids {(although its generalization to mixed graphs does not). To com-
pensate this “loss” we mention some recent applications. The details can be found
in Frank and Tardos (1986).

Let M be a matroid on a ground-set S with rank function r, p’ an intersecting
supermodular function for which p'=r.

Theorem 6.1. min(|T}: T< S, p(X)<=r({TnX) for every X < 8)=max(T; pi( X))
X1, X5,..., X, are disjoint) where p(X)=max(p(XuZ)-r(Z) Z=S-X).
O
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This model includes an early result of Lovisz {1970) on supermodular functions,
a theorem of Vidyashankar (1978) on covering arborescences and the foilowing
problem: find a minimum weight subgraph G, =(V, E,) of an edge-weighted digraph
G=(V, E) so that, given a specified root re V, for every node v€ V —r there are
k internally node-disjoint paths in G, from r to v The following tiny result is also
a consequence of the above theorem:

Corollary 6.2. In a directed graph G =(V, E) there is a branching that covers all
directed cuts if and only if ¢,(X) = | X[ for every X < V where ¢1(X) denotes the number
of components C of G— X Jor which no edge enters C. [

{It is interesting to notice the formal analogy between this result and Tutte’s
1-factor theorem. For further examples of such an analogy between directed and
odd cuts, see Frank, Seb6 and Tardos (1984),)

As a special case of the g-polymatroid intersection theorem we mention a result
of Tardos (1985).

Corollary 6.3. The intersection of twe g-matroids $, (M), M,), and F,(M}5, M,) is
non-empty if and only if r;( X ) = ri(S)- r(S—X) forevery X < 8, i= 1,2,j=3—-i O

From this corollary one can readily obtain a necessary and sufficient condition
for the next problem: given four matroids M,, M, My, M,on S, find aset X §
such that X =X, U X,=X,u X, where X, and X, are bases of M; and M,,
respectively, and X, and X, are independent in M, and M,, respectively. (To see
how to handle this problem observe that for any two matroids N,, N,, N, is the
strong map of N,+ N,.)

Another interesting application of the g-polymatroid intersection theorem uses
the fact that the intersection of two (integral) g-polymatroids, if non-empty, contains
an integral point. This idea was used in Tardos (1985) to derive the following
“supermodular colouring” theorem of Schrijver:

Corollary 6.4 (Schrijver (1985)), Ler P, P2 be two intersecting supermodular functions
on 2° with p(X)<|X|. k for X<§ and = 1,2. There exists a partition
{X1, Xa, .., Xi} of S such that all X < S intersect at least max(pi(X), pi{( X))
classes. O

Our last application concerns optimal capacity improvements. Proposition 3.6
provides a good characterization for a submodular flow polyhedron Q = Q(f, g; b")
to be non-empty, Suppose that Q is empty but Q(G; b") is not, One can set up the
problem of reducing f and increasing g optimally so as to make Q non-empty. To
be more precise, let us be given two cost functions d;, d, e Rf and two capacity
functions ¢;, c,e RE. The optimal capacity improvement problem is to minimize
dx;+d,x; over vectors X, %€ RY, for which 0= x=e, 0=x,<¢ and
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Q(fy, &o; b") is non-empty where fo=f—~x;and go=g+ Hm.. ,—..Em ?.w‘c_na was solved
for network flows by T.C. Hu (1968). It also found mv.ﬁ:omcoum. in wn._._..a_ systems
(see Frank {1984b)). We show here that the problem is an .ou:n_._u.w:o: u_.oa_a-n___
over an appropriate submodular flow polyhedron. To see »?m,. adjoin Eo paral aa
edges e, = uv, ¢, = vu to G for every edge ¢ = uv & E. The resulting graph is uonow.mo
by G, =(V, E,). Define capacities f), g as follows: fi(e) uhmv,b?:.u 0, %_M.mmw Hamw
zi(e)=gle), gi(e)) = (e}, gileg)=cx(e) (e€ E). Unm.:.n a cost ?:.Q.o.: as oam.nnw
di(e)=0, d{e;)=di{e), di(e,)=d,(e). Now the ov:ﬂ.m_ nmmwn_Q improv
problem is equivalent to minimize d,x over Q(f,, g; &") (SR™).
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CHAPTER VI. POLYHEDRAL STRUCTURES

I. Dimension of g-polymatroids

Qur first task is to give a formula for the dimension of a non-empty g-polymatroid
Q. Suppose Q= Q(p, b) where (p, b) is a strong pair, As we know p< b, Call a set
Ac S vght if p(A)=5b({A). From the definition of strong pairs it easily follows that
if A, B are tight sets, then A~ B, AU B and A— B are also tight, and consequently
the minimal non-empty tight sets are disjoint. The following statements are essentially
due to 8. Fujishige. (He proved them for base polyhedra but this immediately implies
the general case.) :

Proposition 1.1 (Fujishige (1984¢)). The co-dimension of Q=Q(p, b) is the number
of minimal non-empty tight sets.

Proof. By Proposition 11.2.3 an equatity x(A) =cisa consequence of the describing
system {p(X)=x(X)=bh({X)forX c S}ifand only if A is tightand b(A)=p(A)=¢
Suppose there are k minimal non-empty sets: T;, T,,..., T.. Since minimal tight
sets are disjoint the equalities {x(T,) = b(T}); i = 1,..., k} are linearly independent:
therefore co-dim Q= k. On the other hand, any tight set T is the union of some
minimal tight sets. Consequently, x(T)=5(T) is a consequence of the above
equalities. 0O

From Propositions 1.1, I11.1.12 and IIL.1.13 onc can easily derive a formula for
the dimension of a face of a g-polymatroid. Such a formula was derived for
polymatroids in Giles (1975). In particular, let us investigate facets. Suppose B< §.
Call a set X (0 # X < B) an inner (b, B)-separator if b{X)+b(B —X)=5b(B). Call
aset X (§= X < §—B) an outer (b, B)-separator if b(BUX)—p(X}=Hh(B).

Corollary 1.2 (Fujishige (1984c)). I Q=Q(p,b) is of full dimension, an inequality
x(B) < b(B) defines a facet of Q if and only if there is no inner and outer (b, B)-
separator. (An analogous statement holds Jor an inequality x(P)=p(P).) O

Remark. For a polymatroid P=P(b) defined by a polymatroid function & (with
b(s)>0 for every se §) R. Giles (1975) proved that an inequality x(B)= b(B)
defines a facet if and only if B is “non-separable” and “closed”. In Giles (1975) B
is called non-separable if b(X)+b(B - X)> b(B), whenever B# X <B, and B is
closed if b(Y)> b(B) for every Y = B. Observe that these notions are special cases
of those of inner and outer non-separability.

T s

A. Frank, E. Tardos | Generalized polymatroids 549

Remark, By Proposition I11.1.9 every g-polymatroid is the projection of a 0-base
polyhedron B(b) in a one bigger dimensional space such that dim B(b) = dim(P).
The co-dimension of B(b) is the number of minimal non-empty sets X for which
b(X)+b{X)=0. Let b be an arbitrary submodular function. L. Lovdsz invented a
simple aigorithm to find minimal non-empty subsets X for which b{X)+ b(S— X )=
b(S). (Such sets form a partition of 5.} See Bixby, Cunningham and Topkis (1985).
This algorithm needs only an evaluation oracle. Consequently, the dimension of a
g-polymatroid can be calculated, and we can constructively decide whether an
inequality x(A) = b(A) defines a facet.

Corollary 1.2 shows that if an inequality x(B)<b(B) (or x(P}=p(P)) is not
facet-inducing, it is an integral consequence of other inequalities, hence it cannot
be in the minimal TDI system. Consequently, we have

Corollary 1.3. A full dimensional g-polymatroid is facet-TDI (1

Next we determine the dimension of a minimal face of @ and of a minimal face
of @ containing a specified point x € Q. By Proposition II1.1.9 we can suppose that
Q is a 0-base polyhedron B(b) where b is fully submodular and b(S) = . Recall
the definition of the digraph G = G(%(b)). Let k denote the number of strong
components of G.

Proposition 1.4. The co-dimension of a minimal face of a O-base polyhedron Q is k.

Proof. First, let Qr be an arbitrary face and let x € Q.. We show that dim Q= |§|— k
by exhibiting |5|—k+1 affinely independent points of Q. Let C,,..., C, denote
the strong components of G. Then there is no ufi-set X with b(X) <o for u, ve C,.
Choose an arbitrary element s, from each C.. If s€ C, 5 # 5,, define x, == x + Xs = Xs,
and x;:=x~ x, +x,,. Since x, and x are in @ and x =1(x, + x) we see that X, € Q.
Furthermore the |§|—k+1 vectors {x,x;scC, -5, i=1,2,..., k} are affinely
independent. Second, we show that there is a face Qy for which co-dim Qr = k. Let
fi=B,< By=-«-< B;=5 be a maximum chain for which B, € #(b). Then k=1 By
Proposition 1.1 the facet Qr={xeQ:x{(B)=b(B;), i=1,2,...,k} has co-
dimension at least & [0

What is the dimension of the minimal face F, containing a given point x of a
base polyhedron Q= B(b)? Set F,={X < 8:x(X)=hb(X)} and G, = G(F,). We
call a set Be %, x-tight.

Proposition 1.5 (Fujishige (1984c)). The co-dimension of Q, is the number of strong
components of G,.

The proof goes along a line similar to that of Proposition 1.4. [
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Proposition 1.5 provides a characterization for x < Q to be a vertex, and for two
vertices x,, x, to be adjacent (when applied to x =3(x,+x,)).

Corollary 1.6 (Fujishige (1984¢)).

(i) A point x of a base polyhedron Q is a vertex if and only if for every x-tight set
B+ S thereisanse §— B so that B+s is x-tight. If x is a vertex, there is an ordering
515 82, ., 8, Of the elements of § such that §, =~ {1, i=1,2,... k) is x-tight
and x(s;) = b(S.)} —~ b(8:.;).

(ii} Two vertices x,, x; of Q are adjacent if and only if there are orderings of §
defining x, and x, which differ in two consecutive elements.

As was mentioned earlier, these results can be easily translated to g-polymatroids.
For polymatroids (i) was shown by Edmonds (1970) and (ii) by Tepkis (1984).

2. Dimension of submodular flow polyhedra

In this section we are concerned with polyhedral results concerning submodular
flow polyhedra and, in particular, g-polymatroid intersections. Since emphasis is
on polyhedral aspects, we will assume that the considered polyhedra are given in
a nice form. It is a separate and mostly technical matter to apply the results to
polyhedra given in a “less nice” form. Let G = (V, E) be a digraph without isolated
nodes, b:2° 5 R L {co} a fully submodular function, with 5(V)=0, and f: E~R U
{—}, g: E-> Ru{o} capacity functions. Throughout the section we deal with
submodular flow polyhedra given either in the forms Q(G; b) or Q(f, g; b).

Remark 2.1, The form Q(G; b)isa special case of the form Q(f;, g; b). Conversely,
in the proof of Proposition V.2.4 and irt Remark V.2.5 we showed how Q = Q(f, g, b)
can be given in the form Q(G,; b}) where b1 is an intersecting submodular function.
We also showed that using the truncation b, of b], Q can be given in the form
Q(Gy; b)) where b, is fully submodular. We shai! use this reduction without any
further reference to it for translating definitions and statements concerning the form
Q(G; b) into those concerning the form Q(f, g; b).

Throughout we suppose that Q(G; b) (and Q(f, g; b)) is non-empty, that is,
b(X)=0 whenever A, =0 @CCWDA.KVIQ%NV for every X = V). We say that
Q(G; b) is simple if Ay, =0 implies b{X)>0 (=X < V), By Remark 2.1 we say
that Q(f, g; b) is simple if fle)<g{e) for every ec E and (XY= 8, (X )< bh(X)
forevery = X c V,

Remark 2.2. The above definition is not precise since Q(G, b) and Q(f, g b) have
been introduced to denote a submodular flow polyhedron. In order to be precise
we should say that a triple (Q, G, ) and a quadruple (Q, £, g, b) is simple instead
of the polyhedra Q(G, b) and Q(f, g b), respectively.
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We shall be dealing mostly with simple submodular flow polyhedra because of
the following:

Proposition 2.3. If Q(G; b) is not simple, that is, Ap=0, B(D)Y=0 for a certain
@7 Dc V, then Q( G, b) is the direct sum of two submodular flow polyhedra Q(G,; b,)
and (G, b;) where G,=(D, E(D)), b(X)=bX) (XcD) and G,=
(V-D,E(V~-D)), b(X)=b(XuD) (XcV-D). O

In such a case we say that Q decomposes along D. Therefore it suffices to establish
dimensional results for simple Q( £, g; b). (Note that simple submodular flow poly-
hedra can also be direct sum of smaller submodular fiow polyhedra, but we need
not exploit such a decomposition).

Call a set X = V 2 separator if b(X)+b(V-X)=0.

Proposition 2.4. The family F of separators is closed under taking union, intersection
and difference. The minimal non-empty separators are disjoint and every non-empty
Separator partitions info minimal ones, [

Let %, denote the family of minimal non-empty separators.

Proposition 2.5. If Q= Q{G, b) is simple, the co-dimension of Qis [Fo|-1.

Proof. Co-dim Q=|%|-1. For Be%, and xcQ we have A(B)< b(B),
A(V-B)=h(V~B) and B(B)+b(V—B)=0= A(BY}+A,(V—B); therefore
A:(B)=b(B) is an implicit equality of the describing system {A,.(X)=b(X) for
every X = V}. In G =(V, E) shrink every Fe ¥, into s single node. Since Q(G; &)
is simple the resulting graph G, =(V,, E,} is connected (as an undirected graph).
Therefore, if we choose any member F, e Fq, the equalities A (F)=b(F) for the
other | %,/ —1 members F of %,, are linearly independent, so co-dim Q= |%g|—1.
The converse inequality follows from Proposition 2.4 and from the following claim.

Claim. Suppose A,(B)=< b(B) is an implicit equality. Then Bec %

Proof. Since B defines an impiicit equality, min(A,{B): xc Q)= b{B). Let us
apply a version of the Edmonds-Giles' theorem (Theorem V.1.6) given in w>m5m_.w
V.33 to d =—Ayz. We obtain an integer-valued dual-feasible # for which b(m)=
—b(B). Let ;= 7+ xp. Since = is dual feasible m{v) = 7,(u) holds for every edge
uv, that is, Ax =0 for every level set X of a,. Since Q(G; b) is simple, this MEEmow
that b(X)> 0 for every level set X of o, (X #4, V). On the other hand cma._v.!n
m?.v +b(B)=0 from which =, =0 follows. In other words = Xv_g- Since b(7) =
—b{B) we have B(V—-B)+b(B) =10, as required. 5

Corollary 2.6. If Q= Q(f, g; b} is simple, co-dim Q =!F,| - 1.
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Proof. The corollary follows from Proposition 2.5 by Remark 2.1 and by observing
that a set X is separable with respect to Q(G,; b,) (in Remark 21)if X = (YY) for
some Y < V (for the definition of ¢ see the proof of Proposition V.2.4), [

From Corollary 2.6 one can easily derive a theorem of Fonlupt and Zemirline
(1983). Let M, and M, be two matroids on S with rank k and suppose they have
a common basis. Let @ denote the convex hull of common bases of M, and M,.
Suppose that M, (i=1,2) is the direct sum of d; indecomposable matroids.

Corollary 2.7 (Fonlupt and Zemirline {1983)). If Q is simple, dim Q ={S|-
(d,+d)+1.

Fonlupt and Zemirline use the term “irreducible™ for “simple™. It means that
n(A)+r(S—A)>kforp# AcS,

Proposition 2.8. A (not-necessarily simple) submodular flow polyhedron Q = Q(G; b)
is of full dimension if and only if there are no subsets S, Z< V for which

As=—Az#=0 and B(S)+HZ)=0 (2.1)

Proof. For sets 8, Z satisfying (2.1) and x€ Q we have A(S)=-A.{Z) so both
A.(8)=b(S) and A, (Z)=b(Z) are implicit equalities; therefore Q is not fuil
dimensional.

Conversely, suppose that dim Q <|E|. If Q(G; b) is simple, then by Proposition
2.5 there is a separator A, 8= A< V. Now A and V—A satisfy (2.1). If Q(G; b) is
not simple, then by Proposition 2.3 there is a set D, @ # D < V with Ap=0,b(D)=0
for which Q= Q,® Q, where Q; = Q(G,, b,). Now either dim @, <|E)] or dim Q, <
|E2f (or both). By induction on |E|, for i =1 or 2, there are sets 8;, Z; for which
A5 (8)=—A5(Z)# 0 and b(S)+b(Z)=0.If i=1, then §=5,, Z= Z, satisfy
(2.1). If i=2,then S=§S,uD and Z=Z,u D satisfy (2.1). O

From Corollary 2.8 one can readily obtain

Corollary 2.9, For strong pairs (p,, b;} (i =1, 2) the intersection QP b)) Qps, by)
of g-polymaireids is of fill dimension if and only if p,(X) < b,(X) forevery §# X c S
and {i,j}={1,2}. O

By Remark 2.1 Proposition 2.8 implies

Corollary 2.10. A possibly not simple submodular flow polyhedron Q(f, g; b) is of full
dimension if and only if
(i) fle)<g(e) for every ec E and
(1) pr(A)—p,(A)<b(A) whenever A, #0 (Ac V) and
{iii) b(A}+b(B)>0 whenever A, B< V and Ap=—Az#0 O
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3. Facets and total dual integrality

In this section we characterize subsets T< V for which Qr={xe Q@ A (T)=b(T))
is a facet of a full dimensional submadular flow polyhedron Q=Q(G;b). In
principle, this can easily be done since every face itself is a submodular flow
polyhedron and in Section 2 we determined the dimension of submodular flow
polyhedra. One technical difficulty, however, arises from the fact that Qr may not
be simple even if Q(G; b) is simple. This is why the characterization will be rather
complicated. We shall need this less aesthetic characterization in its concrete form
in order to show that, in an important special case (one-way submodular flows),
full dimensional submodular flow polyhedra are facet-TDI. On the other hand we
disprove a conjecture of Giles (1975) that the same statement is true for every full
dimensional submodular flow polyhedron. Let us be given a simple submoedular
flow polyhedron Q= Q(G; b) andlet T< V be a specified subset for which A, =0
and b(T)< oo, Call two sets A, B V equivalent if Ay =Ag. Let m =min(b{X): X
and T are equivalent) and ¥, = {X:b(X)=m, X and T are equivalent}, T is facet
inducing only if Te ¥ so it is equivalent to consider any member of Hr.

Proposition 3.1. If Q, # 0, then Xy is a ring family,

Proof. Obviously Asop=Asp=A, for A, Be Hr. Furthermore, for xe Qr
we have NEEHE\;+ESWELDS+E\»CLEW?A}DB+3T»Cmvu
2A,.(B}=2b(B); hence b(AnB)=b(AU B)=b(B) follows.

Denote by 7, and T, the minimal and maximal members of X, respectively. By
Proposition V.22 and formula (IIL1.2) Or=0Q(G; by} where by (X)=
B(XuT)+b(XnT) = b(T). If Qr is empty, it cannot be a facet, so suppose that
Qr#0.

Proposition 3.2, For a full-dimensional simple submodular flow polyhedron Q=
Q(G; b) a non-empty face Qr is not a facet if and only if (3.1) or (3.2) holds:

there are subsets A, B< V for which
A #0, Ag# 0, A +Ap= \:._ » b{A)+ b(B)= 5(Ty)
and A, B belong to one of the Jollowing classes:

() AT, B=T,-4 G-
{ii) A>T,, B=(V-A)UT,
(ili} AcT,, B> T,,
ﬁﬁawm are subsets A, B for which AUB, An Be Hr, (3.2)
b(A)+b(B)=2b(T,}, d(A, B)>0. ’

Proof, If (3.1} or (3.2) holds, Qr cannot be a facet since in both cases the equality
AT )=5b(T,) is a positive linear combination of two linearly independent
inequalities: A, (A)=b(A), A (B)< b(B).
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Suppose now that Qr = Q(G; by) is not a facet, that is, co-dim Q; =2. Let x€ Q,
and denote D= T,—T,. Since A, =0 and bo(D} =0 we can apply Proposition 2.3
to Q(G; b,), provided that D #@. Then QUG; bo}= Q(Gy; b,)® Q(G; b,) where
bi(X)=by(X) (X D) and b,(X)=by(X vD) (XS V-D) If D=4, choose
Gi=9 and Q(G,; b,)= Q(G; b,). Denote Q=Q(G; b) (i=1,2). Since co-
dim Q,>1 and co-dim Q7 =2 we see that either co-dim Q, =1 or co-dim Q,=2 (or
both).

Case 1. co-dim Q,= 1. By Proposition 2.8 there are subsets S, Z = D for which
As=—Az#@and b,{S)+ b,(Z) =0. Since bi(X)=by(X)for X g Dthesets A= Su
Ty and B:= Z o T, satisfy (3.2).

The next case shows that if Qr is a facet then Q(G;, b;) has to be simple.

Case Za. Q(G,; b,) is not simple. That is, there is a set X, §# X = V—D such
that Ax =0 and b,(X)=0. Let A= X T, B==XuT,. Obviously A, B satisfy
(3.1(iii)).

Lemma. A, B satisfy (3.1).

Proof. 0=5,{(X)=b(X . D) implies 5(A)+ b(B) = b(T,). Since Ap=ApandAy =
0 we have A,+ Az = Ar,. Furthermore, for x € Qr,

B(T)=A(T)=A,(A)+ A (B)= b(A}+b(B)=b(T,) (3.3)

whence A (A)=b(A)and A,(B) = b(B) follows. We claim that A, = 0. For otherwise,
Ag=Ar and 0=A,{A) = b(A). Since Q(G: b) is simple A must be empty. By (3.3)
b(B)=b(T,) therefore Be%y. Since B T; we get B=T,, from which X =0, a
contradiction. We claim that, A, # 0. For otherwise, Ay = Ay, and 0= A, (B)= b(B).
Since Q(G; b) is simple, B= V. By (3.3} we have b(A) = b(T)) and therefore A e Kr.
Since Ac T, we get A=T,, whence X = V- D, a contradiction. Thus the proof of
the lemma is complete.

Case 2b. Q(G,; b,) is simple and co-dim Q:=2. T, is a separator with respect to
Q(Gy; by). By Propositions 2.4 and 2.5 there is a separator A (with respect to
Q{(G.; by)) such that either = Ac TiorTo,ce Ac V. Now A and B:= T, — A satisfy
(i) in the first case and A and B:= T;u(V—A) satisfy (ii) in the second.

Lemma. A and B satisfy (3.2).

Proof. Obviously A, + Ag =Arg,. Since A is a separator with respect to Q(Gy; b,),
by(A)+b,({V—D)— A)=0. This is equivalent to b(A)+b(B)=8(T;). For xc Qr
we have b(T)=A(T)=Ar(A)+A (B)< b(A)+b(B)=b{(T,) and therefore
A:{A)=b(A)}, A,(B) = b(B). We claim that A, # 0and Ag # 0. For otherwise b(A) =
0 or b(B}=0 contradicting that Q(G; b) is simple. O

Remark 3.3. By Proposition 3.2 if T< V is not facet-inducing, the equality A,(T) =
b(T) is the consequence of two linearly independent equalities. In case of 3.1 it
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is an integer consequence while in case of (3.2) it is a half-integer consequence.
Ormne can raise the question whether this second case is indeed necessary to be
requited, or, perhaps, any equality A (T) = b(T), if not facet-inducing, is always
an integer consequence of linearly independent equalities. This latter statement is
equivalent to saying that every full dimensional submodular flow polyhedron is
facet-TDI. This was conjectured by Giles (1975) (using different terminology.) He
proved the conjecture in two important special cases: for directed cut coverings and
for the intersection of two polymatroids. Unfortunately, Giles’ conjecture is not
true in general as the next example shows. Let V={u,uys1}, E={up st} and
G=(V,E). Let

0 ifseX 72X,
o0 otherwise.

Ekv“uﬁ

Then the submodular flow polyhedron QUG b)={xeR: x,=0,x,+x, > 0, x,—
x; =0} is of full dimension. Its facets are x,+x;=0and x,—x, =0, but the linear
programming dual to min(x,: x,+ x,=0, x, —x, =0) has exactly one solution, which
is not integral, consequently Q is not facet-TDI.

As an application of Proposition 3.2, we are going to prove Giles’ conjecture for
one-way submodular flow polyhedra. Recall that the intersection of two generalized
polymatroids as well as kernel system polyhedra are one-way submodular flow
polyhedra.

We need some preparation. Let Q= Q{G; b”") be a full dimensional submodular
flow polyhedron where b":2V SR is crossing submodular and (V)=0. Let b
denote the bi-truncation of b”. Recall the bi-truncation formula (I1.1.3): b(X) =
min ¥, 5”(X;;} where the sum ranges over certain families (described in Proposition
I1.1.4). Let % denote a family of sets X,; where the minimum is attained.

Lemma 1. For C,De % we have b{(C)=b"(C) and b(CY+b(D)=b{(Cr D)+
b{Cu D).

Proof. Since @ # @ by Proposition I11.2.3 there is a vector m c & " for which m(V)=0,
m(Y)=b(Y) (<b(Y)) for YV and m(X)=5b(X). Since m(X)=b{(X)=
LH(X)=Y b(X,;)=% m(X,;}=m(X) we have m(C)=b(C)=b"(C) for Ce F
from which the lemma follows. ]

We cailed a representation Q{ G b) simple if b(A)>Owhenever A, =0,0c Ac V.
Likewise, Q(G; b} is said to be simpie if b"(A)>0 whenever A, =0, < Ac V.

Lemma 2. If Q(G; b"} is simple, so is Q(G; b).
Proof. If Q(G; b) is not simple, there is a set X, @< X < V, such that Ay, =0 and

b(X)}=0. By formula (11.1.3) b(X}=F b"(X;)} for certain sets Xy Since A (X)=0=
b(X) for every x< Q, the proof of Lemma 1 (when applied to m = A,) shows that
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A( Xy} = b"(Xy). Now Ay, =0 for otherwise Q would not be of full dimension.
Consequently, all 5"(X;)=0 and therefore b"(X,;)=0, that is Q{G; b") is not
simple. ]

Lemma 3. Let Q(G; b) be simple and let T< V. Assume that Qr # 0 is not a facet
of Q and A.(T) = b(T) is not an integer consequence of other equalities. Let A and
B be the subsets occurring in (3.2). Then b(C)+b{D)> b(A) whenever {C, D}
{8, V=0 and either (a) Cn D=0, CuD=Aor(b) CUD=V, CAnD=A.

Proof. We consider only case (a), since case (b} is analogous. By contradiction. Let
C and D satisfy (a), and B(C)+b(D}=b(A). Then obviously H{(B~C)+
b(BnD)=h(An B). Since T and A~ B are equivalent, A, (T)< b(T) is an integer
consequence of A (BN C)<=b(Bn C) and A,{Bn D)< b(Br D). By the assump-
tion on T this implies either Ag.c=0 or Ag,.p=90. By symmetry we can assume
that Ag,,p=0. We claim that 5(Bn D)=0. Indeed, Az, =0 implies that Ay, . =
Asns and (B D)>0 would imply that 5(B~ C)<b(An B) contradicting the
fact that A~ Be .
Since Q(G; b) is simple, B~ D =@. Moreover

2b(T)=b(A)+b(B)=b(C)+b(D)+b(B)
=2b(CNB)+b(CUB)+bH(D)
2b{(CnB)+b(AUB)+b{(DB)=b(AUB)+B(ARB)=2b(T).

Therefore we have equality throughout. Thus #(Cu B)+ (D)= b(Aw B). Since
(CUBYN D=9, A,(CuB)+A (D)= A, (Au B). Therefore A, (AU B)<b(AU B)
is an integer consequence of two (linearly independent) inequalities. Since Au B
and T are equivalent this is a contradiction. [

Theorem 3.4. A full dimensional one-way submodular flow polyhedron Q is face:-TDI.

Proof. Let Q=Q(f, g; b]) be a one-way submodular flow polyhedron of full
dimension. By Proposition V.2.4 Q can be represented in a form Q(G; b") with
b"(V}=0 which is still a one-way representation. We use induction on | V],

Case 1. Q(G; b") is not simple. That is, there exists a set D, pc P = V, for which
Ap=0, b"(D)=0. Define b7:2°>R" and 65:2" " °>R* as follows. b'(Y)=
min(b"(Y), " (Y U (V—D))) for Y D and bj(Y)=min(b"(Y), b"(Y L D)) for
Y < V- D. Itis easy to see that b} is crossing submodular, Q; = Q(G;; b7} is one-way
(i=1,2)and Q= Q,® Q.. (Here G, = G(D, E(D)}, G,= G(V~D, E(V—-D))). By
induction, @, and Q; are facet-TDI. Obviously, a direct sum of facet-TDI polyhedra
is facet-TDI.

Case 2. Q(G; b") is simple. Let T< V be such that Q7 '={xec Q: A (T)=b"(T)}
is non-empty. Then b"(T) = b(T). We are going to show that if Qr is not a facet,
then A (T} = b"(T) is an integer consequence of inequalities A, (X) = b(X). Suppose
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not. By Lemma 2 Q(G; b) is simple so Lemma 3 applies. Let A and B be the sets
in Lemma 3. By Lemma 1 b"(A) = b(A) and "(B)=b(B). Since b(A)+b(B)=
2b6(T) both b"(A) and b"(B) are finite. Since d(A, B) > 0 there is an edge, say, from
A-Bto B- A Since Q(G; b) is one-way no edge enters A and no edge leaves B.
Therefore A4z =0 contradicting the fact that A~ B and T are equivalent. [

Finally, we mention that relying on Proposition 3.2 one can derive the following
more direct characterization of facets of g-polymatroid intersections. Let (p:, &) be
strong pairs (i=1,2) and suppose that Q= Q{p,, b,)n Q(p,, by) is of full
dimension. Denote 5{A)=min(b,(A), b,(A)) and p(A)=max(p,(A), p.(A)) for
AcS

Proposition 3.5. x(A)=b(A) defines a facet if and only if B(X}+b(A-X)~
X —-A)>b(A) and (X nA)+b(X U AY—p(X)>b(A) for every X g#
Xc<S 0O

(An analogous statement can be formulated for the inequality x{A)= p(A)). This
result was proved for polymatroid intersection by Giles (1975).

4. Minimal face containing a point

Let Q= Q(G; b) be a submodular flow polyhedron where b is fully submodular
with B(V) = 0. Let z e Q and denote by Q, the minimal face of Q containing z, We
are going to determine dim Q,. As a consequence we shall derive a characterization
for z to be a vertex of ¢ and a characterization for two vertices of Q to be adjacent.
Call a set Ac V z-right if A,(A) = b(A) and denote the family of z-tight sets by &..
Call two nodes u, v ¢ V z-equivalent if there is no z-tight set A with |4~ {u, v}|=1.
Since z£ Q and b is fully submodular we have

Proposition 4.1. #, is closed under intersection and union and b is modular on F,. O

Construct a digraph G, =(V,, E;) by shrinking the z-equivalent nodes into one
node.

Proposition 4.2. dim Q, =|E|-|V,|+¢c(G,) where ¢(G,) denotes the number of
(weak) components of G,.

Proof. Let U be a class of z-equivaient nodes of G, that is, U corresponds to
a node u of G,. Let T, be the minimal z-tight set including U. Then T, - U/ is
z-tight and, for x€ Q,, A(T,)=5b(T,), AT, —U}=5b(T,— U). Since A (l)=
AT )= A (T, - U) we have

A(U)=b(T,) - b(T, - U). (4.1)
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This is an equality valid for every node uc V,, Among these |V,| equalities the
(maximal} number of linearly independent ones is |V~ ¢(G,). Thus dim Q=
|E| =1 Vol + e(Gy).

On the other hand (4.1) implies Ax(A) = b(A) for every z-tight set A and x e Q,.
Indeed, there is an equivalence ciass U< A {U#0) such that A~ U is z-tight.
(Actually, there is an ordering U, U,,..., U, of the equivalence classes in A such
that U (U i=1,2,..., ;) is tight for 1=j=k See Corollary 1.6). By induction we
suppose that I (4.1) implies A,{A-U)= b{A—U) holds for xec Q.. We have
b(A)= A (A) =M (A-U)+ 2, (A)=b(A- U)+b(T,)~b{T,— U)=b(A), whence
A (A)=b(A) follows. DO

By Proposition V.2.4 the following formula for dim Q. can be easily derived if Q
is given in the form Q= Q(J] g: b"). Form a digraph G,=(V,, E,) as follows. Let
Ey={ec E: f(e) <z(e)< g(e)} and shrink the z-equivalent nodes into one node.
Note that two nodes u, v are z-equivalent if and only if there is no set A< V with
A (A)=b"(A) and [An{u, v}|=1.

Corollary 43. dim Q, =|Ey|—|Vy|+ ¢(G,). (I

Corollary 44. A vector zc Q is a vertex of Q if and only if Gy, as an undirected
grpah, is a forest.

Let z, and z, be two vertices of Q. They are adjacent if and only if dim Q,=1
where z=1{z, + z,). Therefore Corollary 4.3 implies

Corollary 4.5, Two vertices z,, 2, of a submodular Jlow polyhedron Q( f, g, b") are
adjacent if and only if G,=(V,, E;) (as an undirected graph) contains exactly one
circuit (where G, arises from G by first deleting every edge e for which either {e)=
z(e)=fle) ar z,(e)=z,(e) = g(e) and then shrinking z-equivalent nodes info one
node where z =%(z,+2,)). O

When Q is the convex hull of common bases of two matroids M,, M, Corollary
4.5 can be made more transparent. For simplicity suppose that the rank of both M,
and M, is r and there is a common base of M, and M,. Let us be given two common
bases B, and B,. For a basis B of M, and an element YEBlet C(B;y) (i=1,2)
denote the fundamental circuit of y for B in M, (that is, the unique M;-circuit in
B+y). Denote D,=B,— B,_, (i =1, 2). Form two bipartite graphs G,, G,on D, D,
as follows: For xe D, ye D, let xy be an edge in G, if xe Ci(By; ¥) and yx an
edge in G, if ye Cy(B;; x). It is known that G, has a perfect matching.

Theorem 4.6. Two common bases B,, B, are adjacenr if and only if

both G, and G, contain exactly one perfect matching,

denoted by F, and F,, and F, U F, is a circuit, (4.2)
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(If Dy ={x}, D,={y}, xye G,, yx€ G,, then we consider xy and yx together to form
a 2-element circuit,)

Remark 4.7. Observe that a perfect matching F, in G, is unique if and only if there
is an ordering of the elements of Dy, and D, such that F =
{xa, ) (X2, 1), L (5, ¥} (x € Dy, yi€ D,) and

x; & C,(By; y;) whenever i <j. (4.3)

Proof. Let us remind the reader how Q can be described as a submodular flow
polyhedron. Let § be the ground set of M, and M; and let §' and 5" be two copies
of 8. (For a subset X = § we denote by X' and X" the corresponding subsets in 8’
and S”, respectively.) Let G=(V. E) be a digraph where V=5'US8" and E=
{s"s": s€ 8}, Define a fully submodular function b:2Y > Z ) by b(X'L YY" =
r{X)+r(S-Y)—r, (X' 8, Y= 8§, Let f=0,g=1(fg:E-R). Itis easily
seen that Q( f, g; b) is the convex huil of common bases. Let z; denote the incidence
vector of B; in Q(G; b) and z=1(z, +z,). Appiy Corollary 4.5 to z; and z,. The
edges of Gy correspond to edges 5*s’ of G for which se D,u D,. By Corollary 4.5
B, and B, are adjacent if and only if G, contains exactly one circuit. We ¢can say more.

Claim 1. B, and B, are adjacent if and only if G, is one circuit plus some isolated
nodes.

Proof. By Corollary 4.5 we deal only with the “only if” part. Suppose that B,
and B, are adjacent common bases. A set X' §' ig z-tight iff

X~ Bi|=r(X) fori=1,2 (4.4)

Aset X" §"is z-tight iff | X u B = r— r(§~ X), or, equivalently, (S — X)n B =
r(8—X) fori=1,2. In particular, §' and S are z-tight so x' §' and y*€ 5" cannot
be z-equivalent. We show that no element 5’ Diu D;or s"e DY U D? can form a
one element z-equivalence class, that is, in G, every non-zero degree is at least 2.
Indeed, let s€ D, and let T'(s)< S be a minimal z-tight set containing s'. (The
case when seD); or when an element s”c 5" is considered can be treated
analogously.) Let X":=|_J(T'(x): x'e D, T(s)). Then X' is a z-tight subset of
T'(s). By (4.4),|X " B, =|X 1 By}, 50 X" = T'(s) and therefore s’ ¢ T'(¢) for a certain
'€ D\~ T'(s). That is, ¢’ and s' are z-equivalent. Since G, contains exactly one
circuit and there is no node of degree one the claim follows.

A. Suppose now that B, and B, are adjacent common bases. By Claim 1 Gy is
a circuit plus isolated nodes. Then for every x € I, there is a (unique) y = ¢(x) € D,
such that x" and y' are z-equivalent and for every x€ D, there is a (unique)
Yey(x)e D, such that x” and y” are z-equivalent. Let F,={(x, ¢(x)): xe D,},
F={(x, ¢(x)):xe Dy}. By Claim 1 F,u F, is a circuit.

Claim 2, F, is a unique perfect matching in G, (i=1,2).

Proof. We prove the claim for i=1. Let §'=8;28>8,>---28, =@ be a
maximal chain of z-tight sets. By {4.4), h=|D, and (8] =S )nDil=1 (i=1,2
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and j=1,..., k). Index the elements of IJ; and D, in such a way that (81— 8]}
Dz ={xj}and (S;_, — 8§}~ D] ={yj}. Then ¢(x;) = . If X"is z-tight and x € X' ~ DY,
then C((By; x) € X', consequently y, € C,(B,; x;) whenever j > i, Furthermore since
yie T'(x;}= 87, we have y, e | U(C(B,; x): xe T(x;)) and then y, € C\(B,; %), so
the proof of Claim 2 is complete and (4.2) follows.

B. Next suppose that (4.2) holds. Let us investigate matroid M, . Let the elements
of Dyu P; be indexed as in Remark 4.7. Let x,, x;€ D, and y, e D,.

Claim 3. y. € C,(By; %) and y, & C\(By; x,) for j< k.

Proof. Since (4.3) holds, by exchanging any subset of D, with the corresponding
subset in I}, we obtain from B, another basis of M. In particular, B, — (D, —x,)w
(D, —y:) is an M, -basis from which the first part of the Claim follows. To see the
second part let us consider the following M,-bases: A, =B, —{x,, xs,..., xXoqpw
{»:¥2,..., ¥} Using (43) one can easily prove by induction for i=
k+1,k+2,...,|D that y, € C;(A,; x,) whenever j < k. Since Ap, = B, this proves
the claim. :

From Claim 3 we see that in D{u D) two elements s', t' are z-equivalent iff
{s, 1} ={x;, y;} for some j. An analogous statement holds for D} w Df. Consequently,
G, contains exactly one circuit and by Corollary 4.5 we are done, [
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