CompmaTorica 7 (1) (1987) 49—65

AN APPLICATION OF SIMULTANEOUS
DIOPHANTINE APPROXIMATION
IN COMBINATORIAL OPTIMIZATION

ANDRAS FRANK and EVA TARDOS

Received 10 June 1985
Revised 3 June 1986

We present a preprocessing algorithm to make certaini polynomial time algorithms strongly
polynomial time. The running time of some of the known combinatorial optimization algorithms
depends on the size of the objectivefunction w. Our preprocessing algorithm replaces w by an integral
valued w whose size is polynomially bounded in the size of the combinatorial structure and which
yields the same set of optimal solutions as w.

As applications we show how existing polynomial time algorithms for finding the maximum
weight clique in a perfect graph and for the minimum cost submodular flow probiem can be made

strongly polynomial.
Further we apply the preprocessing technique to make H. W. Lenstra’s and R. Kannan’s

Integer Linear Programming algorithms run in polynomial space. This also reduces the number of
arithmetic operations used.
The method relies on simultanecus Dicphantine approximation,

1. Introduction

The input of a combinatorial optimization problem consists of two parts.
The first describes the combinatorial structure in question, the second is a list of nu-
merical data. The length of an input is the number of bits occurring in it. The dimension
of an input is the number of data plus the number of bits in the description of the
combinatorial structure. An algorithm runs in polynomial time if the pumber of
bit operations is beunded by a polynomial in the input length.

Every algorithm in this paper will have rational numerical data. The length
of a rational number plq is (flog (p+))+Mlog (g+10N+1) where [o] denotes the
smallest integer N for which N=u. The length of a vector is the sum of the sizes of
its coordinates.

By an (elementary) arithmefic operation we mcan addition, multiplication;
division, and comparison. An algorithm is strongly polynomial if it runs in polynomial
time and consists of arithmetic operations and data transfers, and the number of
these operations is polynomially bounded in the dimension of the input. Equivalently,
an algorithm is strongly polynomial if it consists of arithmetic operations and
data transfers, the number of these operations is polynomially bounded in the

This research was done while the authors were visiting the Institute for Operations Research,
University of Bonn, West Germany ¢1984—85), and while the second author was visiting MSRI,
Berkeley. Her research was supported in part by NSF Grant 8120790,

AMS subject classification {(1980): 68 E 10

4.

50 A.FRANK, E. TARDOS

dimension of the input, and the length of the numbers occurring during the algo-
rithm is bounded by a polynomial in the length of the input.

Let us fix some notation. The I..-norm of a vector x=(x(1), ..., x(n)) is
lxllw=max (|x()] for i=1, ..., n). The ,-norm of vector x is lxlly=Z{(Ix@: i=1, ...
...,n). For a vector w and a subset X of its coordinates let w(X)= 3 (w(i):ic X).
The sign of a real number x will be denoted by sign (x) (sign (x) takes values 0,
+1, and —I}. Let |o) denote the integer part of o, that is, the largest integer N for

which N=o.

By definition a strongly polynomial algorithm only consists of elementary
arithmetic operations and data transfers. Thus the scaling algorithm, first introduced
by Edmonds and Karp [9] for the minimum cost flow problem, is, a priori, not strongly
polynomial since it uses the operation of taking the integer part of & number: Moreo-
ver, the number of arithmetic operations used depends on the size of the numerical
data.
Note that strongly polynomial algorithms are not allowed to take the integer
part of an arbitrary number « but if « is a rational number such that [¢] is of poly-
nomial length, then |) can be computed via binary search by using a polynomial
number of elementary operations. We will exploit this option.

Another, more significant class of polynomial time but not strongly polyno-
mial algorithms was developed via the ellipsoid methed {12).

The purpose of the present paper is to develop a device by which certain
kinds of polynomial time algorithms can be made strongly polynomial. A significant
feature of the procedure is that it is fairly independent of the algorithm to be made
strongly polynomial.

To explain the idea, let us consider the problem of finding 3 maximum weight
clique in a perfect graph G=(¥F, E). As a nice application of the ellipsoid method,
Grétschel, Lovisz and Schrijver [12] gave a polynomial time algorithm for this
problem. The algorithm is not strongly polynomial since the number of arithmetic
operations used depends on the length of the weight function w. To overcome this
difficulty we shall construct another weight function # such that

(i) w(X)=w(Y) if and only if w(X)=w(¥) for every X, YCV¥, and
(ii) the length of w is polynomial in |V].

By (i) a clique of G is optimal with respect to w if and only if it is optimal with

respect to w. Furthermore, because of (if), the number of arithmetic operations used -

by the Grétschel, Lovasz, Schrijver algorithm when it is applied to w, can be bounded
by a polynomial in |¥|. Consequently, the algorithm, becomes strongly polynomial.
(Notice that this idea has nothing to do with specific properties of perfect graphs, nor
with the Grétschel, Lovisz, Schrijver algorithm. Whenever a polynorial time algo-
rithm is available to find the maximum weight member of 2 hypergraph, by applying
the above idea, we can make it strongly polynomial),

Besides the above application, the preprocessing algorithm will make it possible
to turn an existing polynomial time algorithm for the submodular fiow problem [4]
into a strongly polynomial algorithm. One special case of this provides a strongly
polynomial algorithm for the minimum cost circulation problem. This latter problem
has been solved earlier by the second author [17]. Her minimum cost circulation
algorithm has the advantage that it does not rely on simultaneous approximation.

COMBINATORIAL OPTIMIZATION 51

See also [18]. The present method also appli
: { pplies to the problem of testin bershi
nw,.w. matroid polyhedron. A strongly polynomial algorithm for this _mmw M,M%o oawgm
er %nm_.h developed by W. H, Cunningham {3). P m
n section 5 we show how the Preprocessin i i i
] ! g £ technique appli
M__Hmuoﬂﬂm_hﬁmsow monwn Hﬁn.mww Linear Programming m_momgawﬂbnm MM HMWMMMMMWM
1t polynomial space. H. W, Lenstra, Jr {1611 i
solve Integer Linear Programmin ithin 1005 in polynoraiat S L 0
0 nteg g. The algorithm runs in pol ial time i
dimension is fixed. The algorithm was | i Cocinan [14], 1o, o he
dime; - The : Jater improved by R. Kannan [14], -
”..._ %m”_w:rw Mm. %WMMQM_MMMM_MMM M mOm:Nwﬁ HEWHoﬁBoE Over complete oﬂhaaM“_M:aww%
] €d. On the other hand, these algorithms h: d :
complete enumeration can be performed in pol omi i Sth of the sk
alonithms pomers exponamte polynomat space and both of the above
! pace. Both algorithms reduce a roblem i i
to a finite numbers of problems in less than n variables. G:wwnu:mﬁ% ﬂm..w ﬁ_ﬂm.m

in the input length. Thus applying thi i i i
. . Tk g this reduction » times we might t
MMu mﬂ_w is .mwvonnsnm_ 1n the length of the description of the o:.M_.: mww_wﬂﬁww H,mhwc%ﬂwn
o om Mn womwa W%WWMMMMM w: mﬂo@m 2_“:.»_ Space. Applying the Ppreprocessing :.“QEEE“.
: . humbers occurring throughout the alpori -
nomially bounded in the length of the description of the mwroEmE ?<w%wm _ﬂﬂmﬁﬂmnwuﬂw_.

rithm is a polynomial time algorithm since th i

. i € numbers occuring in th
&mo_mzdd may be too large. This phenomenon may occur s&% the memﬂwawwmﬁmﬂwm
monds—Karp algorithms as is illustrated by the following example)

ities, and the difference of two numbers Jo
g a and log b has the s
“Mmm Aﬂ@w Mnr the Emo:ﬂ:ﬁm.ao not run in polynomial time for w%mn Mﬂﬁm“mﬁ%ﬂw
Smmﬁﬁ o:“ﬂ M numbers oceurting throughout the algorithm might be o%o:gmm_ i
ength of the problem. {This can be shown on the following network : .

& e.
ki 2 2y o

s

e
2ke1 b TR YO o

52 A. FRANK, E, TARDOS

t us define the capacity of e, and of every lower edge to be log M ﬁ.ﬁs..o Misa
me number but its wwu_mﬁw is polynomial (M=16"+* will do). The capacities of the
upper edges will be smaller such that e, and the lower edges define 2 maximum flow

og M. : .
of <&=m<w Mnm going to define (recursively) the capacities of the upper edges in such
a way that all augmenting paths contain e, and have exactly three upper edges.
Namely the (2i+1)th augmenting path (i=0, 1,...,k—2) has €u41, €243 Enita
as upper edges, the (2i+2)'th augmenting path has ey 0, €143, €344 2S UpPET edges.
The flow increment during the (2/-+1)'th and the (2i+ 2Yth augmentation is
the same: log 4,. The capacity of the edges ;41 and g4, 15 the same and .uouon%a
by log b,. These values can be chosen such asto satisfy: by=2, A, =by, Ai=b;_1/4i_,
where 1=d,<3 for i=2,4,6,... and 1<4,<2 for i=3,5, ... and each of b,
by, bg; ... isone of 2, 4, 8,16 and each of by, by, b; ... is one of 3, m..)
With such a choice the increment of every augmenting path is determined by
its first upper edge. One can easilly see that the length of 4;,, is the double of the

Hﬂh—mﬂ_u of ku .v

2. Simultaneous Diophantine approximation

The main ingredient of the preprocessing algorithm is Lovész’s simultaneous
Diophantine) approximation algorithm in [i5}. o
¢ Wu:.mnEoﬁwm %_Wmmagﬁ_ theorem on simultaneous approximation is as follows.

Theorem. [2, Sect. 1.10] Given a positive integer N and n real numbers a(l), ..., «(n);
there are integers p(1), ..., p(n) and g such that 1=q=N" and

1 .
lgu()—p@ <5 for i=1.n

In [15], 2 polynomial time algorithm is developed which for rational a(l), ...
..., a(n) finds a slightly weaker approximation:

Theorem. [15] There exists an algorithm which uses at most B arithmetic operations

and, for a given integer N and rational numbers a(l1), ..., a(n), finds integers p(1), ..., p(n)

and q such that 1=g=2"N", and
L .
{ge(®) —p(D] < N for i=1,..n

Here B is anupper bound on the sizes of the a(i)’'s and N. Moreover, the numbers occur-
ing in the course of the computation have size at most on*B). §

The algorithm is not strongly polynomial since the number of arithmetic
operations used depends on B. However, we shall need it only in the special case
when —1=a(@)=1 (=1, ..., n). For this case a slight modification will make the
number of arithmetic operations performed by the algorithm Uog%&.ww a polyno-
mial in 7 and the length of N (and independent of the lengths of the a{i} & at the ex-
pense of further weakening the bound on 4. In the applications for turning uo__wno-
mial time algorithms into strongly polynomial ones we will have N=(n+1)!1+1.

COMBINATORIAL OPTIMIZATION 53

In this case (since log N=n?) the modified algorithms are strongly polynomial.
The modification is done as follows.

First find an individual approximation of each «(i) with precision
2-m-r~1N-n-1 That is, let

() = 2Ny

A%+ p-+1 AT+ 1 .
N

Then choose N’'=2N and apply Lovdsz’s approximation algorithm to N’ and
a’(1), ..., &'(n). Since the size of these numbers is polynomially bounded in n and
the size of N (namely, at most (+ 1)+ (n-+ 1) log N) the number of arithmetic opera-
tions performed by Lovész’s algorithm in this case depends only on # and the length
of N. Suppose the algorithm produces integers p(1), ..., p(n), and 4.

Claim, |ga(f)—p()|<N71 fori=1,...,n and 1=g=2M+rpNm,
Proof, Clearly 1=g=2"(N")*=2"+*N",
To prove the first inequality we have

lgee() —p ()] = gD — g2’ (DI + | g’ () —p ()

. oy 1 Na.+=N<.= 1 1
< gla()—a A&_.TWM\: = arn+l yatl +g =5 |

We refer to this version of the algorithm as the revised simultaneous approxima-
tion aigorithm. As we have noted, the number of arithmetic operations performed by
Lovész’s algorithm when applied to «’({) (i=1, ..., n) and N’ is polynomially bounded
in n and log N. The same is true for the revised simultancous approximation algo-
rithm since, by the remark made on integer parts of “small” numbers in the Introduc-

tion, &(i) can be calculated in strongly polynomial time. (Here we exploit the fact
that —1=ga()=1.)

3. The preprocessing algorithm

The basis of our algerithm is the following theorem concerning the structure
of a vector. The theorem states that every vector w can be expressed as a positive
linear combination of at most n “small” integer vectors v, (that is, w= 3 A, with
4;>0) such that the coefficients 4, are “quickly” decreasing.

Theorem 3.1. For every vector wER" and positive integer N there exist integer vectors
U1y ..o, O (k= 0) and positive scalars Ay, ..., A, such that

D) w= 3L,

i=1
(i) lode = N* i=1,...k and
A1 :
il = i=2,...,k
(i T = Mol

54 A. FRANK, E. TARDOS

Proof. If all coordinates of w are zero, then the statement is trivial (the empty sum
is considered to give the zero vector). Otherwise let w,=w and define

Wo
iwollw ©

Apply simultaneous Diophantine approximation to the integer N and the coordinates
of w;. Let p,(1), ..., po(n) and g, be the resulting integers. Define 2= (pa(1), ... u(1))s

wp =

q1
and wy=w,— A, 9;.
Proceeding the same way with w, (defining wj, v;, 4, and w, etc.) after at most
n iterations we get w,=0. Indeed, w,=w,_;— A;%; has strictly more zero coordina-
tes than w;_, has: For each index j such that w,(j)=0 we have also pi(f)=0and
so wy()=0. Moreover, if |w;(/)}=[wl., then wi(j)=11. This implies that
Pia(7)=T g1+, and so w1 (/)=0.
Now we have

k
w= 2l
i=1
where 4,>0 (i=1,...,k) and k=n. By Dirichlet’s theorem [v]l.=N" for i=
=1, ..k _ .
_ Finally we have to prove that condition (jii) is satisfied. By the simultancous
Diophantine approximation we have

1 1 , 1 .
H.___x‘.h__s = :ﬂETHIE - = _EHET_I@.LT = N (=1,..k.
Further, as |w]]..=1 we have [7]l.=g:. So
Al L1 o p,

m:lu_. lenﬂ_h 2@- - 2__3-._48

as required. |}

We can use the revised simultaneous approximation algorithm to turn the .

proof of the theorem into a decomposing algorithm (whose number of arithmetic
operations is polynomially bounded in n and log N) at the expense of weakening
condition (ii) to

(ii)’ o] =5 20t 42 N" (i =1, ..., k).

We shall need the following lemma about the decomposition. The lemma
expresses the fact that, since the coefficients 4, are very quickly decreasing, the vectors
v, do not “interact” with each other when w is multiplied by a “small” integer vector b.

k
Lemma 3.2. Let w= > A, such that A>0, the vectors v, are integral and the
Im=] . .,
decomposition satisfies condition (iii). Let b be an integer vector with |bl,=N-1.

COMBINATORIAL OPTIMIZATION 55

Then sign (b-w)=sign (b-v,) where j is the smallest index for which b.v,=0
Observe that, if b.v,;=0 for every i=1, ...,k then b-w=0 as u_u.m___\. e

Proof. Let j be the minimal index such that b.v,=0. We may assume without loss
of generality that b.v;>0. We proceed by induction on /= Js ...y k to prove that

]
Mpmbcm = M.n-

i=1

The case 1= is trivial since b.»,=0 for i~/ and both b and #; are integral (thus
b.v;>0 implies b-v;=1). Let j=<I=k.

1 =1
@A—"NH- bnﬂb = WAM \.FQ..V.TM.—@S = &.nlulmn\ﬂ—@s

=1
=ho~ 4 b ule = 4 - H(N=Dly
=2,

as required. Here for the first inequality we used the induction hypothesis, for the last

one condition (iii). This proves the lemma. |

We proceed to describe an algorithm which, given a rational vector w=
,..u_.ecv. --»w(n) and an integer N, finds an integral vector % such that the size of
W is polynomial in n and log N, and no hyperplane of the form {x: b-x=0} with
§8l,=N—1 separates w and w. In particular, taking N=#n+1, we obtain an inte-
gral vector W such that the size of | W[, (that is, log | W) is O(® and WX)=w(Y)
if and only if w(X)=w(¥) for every subset X and ¥ of the coordinates,

Preprocessing algorithm

Iuput. 4 rational vector w=(w(l), ..., w(n)) and an integer N.

OE_::. An m.imwx& vector &HAEC_ o (7)) such that |w|.=24" N*+3B gnd
sign (w - b)=sign (Wb} whenever b is an integer vector with ||b|,=N—1.

Step 1. Apply the above decomposing algorithm to w and N. It terminates with

A

B §

w =
i

LM~

mso.r that »..u.,o and vector v, is integral (i=1, ..., k), k=n and the decomposition
satisfies conditions (ii)" and (i) with the integer N.:

Step 2. Let M=2"+"N"+1 and put

k
W= 3 M-y,
End, =

56 A. FRANK, E. TARDOS

Theorem 3.3. The vector W provided by the preprocessing algorithm satisfies the output
criteria.
Proof. First consider the upper bound on [|¥| ..

k k
> MEiolas 3 M2 N
=1

f=]

T
L]
[IA

hm__n dnttn pR o= dnt+2nd+n pra(nt2) = Qdn? .~<a?+3.

[

as required. N
Next we observe that the decomposition

-

W= Ewlhaw

i=

[

satisfies condition (iii). Indeed,
1 111 i M
NTele = N27e=N" — M~ M*0-D°
(Here the inequality is due to condition (ii)".) So by Lemma 3.2, for any integer vector
b with |b[,=N—1 we have
sign (bw) = sign (bry) = sign (bWw)
where j is the smallest index such that b-2;=0. 1

4. Turning polynomial time algorithms into strongly polynomial

In this section we show how the preprocessing algorithm can be used to turn
certain polynomial time linear programming algorithms into strongly polynomial
ones. In [18] a strongly polynomial algorithm is developed to solve linear programs
whose constraint matrix has size polynomial in the dimension of the problem (for
example flow and multi-commodity flow problems). The method used in (18] appties
to explicitly given linear programs only. For most moEcEmSam_ optimization prob-
lems the constraint matrix of the corresponding run.m_. programming wa.o_u_ma has
0, +1 and — 1 coordinates. However, the number of Eoﬁﬁm_.:am in .Eo linear prog-
ram is often exponential in the length of the combinatorial description of the prob-
lem, and so the method used in [18] does not apply. The preprocessing algorithm

i o these linear programs.)
wvb:om-.wmmﬁ_un a matrix sﬂ,ﬂ ommsa 1 1 entries and let us consider the linear program
max w-x over the polyhedron P={x€R": Ax=5b}. We are going to apply the pre-
processing algorithm to show that whenever an algorithm is Eﬁ__mgo to solve
max (w-x: x€P) for a class of polyhedra P, whose running time is uo._wmo.n:mcw
bounded in » and the length of w, it can be made strongly m..o_quEE_. The Enw is that
an arbitrary objective function w can be replaced by an integral function % whose
size is polynomial in 1 and which yields the same set of ovnam_ solutions and the
same set of optimal dual bases as w. Having computed such a % we may apply the
existing algorithm to the objective function W instead of w.

COMBINATORIAL OPTIMIZATION 57

We shall consider the following primal and dual linear programs.

) (@) Ax=b (b) yA=w, y=0
max wx min yb

Let n and m denote the number of columns and rows of A, respectively. A vector X
in P={x¢R": Ax=b} is called w-maximal if w.Z=max(w-x: x¢P). We call a
maximal set of linearly independent rows of A4 a dual basis. Any dual basis B uniquely
determines a vector y for which yA=w, provided that such a y exists at all, that is,
w is in the rowspace of A. If y=0, then B is called & feasible dual basis and yis
the basic dual solution to (1b) corresponding to basis B. If y is an optimal solution to
(1b) then B is called an optimal dual basis.

Lemma 4.1, Let w’ and w” be vectors such that sign (w’. h)=sign (w”- k) for every
integral vector h with ||hlly= (n+1)!. Consider (1a) and (1b) with w=w' and w=w".
(i) A solution to (1) is w'-maximal if and only if it is w"-maximal.

(i) A dual basis B is optimal for w=w’ if and only if it is optimal Jor w=w",

Proof. Because of the symmetric role of w* and w” it suffices to prove the “only if”
part of both statements. Let B be an optimal dual basis and x an optimal solution to
(la} with w=w’. Further, let y* be the basic dual solution to (Ib) corresponding to
basis B. Let r denote the rank of A. Let B’ be a non-singular r by r submatrix of the
matrix formed by the rows of B. By elementary linear algebra, ¥’ can be written in
the form y"=(yp, y3) with yp=w;(B), y3=0. Here y, are those coefficients
of y’ corresponding to rows of B, yy are those coefficients of y* corresponding to
rows not in B, and w}., are those coefficients of w’ corresponding to columns of B,
Let g=|det (8")|. Multiply each entry of () by ¢ and complete the resulting
integer matrix with zero rows and columns to an # by m matrix H, Now we have that
Y'=(Q/g)w'H. Since 41is a 0, +1 matrix g=n! and the entries of H have absolute
value at most (n— 1)\)

Let y"=(1/¢)w"H. We will show that y"=0 and y"4=w". These two state-
ments yield that B is a feasible dual basis of (1b) with w=w". The corresponding
basic solution is »”. Finally we shall prove that x and p” satisfy the complementary
slackness conditions. Thus x and p” are optimal solutions to (la) and {1b) with
w=w", This will complete the proof.

Let us start with proving that y”A=w". We know that y’A=w’, that is
w/(H{A—gl)=0. The rows of the integer matrix HA—gl have /,-norm at most
n-nl+nl=(n+1)!. Thus, by the assumption, w(HA—gl)=0 implics w"(Hd—gl)=
=0. This latter is equivalent to y"A=w",

Next we show p”=0. We know that y'=0, thatis, (1/g)w’H=0, or equiva-
lently, w'H=0. The entries of the integer matrix H have absolute value at most
(n—1)!. Thus, by the assumption again, w'H=0 implies w"H=0. This latter is
equivalent to y"=0.

Finally we show that x and y” satisfy the complementary slackness conditions
that is, if a coordinate of y” is positive then x satisfies the corresponding inequality
of (1a) as an equality. As in the proof that »”=0, we can see that a coordinate of
y” is positive if and only if the same coordinate of y” is positive. So complementary
slackness applied to x and y” proves the required equalities for x, J

58 A.FRANK, E, TARDOS

Let 1 be the output of the preprocessing algorithm when it is applied to w
and N=(n+1)!4-1. Theorem 3.1 and Lemma 4.1 give the following.

Theorem 4.2, (1) x£ P is w-maximal if and only if it is W-maximal.)
() 4 th of rows of A is an optimal dual basis for max {wx: Ax=b) if and only
if it is an optimal basis for max (wx: Ax=b). |

Theorem 4.2 can be extended to the case where the entries of A are
:mamﬂmmﬂﬂﬂ%nm “Sﬁmﬁ o be the maximal length of the entries of A.Theorem Jb holds
for linear programs with constraint matrix 4 if we replace N=(n+1}!+1 by
N=(n+1)!12™4 1, With this definition of N, the number of mmE”..Eo:o o_umamﬁon_m
used by the preprocessing algorithm and the size of the resulting ¥ will be _uo_wuoﬂ:w -
ly bounded in » and «. Thus, if the size of the entries of the matrix 4 is polynomially
bounded in the number of variables, every algorithm which is polynomial in the size
of the objective functions can be made strongly polynomial.

Now we discuss three combinatorial consequences of the above theorem.

i ‘weight-function
A) Let G=(V, E) be a perfect graph with n nodes, and let w be a weig
an the :oam% Gritschel, Lovdsz and Schrijver [12] described an m_mo._.:ua s&ome
running time is polynomial in the length of w and which finds the maximum weight
clique in G. Since G is perfect the convex hull of the characteristic vectors of the

cliques is
P={xcRY: x =0, x(I) =1 for all independent sets I of G}.

Theorem 4.2 applies to P. Thus, we can turn the Grotschel, Lovész, Schrijver algo-
rithm into a strongly polynomial algorithm.

n application of the ellipsoid method, Grétschel, Lovasz and Schrijver [12]
MNWMMMMQ mﬁWo_w:oEmmﬂ time Hmwaﬁ?.: to maximize a linear objective function o,ﬂ.q
the submodular flow polyhedron of Edmonds and Giles [8]. In this algorithm M_a
number of arithmetic operations depends on the length of both the costs and the
capacities (that is, w and b). In [4] a combinatorial algorithm is described for the
same problem. Both algorithms use a subroutine to minimize certain submodular
functions. The second algorithm has the advantage that the number of calls to the
subroutine and the number of arithmetic operations used depends only on .m.ﬁ.
fength of the costs (and not on the length of the capacities). (Sce [4] for details.)

A polynomial time algorithm for minimizing submodular functions was
developed by Grétschel, Lovasz and Schrijver [12] via the ellipsoid method. In [13]
the same authors give a strongly m.o_ﬂuoﬂwﬂ &mﬁ:ﬂw.aﬁwﬁmﬁmﬁm_w_ this strongly

i rithm also relies on the ellipsoid method. o
Uo_wbomwwmmﬂ__mm submodular flow polyhedron is defined by a matrix with 0 and * 1
entries the preprocessing algorithm wvﬁmom.. Using the algorithm in .E& for minimiz-
ing submodular functions as the subroutine and the preprocessing algorithm to
change the costs, the algorithm given in [4] becomes strongly polynomial.

(C) Let r be the rank function of a matroid on a finite set §. The convex hull of the
characteristic vectors of the independent sets is

P={x¢R% x=0 and x(4)=r(d) for 4585}

COMBINATORIAL OPTIMIZATION 59

The membership problem is to test whether a certain vector w is in P, and if w is
in P, then to express w as a convex combination of at most n+ 1 vertices of P,

The first polynomial time algorithm for the membership problem was found
by Grétschel, Lovasz and Schrijver [12] using the ellipsoid method. Then Cunningham
[4] developed a sophisticated strongly polynomial algorithm which is purely combina-
torial. Later Bixby (see in [1]) observed that Edmonds’ matroid partition algorithm
[6] and a scaling technique together yield a simple polynomial time algorithm (which,
however, is not strongly polynomial).

Here we show that the preprocessing algorithm can be applied to turn Bixby’s
algorithm into a strongly polynomial algorithm. Let A be the matrix whose rows
are the characteristic vectors of the independent sets. The vector w is in P if and
only if w is the convex combination of the rows of A, that is, if there exists a vector
y=0 such that y.1=1 and yd=w. We apply the preprocessing aigorithm to the
linear programming dual of min(y-0:y=0, y-1=1 and y4=w), that is, to the
problem max (w.x+¢: Ax+¢1=0). This maximum is zero or plus infinity accord-
ing to whether or not w is in P. Thus Bixby’s polynomial time algorithm can be
applied to solve it. This results in a strongly polynomial algorithm to decide whether
wisin P. The algorithm also finds an optimal dual basis to the maximization problem
if w is in P. The basic dual solution corresponding to this basis is an expression of w
as a convex combination of at most #-+1 independent sets,

Remark. In applications (A) and (B) we may beinterested in finding an optimal primal
solution only, and not looking for the dual solution. In such a case it suffices to take
a smaller N than the one used in Theorem 4.2, Let ¥ be a vector in P and define
C(x)={x: 34>0 such that X+ Ax€P}.

Define N to be an integer such that ali of the cones C(%) for X in P can be
generated by integer vectors with /,-norm smaller than N. A vector ¥ in P is w-maxi-
mal if and only if w-x=0 for all x in C(). This observation together with Theorem
3.3 gives the following,.

Theorem 4.3. Let & be the output of the preprocessing algorithm when applied to w
and N=N (N defined in the above paragraph). Then a vector x in P is w-maximal if
and only If it is W-maximal. |

In application (A) it is easy to see that N=rn+1 can be taken. In application
(B) we can take N=|E|+1. This follows from a theorem of Zimmermann i19,
Theorem 2.4] asserting that the difference of two submodular Sows is a non-negative
combination of eircuits in the corresponding auxiliary digraph.

In application (C) we could use the preprocessing algorithm with N=2.|8|+
1-1: Let (W, 1), a vector with [S]|+ 1 coordinates, be the output of the preprocessing
algorithm when applied to the vector (w, 1) and N=2. I§|+1. Theorem 3.3 implies
that w is in P if and only if (/1) % is in P. In this way we can decide whether w is
in P, but we cannot directly express w as a convex combination of vertices of P.

60 A.FRANK, E. TARDOS

5. Integer linear programming

Finally, we turn to integer linear programming algorithms. The Integer Linear
(feasibility) Problem is to determine whether or not there exists a vector of integers
satisfying a given system of linear inequalities. H. W. Lenstra Jr. [16] invented an
algorithm to solve this problem. The algorithm runs in polynomial time if the number
of variables is bounded. For a polyhedron P the algorithm either finds an integer point
in P or finds an integer vector ¢ such that the maximum value and the minimum
value of ¢ . x over the polyhedron P differ by at most $** where f§ is a constant inde-
pendent of n. Every integer point must lie on a hyperplane ¢-x=4d for some integer
d. Thus this reduces the n-dimensional problem to at most f* (n— 1}-dimensional
problems.

This algorithm was improved by R. Kannan [14]. Kannan’s algorithm either
finds an integer point in P or finds a set of linearly independent vectors ¢;, ..., &
such that there are at most O(n*™) vectors (4, ..., dy) with PN{x:¢;-x=d; i=
=1,...,k} not emply. (Here 1=k=n is an approprate integer chosen by the
algorithm.) This reduces the n-dimensional problem to O(n**) (n—k)-dimensional
problems. The reduction uses O(r"s) arithmetic operations, where s is the length
of the description of the polyhedron. The resulting (n— k)-dimensional problems
have length at most @(n%). Thus the number of arithmetic operations used by the
whole algorithm satisfies the following recursion

T(n, s} = 02T (n—k, n¥s)+0(n"s)

for some 1=k-<n. So we have T(n, s)=0(n""s).
In both algorithms, the length of the reduced problems can only be bounded by
a polynomial in the length of the original problem. Thus applying the reduction O ()
times we might get numbers whose length is exponential in the length of the descrip-
tion of the original problem. That is, these algorithms do not run in polynomial
space.
We can use the preprocessing technique to keep the length of the numbers
bounded by a polynomial in the length of the input. This is done as follows.
Let us apply one of the above two algorithms to the n variable problem given
by the linear inequalities 4x=b. The reduction results in some (#— k)-dimensional

problems. Let us keep these (n— k)-dimensional problems in the r-variable represen-

tation, as
Ax=b

gx=d, i=1,..,k

with k& linearly independent vectors ¢;, i=1, ..., k. We are going to use the prepro-
cessing technique to replace the vectors ¢; {(i=1, ..., k) by small integral vectors.
We have to be a little careful to maintain the linear independence of the equalities.

We may assume that matrix 4 and vector b are integral. Let a be the maximum
length of the coeflicients in 4 and b.

Further, the polyhedron P={x: 4x=»b} contains an integer point if and only
if it contains an integer point with coordinates at most (n+ 1)#"®2™ in absolute
value. (Sec [16].) Thus, we may add the inequalities —(n+ 1)r*22"= x;=(n+ 1)n"2 2"

COMBINATORIAL OPTIMIZATION 61

for all So&_mﬁmm %y (i=1,...,n) of x. This increases the length of the description

only polynomially. Thus we may assume in the following that P is bounded.
s_wmamcon one of the equalities ¢;.x=d, contains numbers with length larger

than 2n® log (x+1) throughout the algorithm we apply the following subroutine.

Sabroatine for changing c;. x=d,

Mwnuw& N=n-n12"+1, where « is the maximum length of the coefficients in A

(2) By applying the decomposition algorithm to the (n+ 1)-dimensional vector
w=(c;, d;) we obtain
k(i)
(e d} = 2 Mley, dy)

=1

such that k(f}=n+1, 4>0, the vectors (c;-d,) are i
1, , vdy integral (d;; denotes the last,
¢y the first n coordinates) for /=1, ..., k(i), and the moaoaﬁommzo: satisfies (i)’

and (iii) with (n+1) in place of n, and N as given above.
(3) Let IS{1, ..., k()} be a maximal subset such that the equalities

cx=4d =1,..,k,]
and ! 1 e
CuXx = ﬁmt NmN

are linearly independent.

Let the new Int i i i i
yston eger Programming Problem be defined by the linear inequality

Ax =b
ogx=d; j=1,.,k j=i
and ! 17 S ek
eyx =d, Icl
End. H. w '€

First we have to prove that applying the above algori
] I | gorithm to change the
equalities after each reduction gives a valid Integer Linear P i i
This is the content of the following lemma. ; rogramming algorithm.

Lemma 5.1. Let Ax=b define a bounded polyhed; f

1 . in lvhedron, and let ¢;-x=d; j=1,..,k
be linearly independent ma:&.E.m.,.. Apply the above subroutine 1o SM mﬂ:&m@.\& ~x=d;.
Let cyx=dy ICIS{L, ..., k()} be the resulting equalities. _

(i) An integral vector z satisfies Az=b and ¢, -z=d, (j=1 k) i
§@§:&§%2A¢mpﬁan&Aw:tgwmﬂamanthAMMNVqsa

o1 (i1} The coefficients in the equalities ¢, « x=d, have length at most 2n® log (x+

(i) 10,

62 A.FRANK, E. TARDOS

By the first statement, replacing c¢;- x=d; using the above subroutine does not affect
the sef of integral solutions. By the third statement, the new problem can be expressed
with at most n—k variables.

Proof. By our assumption, P={x: Ax=b} is bounded. Thus the maximum absolute
value of a coordinate will be achieved at a vertex, and so by Cramer’s rule, z¢ P
implies ||z}l.=n!2" (where « is the same as in Step 1). So |[zf;=r.n!2", and
therefore by Lemma 3.2, z satisfies ¢;-z=d; (that is, in the (n+1)-dimensional
space (¢;, d;}-(z—1)=0) if and only if ¢y.z=dy (I=1,..., k(). Thus, by the
maximal choice of I,

Az=b, c;z=d; j=1 ..,k j=i
and
egz=dg I1=1,.., k()
is equivalent to

dz=b, cqz=d; j=1 .,k j#i
and
cpz = dy IEL
This proves (i).

By condition (i)’ of the decomposition algorithm we have f(cu, dy)fe=
=200HD N) (for [=1, ..., k(). That is, the lengths of the coefficients
of the equality cyx=d; is at most {(p+1)*+(n+1)+(n+1)log N=(r+}(n+2+

+n?log nt+nlog a)=2n® log (x+1). This proves (ii).

The equality ¢,-z=d; is a linear combination of the equalities ¢y z=dy
(I=1, ..., k(i)). By our assumption, the equality ¢;-z=d; is linearly independent
of the other equalities ¢;-z=d; (j=1, ..., k, j=i). This proves I=9. [

Theorem 5.2. Applying the above subroutine before each reduction of either Lenstra’s
or Kannan's algorithm makes the algorithms run in polynomial space.

Proof, First note that one reduction in either Lenstra’s or Kannan’s algorithm runs
in polynomial space: Indeed, one reduction of Lenstra’s algorithms runs even in
polynomial time (irrespective of the number of variables). Kannan has shown that
all numbers occurring during the computation of one of his reductions have length
at most O (n?s) where s is the input length.

The algorithm is organized as follows:

We are going to keep all reduced problems in the form

(1) Ax=b
gx=d; i=1,..,k

Before applying the reduction again, we run the above subroutine on the equalities
¢ix=d;. As a result we get a problem

Ax=b
2

eix=d; i=1,.,K

COMBINATORIAL OFTIMIZATION 63

with k'=k linearly independent equalities, such that an integral vector satisfies
(1) if and only if it satisfies (2). Next we express (2) in n—k’ variables, This can be
done using Edmonds’ [7] version of Gaussian elimination. In this version of Gaussian
elimination all numbers occurring thronghout the computation have length at most
n(o’ +log), where o is the maximum length of the coefficients in (2).

Now we can apply either Lenstra’s or Kannan’s reduction. The reduction results
in problems in the form

Ax=b

3 cx=d; i=1,.. kK
ex=f j=1,..,1

with the same ¢; j=1, ...;{ and all possible integers J; such that the linear system
(3) has a {(not necessarily integral) solution.

First we show that the length of all numbers occurring throughout the entire
course of this integral programming algorithm is polynomially bounded in the input
length. Let « denote the maximum length of the coefficients in Ax=5. By Lemma 5.1,
the length of the coefficients in (2)is at most 2#3¢. Thus the length of the coefficients
of the (n— k) variable problem (and the length of all numbers occurring throughout
the computation of that problem) is at most O(n*a). So the reduction will always
be applied to problems with length at most @ (#*«). Thus the lengths of all numbers
occurring throughout the algorithm is polynomiaily bounded in n and «.

The algorithms have to search through exponentially many reduced problems.
Both Lenstra’s and Kannan’s algorithm reduces the » variable problem to exponen-
tially many problems in less than n variables. We cannot list all of these problerms.
However, all the reduced problems are of the form described in (3). Thus, knowing
e; 7=1, ..., 1, we can generate the equalities in the lexicographic order of (£, ..., /i)
using a linear programming subroutine. |

Applying the changing subroutine also improves the running time.

Theorem 5.3. Kannar's algorithm with the above subroutine applied before each re-
duction uses s- n*5"+"") grithmetic operations.

Proof. One reduction takes O(n"s) time on problems with input length s (see [14]).
As we have seen above the reduction will be applied to problems with input length at
most O(n%s). Thus the number of arithmetic operations needed to solve an m di-
mensional problem in n variables satisfies the following recursion

T (m) = O (M) T (m—Kk)+O(n™ nfs).

Thus, by induction T(m)=O(m**sbs). |

6. Concluding Remarks

Grotschel, Lovész and Schrijver [12 and 13) showed how the ellipsoid method
can be used for proving polynomial solvability of various combinatorial problems.
For the time being, this method is widely considered to be a proof technique rather
than an efficient algorithm useful in practice. Once one knows the existence of a

5

64 A. FRANK, E. TARDOS

polynomial algorithm for a certain problem one may try to construct an efficient
problem-specific polynomial time algorithm,

Parallel to this approach, here we have developed a method to show that certain
combinatorial optimization problems can be solved in strongly polynornial time. We
consider our method to be a proof technique rather than an efficient algorithm useful
in practice. Once one knows the existence of a strongly polynomial algorithm for a
certain problem one may try to construct an efficient, problem-specific strongly
polynomial algorithm. Three problem-specific strongly polynomial algorithms for
problems, which can be solved in strongly polynomial time with the technique pre-
sented in this paper, are Cunningham’s method [4] for testing membership in a mat-
roid polyhedron, S. Fujishige’s [10] combinatorial strongly polynomial algorithm
for the submodular flow problem, and the minimum cost circulation algorithmin [11].

Acknowledgments. We wish to thank L4szlé Lovész for many stimulating discussions
on the results presented in this paper. We are indebted to Ravi Kannan for drawing
our attention to possible application of the preprocessing technique to Integer Linear
Programming.

References

[1] R. E. BXBY, O. M.-C, MaRCOTTE and L. E. TROTTER, JR., Packing and covering with integral
flows in integral supply-demand networks, Report No. 84327—0R, Institut fiir Okonometrie
und Operations Research, University Bonn, Bonn, West Germany,

[2) J. W. 8. CasseLs, 4n Introduction to the Theory of Numbers, Berlin, Heidelberg, New York,
Springer, 1971.

[3] W. H. CuNNINGHAM, Testing membership in matroid polyhedra, Journal of Combinatorial
Theory B, 36 (1984), 161—188.

[4] W. H. CuNNINGHAM and A. FRANK, A primal dual algorithm for submodular flows, Mathematics
of Operations Research., 10 (1985).

(5] E. A. Davrrs, Algorithm for solution of a problem of maximum flow in a network with power
estimation, Soviet Math. Doki., 11 (1970). 1277-—1280.

[6] J. Epmonps, Minimum partition of a matroid into independent subsets, Research of the Nat.
Bureau of Standards 69 B (1965), 67—72.

[7] J. EDMoNDs, System of distinct representatives and linear algebra, J. ‘Res. Nat. Bur. Standards,
71 B (1967), 241—245,

[8] J. EpmoNDs and R. GILES, A min-max relation for submodular functions on graphs, Annals of
Discrete Mathematics, ¥ (1977), 185--204.

[5] J. EpmonDs and R. M. Kare, Theoretical improvements in the algorithmic efficiency for net- °

work fiow problems, J. ACM, 19 (1972), 248—264.

[10] S. Fumsmige, A capacity rounding algorithm for the minimum-cost circulation problem: a
dual framework of the Tardos algorithm, Mathematical Programming, 35 (1986), 208309,

[11] Z. GaLw and E. Taroos, An O (n+ nlog m)-log n} minimum cost flow algorithm, in: Proc.,
27th Annual Symposium on Foundations of Computer Science (1986), 1—9.

[12] M. GrorscHEL, 1. LovAsz and A. ScHRUVER, The ellipsoid method and its consequences in
combinatorial optimization, Combinatorica, 1 (1981), 166—197.

[13] M. GréTsCHEL, L. LovAsz and A. ScHRUVER, The ellipsoid method and combinatorial optimiza-
tion, Springer Verlag, to appear.

[14] R. KannNAN, Improved algorithms for integer programming and related lattice problems, /n.
Proc., 15th Annual ACM Sympasium on the Theory of Computing (1983), 193—206. Final
version: Minkowski's Convex Body Theorem and Integer Programming, Carnegie-Mellon
University, Report No. 86---105.

[15] A. K. LENSTRA, FI. W. LENSTRA, JR. and L. Lovisz, Factoring polynomials with rational
coefficients, Math. Ann., 261 (1982), 515—534.

COMBINATORIAL OPTIMIZATION 65

[16] H. W. LensTRA, JR., Integer programming with a fixed number of variables, Math. of Cperati
Research, 8 (1983), 538—548. / Operations
[17] E. m—_,.wmwﬁﬁm&% muﬂmmzm:.. polynomial minimum cost circnlation algorithm, Combinatorica, §
[18] E. sz.u&“ A mz.o:m_.w. polynomial algorithm to solve combinatorial linear program 177
Research, (1986), No, 2 prosams, Operations
[19] U. ZoumermANN, Minimization of submodular Sows, Discrete Applied Matk., 4 (1982), 303—323,

Andris Frank Eva Tardos

wa.mb.«.sm &w .a&a.b@mﬂu:.& Institute of Mathematics
Ebtvds University, Budapest Edtvés University, Budapest
1445, P, O, B. 323 1445, P. O. B. 323
Hungary Hungary

Fid

