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ABSTRACT

Extending theorems of Rado and Lovasz, we introduce a new Famework for
problems concerning supermodular functions and graphs. Among the applications is
an optimization problem for finding a minimum-cost subgraph H of a digraph
G = (V, E) such that H contains k disjoint paths from a fixed node of G to any other
node. Another consequence is a characterization for graphs having a branching that
meets all directed cuts. A theorem of Vidyasankar on optimal covering by arbores-
cences and a matroid intersection theorem of Groflin and Hoffman are also shown to
be special cases. :

1. INTRODUCTION

Generalizing Hall's theorem, R. Rado [23] proved a theorem concerning
bipartite graphs and matroid rank functions. L. Lovasz [20] found another
generalization of Hall's theorem including bipartite graphs and a special type
of supermodular function. The aim of the present note is to exhibit 4 common
generalization of these results and to show various applications of the model -
introduced. ‘

Among these appbications is an extension of a theorem of Vidyasankar on
the minimum number of arborescences covering the arcs of a directed graph.
A theorem of Groflin and Hoffman on matroid intersection is also a conse-
quence. As a new result we derive a characterization for digraphs having a
branching that meets all directed cuts. With the help of our model the
following optimization problem can be solved: Given a digraph G =(V, E)
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with a specified node r and a cost function on the arcs, find a minimum-cost
subgraph H of G such that for any node v €V, H contains k openly disjoint
paths from 7 to ©.

Since the early results of Rado and Lovész, many different models have
been introduced to provide general frameworks for problems including
graphs and sub- (or super-) modular functions. Hoffman and Schwartz
introduced lattice polyhedra (for a survey, see [16]); Edmonds and Giles [5]
defined submodular flows. The concept of polymatroidal flows is due to
Lawler and Martel [19] and to Hassin [17]. “Independent flows™ have been
investigated by Fujishige {14], and “kernel systems” by Frank [7]. A very
general model has been devised by Schrijver [25]. The reader can find an
excellent survey on the relationship of these models in [24].

In our approach we rely on submodular flows. See [3, 5, 10, 12, 27, 31] for
details,

It is easy to derive Rado’s theorem from the theory of submodular flows,
but it was not known if Lovasz’s theorem is also a consequence. In this paper
we show this. .

Throughout we work with a bipartite graph G =(A, B; E), where E
denotes the edge set and A and B form the two-partition of the node set. For
FCE, XCA we use the notation I'e(X)={vE€B, un€F for some
u € X ). d(X) denotes the number of edges in ¥ incident to X. Ty and dg
are abbreviated by T and d, respectively.

We do not distinguish between a one-element set and its element. For a

function g: S — R we use the notation g(X) = L(g(v): v € X), where X C 5.

The incidence vector of a subset X € § is denoted by I(X).

Let S be a finite ground set. Two subsets X and Y are called intersecting

if X—Y, Y~X and XNY are nonempty. If, in addition, §— (X UY) is
nonempty, then X and Y are called crossing. A family ¥ of subsets is called
laminar if it contains no intersecting subsets. Let b:2% — R U {0} be a set
function with b(@) = 0. We say that b is submodular on subsets X and Y if
b(X)+b(Y)2B(X NY)+b(XUY). b is called an intersecting (crossing)
submodular function if b is submodular on every intersecting (crossing) pair
of subsets. ¥ b is submodular on every pair, b is fully submodular. An
integer-valued, nonnegative, finite, monotone increasing fully submodular
function is called a polymatroid function. A polymatroid function is a
matroid rank function if its value on singletons is 0 or 1. f —p is an
intersecting submodular function, p is called intersecting supermodulor,

Tueorem 1.1 (R. Rado [23]). Let G =(A,B; E) be a bipartite graph
and M o matroid on B with rank function r. There exists a subset F C E of
edges such that dp(v)=1 for v € A and r(THY )= Y| for every Y C A if
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and only if

r(Te(Y))21Y|  forevery YCA. - (11

Tusorem 1.2 (L. Lovasz [20]). Let G =(A, B; E) be a bipartite graph
and p:24—>Z U { —c0} an intersecting supermodular function for which
p(0)>0 forv € A and ,

p(X)+p(Y)2p(XVY)  for X,YCA, XnY=2. (12)

There exists a subset F C E of edges such that d(v) = p(v) forevery v € A
and |Te(X)| = p(X) for every X € A if and only if

ITe(X){zp(X)  forevery XcA. (1.3)

A common generalization we are going to prove is as follows.

Turorem 1.3.. Let G=(A, B;E) be a bipartite graph and p:2%4—
Z U { — o0} an intersecting supermodular function (not necessarily satisfying

" (1.2)). Let furthermore 1 be matroid rank function on B, and g: A~ Z,

U{co) an arbitrary function. There exists a subset F C E of edges such that
d(v) < g(v) for everyv €A and f(TH X)) 2 p(X) for every X C A if and
only if

p(¥) < o(Te(X)) + (¥ - X) (1.4)

holds whenever X G Y C A,

It g=1 and p(X):=|X} then p(Y)=p(X)+|¥ - X]<n(TX)+
g(Y — X), so (1.1) implies (1.4) and Rado’s theorem follows.

¥ g(v)=p(v) for vEA, p satisfies (1.2), and r is the cardinality
function, then p(X)+g(¥ - X)=p(X)+L(p(v):v € Y—-X)zp(Y), and
therefore (1.3) implies (L4): [Te(X)|+ g(Y-X) > ITe(X )+ p(Y) — p(X) 2
p(Y). Thus Lovasz’s theorem follows.

The sufficiency of (1.4) will follow from a more general result. To see the
necessity let F C E satisfy the requirement. Then we have p(Y) < r(Te(Y))
£ r(TH XN+ r(Te(Y = X)) € r(T(XN+ ITR(Y = X) < r(T(X )+ g(¥Y — X).
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Note that Welsh [30] extended Rado’s theorem by replacing the matroid
rank function r by a submodular function, and therefore a common general-
ization of Welsh’s theorem and of Lovasz’s theorem would be desirable.
However, if in Theorem 1.3 7 is replaced by a submodular function, the
matroid matching problem becomes a special case, and therefore the problem
is NP-hard [18, 21].

Let us briefly summarize some notation and results on submodular flows.
Let G =(V, E) be a digraph, and b a crossing submodular function on 2%,
Let f:E—~RU{—}, g:E— RU{o0} be functions. Let c:E— R be a
cost function. For a vector x: E— R and a subset ACV let us denote
p(A)=Z(x{(uv): uv €EE, uv enters A), 8 {A)=p(V—A) and A (A)=
p(A)~ 8. (A). For FC E, py(A) denotes the number of edges entering A,
and 8(A) = p(V~ A). The functions py and 8 are abbreviated by p and
8, respectively.

An x is called a submodular flow if

-

f<x<g and A_(A)<b(A) foreverysubset Aof V.  (1.5)

The linear system in (1.5) is called a submodular flow system. Note that if p
is a crossing supermodular function, then

f<x<g and A (A)>p(A) foreverysubset AotV (1.5). -

is also a submodular flow system. [Indeed, A, (A)> p(A) is equivalent to
A(A)< ~p(A), and b(X)= = p(X) is crossing submodular.}
The main theorem on submodular flows is as follows.

TueoreM 1.4 (J. Edmonds and R. Giles [5]). The linear system
{f<x<g and A (X)<b(X) foreverysubset Xof V} (i)

is totally dual integral. Consequently, if f, g, and b are integer-valued, the
linear program -max(cx: x satisfies (i)) has an integral optimal solution
(provided it has an optimal solution). If ¢ is integer-valued, the dual linear
program has an integer-valued optimal solution y (if it has an optimal
solution). If, in addition, b is an intersecting submodular function, y can be
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chosen in such a way that the subsets corresponding to positive dual
variables form a laminar family.

2. THE MODEL

Let p:25— RU{ —co} be an intersecting supermodular function and r
a rank function of a matroid on § such that

p(2)=0, p<r, p(s)20 forevery s€8. (2.0)

Let us call a subset T €S a supporting set if

HTNX)=p(X) forevery XCS. (2.1)

By the assumption, S is supporting, and since r is monotone, a superset of a
supporting set is also supporting. What is the minimum cardinality of a
supporting set? Or, more generally, given a nonnegative cost function
¢:$— R, find a supporting set of minimum cost.

Tueorem 2.1. Let p and r satisfy (2.0). The minimum cost c(T) of a
supporting set T is

max( L w(A)h(A): L(w(A)Z(A):AcS) <c, w >0), (2.2

where w:2°— R, and h(A)=max(p(Y)—#(Y — A):Y 2 A). If ¢ is inte-
ger-valued, w can be chosen integer-valued.

Let us show that this result immediately implies a theorem of Groflin and
Hoffman [15]. Let r, and 7, be the rank functions of two matroids on the
same groundset S, and suppose that r,(§) = r(5) = r1o(S) =k, where r,5(B}
denotes the maximum cardinality of a common independent subset of B
(B C $). By Edmonds’s matroid intersection theorem,

q—»Amqu—nS.m—iNv+qpﬂm!N:. (=)
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Tueorem (H. Griflin and A. Hoffman [15}). Given a nonnegative cost
function ¢: S — R, the minimum cost of a common basis is

-

Bmuﬁmeﬁbv.wﬁﬁm - by 2(w(A)Z(A):AcS) e, wa ov.
b
where w:2% — R . If ¢ is integer-valued, w can be chosen integer-valued,

Proof. Apply Theorem 2.1 with the choice r(X):==r(X), p(X)==
k — 1(§ — X)), and cbserve that h{A) = r,,(S ~ A) follows from (*). [ ]

Theorem 2.1 has the slight drawback that it includes a certain function k.
For the special case when ¢ is 0-1-valued, the theorem can be formulated in a
stronger form that does not use the function h (but the maximization formula
becomes more complicated). Assume that ¢(s) is O on the elements of a
subset N of S, and 1 otherwise.

TaeoreMm 2.2. Let p and r satisfy (2.0), and let ¢ be O-l-valued. The
minimum cost of a supporting set is

max ,‘M.ancl:z:wvccﬁmnwm:ﬁ zcyyl)], (29)

where the maximum is taken over all laminar families % of distinct subsets

of S.
When N is empty Theorem 2.2 specializes to

CoroLLARY 2.3.  The minimum cardinality of a supporting set is

max «MwTQTACE"Nm,ﬁ.Nn«:_ (2.4)

where the maximum is taken over all laminar fomilies F of distinct subsets
of 8.

Proof of Theorems 2.1 and 2.2. We prove these theorems simultaneously.

To see that max < min in Theorem 2.1, let T be a supporting set. For any
two subsets XCY of S we have [TNX|+#(Y-X)>#(TNY)> p(Y).
Thus

ITNnX|zp(Y)—r(Y~X) (2.5)
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and hence |TNX|2h(X). From this «(T)> M.quASQ.C“ teA)=
TacsiT NAh(A) 2 L, csh(A)w(A), and max < min follows in (2.2).
The max < min direction in Theorem 2.3 follows similarly. Indeed, let T
be a supporting set and let T'=T — N. Now, for any two subsets X C Y of 5,
we have [T'N X|+r(NOAY)UXY - XP2r(TNY)2p(Y) and ._H.D Xz
p(¥) - r(N N Y)U(Y — X)), from which max < mip in (2.3) easily mo_._oimw
To see the equalities, let us consider the polyhedron Q of vectors x€ R

satisfying

2(X)2p(Y)—r(Y-X) forevery XgY(£S). (2.6)

Cramv 1.

supporting sets.

The 0-1 vectors in Q are precisely the incidence vectors of

Proof. By (2.5), obviously ;€ Q for every supporting set T. Con-
versely, let x =%; be in Q for some T ¢ §, and let X CS. Apply (2.6) by
substituting X ~ T for X and X for Y. We obtain (X —T)> p(X) —
(X N T). Since x(X —T) = 0, (2.1) holds and the claim follows. |

CraiM 2. The linear system in (2.6) is @ submodular flow system.

Proof. Let § and S” be two disjoint copies of S, and let V=5§"uUS5".
Where X € S we adopt the notation X and X" for the corresponding subsets
of §' and S”, respectively. Define E= {s”s": s €5}. The elements of E and
S are in 1-1 correspondence, and we identify RS and RE. For X,Y C S let
p(YYUX)=p(Y)—r(X)if XCY, and = —co otherwise.

Now p, is an intersecting supermodular function, and

p2)-8,(Z)2p,(2Z) forevery ZCV (2.7)

is a submodular flow system. Since 8(Z) =0 whenever p(Z) is finite, (2.7")
is equivalent to

pZ)=p,(Z) forevery ZCV, (2.7)

which is, in turn, equivalent to (2.6) |
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Let # denote the family {Z ¢ V: p\(Z) is finite). Let c: E—Z, bea
nonnegative integral cost function. Let us consider the following dual pair of
linear programs:

for Ze .@3,

min{cx: x>0, p(Z) > p,(Z) (2.8)

)» p(Z)z(Z):220,

|
ZeR

2 (2(Z): ¢ enters Z) < c(e) mouoa.oa\mmmv_ (2.9)

where 2: # > R .

By Theorem 1.4 there is an integral solution %o to (2.8) and an integral
solution z, to (2.9) such that cxy = p,z, and the family #, = {Z € #: z4(Z)
>0} is laminar. If there is more than one such %, assume that x, has
minimum component sum. ) -

Cramm 3. =z, is a 0-1 vector.

+

Proof. Indirectly, let us suppose that a component of x,, say xq(i), is
greater than 1. Since ¢ > 0 and x, is optimal, on decreasing x,(i) by 1 we
obtain a vector which is not a solution to (2.8). This and the fact that p, is
integer-valued imply that there must be a set Z=Y’U X* such that X cy,
i€Y-X, and p (Z)=p(Z). Lt X;=X+i and Z,=Y'UX{" Then
PAZ) = p(Y)~ (X)) 3 p(Y) = H(X) = 1=p,(Z)—1=p(Z)~1, and we
have p_(Z,)= P{Z)~x(i) < p ({Z)-2=p(Z)-2< pi(Z,), contradict-
ing the fact that x, satisfies (2.8). [Here we have exploited the fact that r isa
matroid rank function and so r(X +i) < #(X)+ 1] n

Let T denote the set for which 2 =x,. For every Z=Y'UX"e %,
define w(A)=1(z(Z):Z=Y'UX", A=Y-X). Then L(w(A)Z(A):
ACS)<c and E(w(A)h(A):ACS)> LzeaPZ)2o(Z) = e(T), from
which Theorem 2.1 follows. )

To see Theorem 2.2 recall that ¢(s)=0if s& N and = 1 otherwise. We
can assume that every edge s”s’ (s € N) enters a set Z € #,. For otherwise,
let Z={s'} and revise zZy by increasing it from 0 to 1. Since p(s) = 0, the
revised z, is another optimal solution to (2.9).

Let Z, =Y, U X{’ be an arbitrary member of Fandlet Z,=Y'UX/
(i=1,2,..., k) denote the maximal sets of #, for which Z, c Z,. For every
5§ €5 — N the edge s”s’ enters precisely one set in #,. Therefore we have
Xo=UL Y, V(YN N) and p,(Zg) = py(Zo) = p(Yo) — 1(X,).
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Consequently, T and the family # = {Y:Y'UX"€ %, for a certain
XcS) satisfy o(T)=|T~N|=Ly olp(Y)-r(NNY)UKZ:Ze £,
ZcYy) : [ ]

Remark 1. In [11] a strongly polynomial algorithm was developed to
solve optimization problems (and their linear-programming duals) over an
(integral) submodular flow polyhedron in the 0-1 unit cube. That algorithm
needed an oracle (A) that can minimize certain submodular functions.

Let TS be a subset, and define p(X,Y)=p(Y)—r(X)- Y- X)
NT| for XCYCS. One can easily show that in our case oracle (A) is
available if for any subset T € S and for any two elements a, b €S one can
maximize pr(X,Y ) over subsets XC Y for which{l) e X and beY - X,
2y aeX and beS-Y, 3) acY—X and bS5—Y. (These are three
distinct oracles.)

Remarx 2. One can ask if there is an extension of these results for the
case when the matroid in question is replaced by an (integral) polymatroid.
That is, given a polymatroid function b (i.e. a submodular, monotone
increasing, nonnegative integer-valued function on 2%) and an intersecting
supermodular function p such that 5> p, find a subset T of minimum
cardinality for which (T N X) > p(X) for every X £ S. (Again call sucha T
supporting.) This problem however is at least as difficult as the matroid
matching problem; therefore it cannot be solved in polynomial time {18, 21].
Indeed, let b be a 2-polymatroid function, that is, b(s) =2 for every s €8§.
Let k be a positive integer, and define p(X)=2k if X =§, =0if X =0,
‘and = — o otherwise.

Since b(T) < 2|T}, the minimum cardinality of a supporting set is at least
k. Thus if one can find a minimum cardinality supporting set, one is able to
decide:

is there a subset X C § of k elements for which b(X) =2|XP (=)

(*) is an equivalent formulation of the matroid matching problem.

3. AFPLICATIONS TO BIPARTITE GRAPHS

Let G = (A, B; E) be a simple bipartite graph with no isolated nodes, and
N C E a specified subset of edges. Let p:24 = Z U{ — oo} be an intersect-
ing supermodular function, and M a matroid on B with rank function r. Let
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¢: E— R, be a nonnegative cost function. Call a subset R C E supporting if
r(Tp(X)) 2 p(X) for every X C A. We say that R is supporting with N if
R U N is supporting. Let us suppose that E is supporting.

Treorem 3.1. In a bipartite graph G = (A, B; E) the minimum cost
¢(R) of a supporting set RC E is max(T{w(Z)[p(ZNA)-HZNB):ZC
AUBY:X[w(Z):u€ZNA, vEB-Z]<c(ur) forevery w € E, w2 0).
Furthermaore, if ¢ is integer-valued, w can be chosen integer-valued.

Proof. First, define a matroid M; on E as follows. For FCE let
r{F)=r(X), where X C B is the set of elements in B incident to F. Seccnd,
define p:2E 2 ZU{ -} by p(F)=p(X) if F is the set of edges
incident to the elements of a certain X C A, =max(0,p(s)) if F= (s}
(s €E), and = — o otherwise. Now Theorem 2.1 applies to p,, r,, and E,
and Theorem 3.1 follows. [ ]

Analogously Theorem 2.2 implies:

TueoREM 3.2. In a bipartite graph G = (A, B; E) the minimum cardi-
nality of a set R supporting with N is equal to max g Ly . &[p(Y ) — r(T\(Y)
UI(U{Z: Z e &, ZCY}))), where the maximum is taken over all laminar
families # of distinct subsets of A.

One can be interested in finding a supporting set that mests some degree
constraints at the nodes of A. Let g: A— ZU{co} be a function. -

TreoreM 3.3. Let G, N, r, and p be as before. There exists a subset R
of E supporting with N such that d g(v) < g(v) for every v € A if and only if

p(Y)<g(Y - X)+ r(Ty(Y)UT(X)) @.1)

holds whenever X CY C A.

Proof. Necessity: Let R be supporting with N. Then p(Y)<
KTrun(Y)) < r(Ty(Y) U T(X) U TR(Y — X)) < n(T(Y) U T(X)) +
ITa(Y = X)r & (T (Y)UT(X )+ g(Y — X).

To see the sufficiency, we can obviously assume that g is finite every-
where. Observe that if there is a solution with respect to g, then this solution
is good with respect to any (componentwise) bigger g’. So we can suppose
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that g is minimal in the sense that (3.1) is not true if we decrease any positive
component of g.

Cramnv 1. g{v) < r(T(0)) — r(Ty(v)) for every v € A.

Proof. Suppose g(v) > r(T(v)) — r(Ty(v)) for some v € A. Revise g by
reducing g(v) to g’{(o)=r(F(v))— r(Ty(v)). Now there is a ¥ and X
(XCY CA, peY— X) for which p(Y) > g'(Y — X)+ r(T(¥ )u T(X)). By
submodularity we have r(I'(0))+ (T(YIU (X)) = r(T(v)N{TH(¥YIU
I(X)]) + 7(T(0) U [Ty(Y) U FX)D) > r(Ty(0)) + r(Ty(Y) U T(X + v)).
Therefore, p(Y)> g (Y — X)+ r(Ty(YYU (X)) = g(Y — (X + 0))+ #(I(v}))
= Tp(eN+ r(Ty(Y)UTXN 2 g¥ = (X + o))+ r(THu(Y YU I'(X + ©)).
This shows that Y and X’ = X + o violate (3.1), a contradiction. ]

Observe that increasing an intersecting supermodular function on single-
tons results in an intersecting supermodular function. So we can suppose that
p is maximal in the sense that (3.1) is not true if we increase p on any
singleton.

CramMm 2. p(v)=g(v)+ r(Ly(v)) for every v € A.

Proof. Applying (3.1) to Y= {v} and X =@, we obtain that p(v)<
g(0)+ r(T'\(v)) for every o€ A. Suppose indirectly that we have strict
in, ity for a certain v. Revise p by increasing the value p(v) to p'(v)=

‘g(v)+ r(Ty(v)).

Now (3.1) can be violated (with respect to p) only if either Y = (¢} and
X=@ or else Y={v} and X={v}. The first case would mean that
p'(v) > g{v)+ r(Ty(v)), contradicting the definition of p’(v). The second
case would mean that p(v)> r(Iy(v)UI(v)) = r(I(v), that is, g(v)+
r(Tyw(v)) > #(I(v)), contradicting Claim 1. [ ]

Specializing (3.1) to X =Y, we obtain p(Y) < r(I(Y)) for every Y C A,
so Theorem 3.1 applies. Let R { C E—N) be supporting with N. Then
7(Tn ua(v)) 2 p(v) = g(v)+ r(Ty(v)); therefore dg(v):>g(v) and |R|>
g(A). That is, the minimum in Theorem 3.2 is at least g(A), and it is exactly
g(A) if and only if R satisfies d4(v) < g(v) for every v € A.

Let us assume that the minimum in question is greater than g(A). By
Theorem 3.2 there is a laminar family # for which g(A) <L, &[p(Y)—
H(Ty(Y)UTU(Z:Z€F, ZCY)))). Hence 0<p(Y)—n(To(Y)U (X))
— g(Y — X)) holds for at least one member of #, where X denctes X:=
XZ: Z € #, Z CY). This contradicts (3.1). [ ]

Observe that Theorem 1.3 formulated in the Introduction is Theorem 3.3
specialized to N=g,
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Remark. A. Schrijver [26] proved the following theorem: Given two
nonnegative, intersecting supermodular functions p, and p, on 2°, the
elements of S can be partitioned into k color classes so that each subset
X c§ intersects at least max(p,(X), po(X)) color classes if and only if
p(X) < min(k, [X] (i = 1,2).

This theorem can be slightly reformulated in term of supporting sets as
follows. Let G = (S, Z; E) be a complete bipartite graph with |Z| =k, and let
p, and p, be as before. There exists a subset R € E for which dz(v) <1 for
every v €5 and R is supporting with respect to both p, and p,.

Compare this result with Theorem 3.3 (restricted to the case N=2). In
Theorem 3.3 we have an arbitrary bipartite graph, an arbitrary g, a matroid
rank function, and one supermodular function. Here the bipartite graph is
complete, g =1, and two supermodular functions are involved. Does there
exist a common generalization?

4. APPLICATIONS TO DIGRAPHS

Let D=(V,E) be a directed graph. For sets XCV and FCE de-
note Op(X):== {u€V~ X:there is a woe€ F with v€ X} and I(X)=
{ve X:there is a wo & F with u€ V- X}. (Letters O and I refer to the
words outer and inner, respectively.) O and I are abbreviated by O and I,

respectively. Let p:2¥— Z U{ — o0} be an intersecting supermodular func-
tion such that |O(X)|= p(X) for every XCV. Let g:V—ZU{c0} and ~

¢: E~ R, be functions. , )

We call a subset FC E of edges outsupporting if |Ox(X)[ = p(X) for
every X C V, By the assumption made on p, the set E is out-supporting.

With the help of the well-known node-splitting technique (see e.g. [6,
p- 24]) problems concerning out-supporting sets in directed graphs can be
reduced to those conceming supporting sets in bipartite graphs. Namely,
define a bipartite graph G’=(V',V"; E") as follows. For a set XCV we
adopt the notation X’ and X" for the corresponding sets in V' and V”. The
nodes v €V’ and ©”&€V" correspond to a node vEV. Let N= {¢"0':
v€V} and E'=NU{u"v':uv€E}. Define p:2"">ZU{ -} by
p'(X’)= p(X)+|X| A cost function c: E— R, can be extended to a cost
function ¢’: E'— R by letting c’(e) =0 if e €N and c'(u""v') = c(uv) if
uv € E,

Observe now that F ¢ E is out-supporting (with respect to p) if and only
if the corresponding F’ is supporting with N (with respect to p’ and
r(X) = |X)). Utilizing the construction above, we can establish the following
counterparts of theorems of Section 3. We do not formulate these results in
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their full generality, since, unlike the bipartite case, the only interesting
- applications we were able to find use the free matroid (a matroid with no
. circuits). Therefore we state these counterparts only for the free matroid.

TueoreM 4.1.  The minimum cost of an out-supporting set of edges is

- max{Z[w(Y, XXp(Y) = |XD:YCV, YNX=8, XCO(Y)]:[w(, X):

YUXeF . YNX=0,XcOY), ucO(Y)~X, veY]<c(uv) for each
edge uv € E}. Furthermore, if ¢ is integer-valued, w can be chosen integer-
valued.

Proof. Suppose that the optimal solution w’ in Theorem 3.1 is such that
2 (1Z): w'(Z) > 0) (%)

i minimum. Let us consider any set Z C V'U V” for which w'(Z) > 0. Since
¢{e)=0 for e € N, we have v” € Z whenever v’ € Z. We can assume that
H ¢”€ Z and v’ & Z, then v” has a neighbor in Z N V. For otherwise revise
u’ by w(Z — v”)= w(Z - v")+ w(Z) and w'(Z) = 0. The new w’ would
be another optimal solution, contradicting to the minimum choice of (*).
Let YY=ZNV and X"= (v":0"€Z, v'& 2}, and define w(Y, X) =
w'(Z). By Theorem 3.1 the result follows. [ ]

The next two results follow in an analogous way from Theorem 3.2 and
3.3, respectively.

THeorEM 4.2. The minimum cardinality of an out-supporting set of

exdges is Emu.vAMavaA%vl_OamN..Nm..wﬂ, ZCY V) —Y|), where F is
laminar.

TrEOREM 4.3. Letg:V—Z U {0} be a function. There is an out-sup-

vi.m.._...m set F of edges for which py(v) < g(v) for every v €V if and only if
PY)<g(Z)+|O(Y = Z) ~ Y| holds for every YcVand Z C I(Y).

By a simple construction we have
Tueorem 44. Let g:V—Z,U{co) and E:E—=Z U{w)} be two

famctions and p:2¥—Z U{ ~w0) an intersecting supermodular function
such that p{X) > p(X) for every X C V. There exists a nonnegative integer
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vector x:E—-Z, for which x<§, p(v)<g(v) for every v€V, and
pLX) 2 p(X) for every XC V if and only if -

p(X)<g(Z)+ X [E(uww): uweE, ueV-X, vel(X)~-2Z] (4.1)

Jfor every X CVand Z C I(X).
If £ = o0, then (4.1) is equivalent to

p(X)<g(I(X)) forevery XcV. (42)

Proof. First we show that if § = co, then (4.2) implies (4.1). Indeed, if a
certain X viclates (4.1), then the sum in (4.1) cannot include any term, that
is, Z=IKX). .

The necessity of (4.1) is straightforward. To see the sufficiency it suffices
to prove the result when £=1. Indeed, first delete edges with g(¢)=0.
Second, if §(e)=co for some ¢ € E, then we can replace g(e) by a big
enough integer [e.g. max p(X) would do]. Finally, if § is finite and positive
everywhere, then replace each edge e by g(e) parallel edges. Obwviously, if
the new problem has a solution, then so does the original one. On the other
hand, if a certain X and Z violate (4.1) with respect to the new problem,
then the same X and Z violate (4.1) with respect to the original problem.

So suppose that ¢ = 1, and assume that (4.1) holds. We are going to find a

subset F of edges for which px(X) > p(X) for every X € V and plr)<g(o)’

(v € V). For each node v let @(v) = {v,}U{v,: e € E leaves v} be & set of
8(v)+1 distinct nodes. Construct a digraph G,=(V,, E)) where V=
Upcvp(v) and E; = {u,0): e = uvo € E}. (Intuitively we cut out every edge
at its tail.) Let g,(v,) = g(v) for every v € V and g{v,) =0 for every ¢ EE.
Let us define p,(X,) = p(X)if X, =U, xp(v) for some X CV,and = — o
otherwise. By applying Theorem 4.3 to G,, p,, g, the result follows. [ ]

Here we list some consequences of Theorem 4.4, Given a directed graph
(=(V,E), a directed cut is a nonempty subset of edges entering some
subset X of nodes such that there are no edges leaving X. A directed cut
covering, or simply a cover, is a subset of edges meeting all directed cuts.
Lucchesi and Younger [22] proved that the minimum cardinality of a cover is
equal to the maximum number of edge-disjoint directed cuts.

One can be interested in finding a cover that meets some upper-bound
restriction on the in-degrees. Note that any minimal (not necessarily mini-
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mum) cover is a directed forest. Recall that a branching is a directed forest
with no two edges entering the same node.

TuEOREM 4.5.  There is a branching meeting oll directed cuts if and only
the number of components of V — Y with no entering edges is at most Y| for
every subset Y C V.

Proof. The necessity is trivial, so we are concerned with the sufficiency.
For a nonempty subset X of nodes let us define ¢(X) to be the number of
components of V ~ X if there is no edge leaving X and ~ co otherwise, Let
c(D)=0. It is not difficult to see that ¢ is an intersecting supermodular
function (see, e.g., Lemma 2.3 in [8]) and F is a cover if and only if
Pr(X) 2 o(X) for every @# X C V. We claim that (4.2) holds with respect to
p=c, g:=], and §:=c0. Indeed, f X violated (4.2), then I(X) would
violate the condition of the theorem. Hence Theorem 4.4 implies that there is
an integer vector x for which p (X) 3> ¢(X) for every XCVand p(v)gl

_for every v € V. By this second inequality x is O-l-valued. Let F’:= {e:x(e)

=1}. Now F’ is a cover satisfying the indegree restriction, so a minimal
cover F included in F' satisfies the requirement of the theorem. |

Remark.  Notice the formal analogy between Tutte’s characterization of
the existence of a perfect matching of undirected graphs and Theorem 4.5.
Some further analogies of this type were discussed in [13].

From Theorem 4.4 one can easily derive a necessary and sufficient
condition for the existence of a directed-cut covering satisfying an arbitrary
upper-bound restriction on the in-degrees.

Our next corollary is about packing and covering with arborescences. The
basic result in this area, due to J. Edmonds {3), is concerned with packing: In
a directed graph G =(V, E) there are k edge-disjoint (spanning) arbores-
cences of root r (reV) if and only if p(X)2k for every XC
V —r. A counterpart of this theorem concerning covering arborescences was
proved by K. Vidyasankar [28): A directed graph G can be covered by k
spanning arborescences rooted at r if and only if there is no edge entering r,
p(v)<k for every vEV -7, and k—p(X)<Z[k~p(v): v € I(X)] for
every X C V- r. (For other results concerning arborescences, see [1, 7].)

We are going to show the following common generalization:

THEOREM 4.6. Let G =(V,E) be g directed graph, and r a specified
node of G with no entering edges. Let f:E—Z, and g:E—Z U{0} be
two functions such that f & q. Theve is a family o of k spanning arbores-
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cences rooted at r such nraugnr&mmmwngﬁ:&ma&gm& and at
most g(e) members of if and only if p{v) < k for every v €V - v and

»lb\ANvMM—»lb%ﬁcv“cmb._

+X[ale) ~ fle):e~uweE, o€ I(X) - 4, ue V- X]
(4.3)

g&uﬁgkmﬂlﬂn&bmﬁkv.

Proof. We are going to rely on Edmond€ theorem. The required family
= exists if and only if there is an integer vector x: E — Z, for which

(a) x<g-f,
(b) pr.(v) =k for every b€V ~r, and
(©) pro(X)2 k forevery XgV—r,

Indeed, if we have such an x, replace each edge e by fle)+ x(e) (parallel)
copies. By Edmonds's theorem the edge set of the resulting graph can be
partitioned into k edge-disjoint arborescences. The corresponding k arbores-

cences in C satisfy the requirements of the theorem. Conversely, if the

desired family o7 of arborescences exists, then let y(e) denote the number of

arborescences in o containing e. Then x =y ~ f satisfies (a), (b), and (c). .

The existence of an x satisfying (a), (b), (¢) and therefore the theorem
follows if we apply Theorem 4.4 with the following choice: let p(X):=k —
pA(X)if BeXCV—1r, =0if X=0, and = — ¢ otherwise. (This pis
intersecting supermodular.) Let g(v)=k —pr(?) (vEV) and g(e)=
q(e)~ fle) (e € E). L

Remark. In our derivation Theorem 4.6 has been obtained as a by-prod-
uct of a more general approach. One may be interested in knowing if this
result can be proved without referring to such general devices. Here we
briefly outline a direct proof that deduces Theorem 4.6 from Edmonds’s
abovementioned theorem by an elementary construction.

Direct proof of Theorem 4.6. We can assume that g(e) < k foreverye e E.
Construct a digraph G’ = (V’, E’) as follows. Let V':=V U{v:vEV—r)}.
Let E’ consist of the following type of edges. For each v € V ~ r there are k
edges from v to v’ and k — PA(v) edges from v’ to v, and for every edge
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w0 €YV there are f(uv) parallel edges from © to v and g(uv) — fluv)

paralle]l edges from u to ¢’

If in G’ there are k edge-disjoint spanning arborescences rooted at r, then
the arborescences in G corresponding to these will satisfy the requirements,
If no such a family exists, then, by Edmonds’s theorem, there is a set
Y’ V'~ r for which p’(Y") < k. Suppose that Y’ is maximnal. Obviously, if v*
is in Y', then so is v. Furthermore, if vE€ Y’ and v’ & Y’, then there is edge
uv€E with u€Y’. For otherwise p(Y'+ )< p'(Y"), contradicting the
maximal choice of Y.

Consequently, Y’ has the following form: Y’'= {v,0:vEX-A}U
{v:v€A) forsome XCV—rand AC I(X). Now we have k > p'(Y") =
Localk—pA0))+Equv):ue X, o EIX)-Al+Z[fluv):ue X, ve
Al =T, 4lk = pA0)] +Z[g(uv) — fluv): u & X, v I(X) - A]+ pr(X),
contradicting (4.3). ]

5. IMPROVING NETWORKS

FroBLEM A. Suppose we are given a digraph G, with a source s and a
target ? such that the maximum number of edge-disjoint paths from s to £ is
k. The goal is to increase this number to a specified integer K (K > k) by
adding certain new edges to the graph. If the possible new edges have
nonnegative costs, what is the minimum total cost of new edges to be added?

This problem can easily be reduced to a minimum-cost flow problem in
the union graph of the new and the original edges where the costs of the
original edges are defined to be zero. (See, for example, {6].)

ProrLEM B. Now suppose we want to improve our digraph by adding
edges of minimum cost so as to have K edge-disjoint paths from a source s to
each other node.

One can relatively easily show that if a digraph D has K edge-disjoint
paths from s to each other node but removing any edge destroys this
property, then every node of D different from s has precisely K entering
edges. Thus Problem B can be reduced to a weighted matroid intersection
problem where the first matroid is K times the circuit matroid of the
underlying undirected graph (that is, a subset of edges is independent if it is
the union of K forests) while the second matroid is a partition matroid where
a subset of edges is independent if it contains no more than K edges entering
the same node. Since there are good algorithms for the matroid intersection
problem (4], Problem B is also solvable in polynomial time.,
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In both problems one can be interested in openly disjoint paths rather
than edge-disjoint. In the first case we can easily reduce the corresponding
problem to Problem A by using the straightforward node-duplicating tech-
nique mentioned at the beginning of Section 4. _

The openly-disjoint-paths counterpart of Problem B is as follows.

ProBLEM C. Given a digraph G, =(V, E,) and a specified source s € V,
add a set of edges of minimum cost to G, so as to have K openly disjoint
paths from s to o forevery vV -8§.

The following version obviously includes Problem C.

Prosrem C1.  Given a digraph G, =(V, E,) and a specified subset S of
V, add a set of edges of minimum cost to G, 5o as to have K paths from § to
v for every v € V—§ that are pairwise disjoint except at v.

A slight generalization is as follows.

ProeLEM C2. Let us be given a directed graph G =(V, E), a subset
S C 'V, and a nonnegative cost function ¢: E ~ R,. Find a subset F of edges
of minimum cost so that

(*) for every node v € V- S the digraph (V, F) contains K paths from
5 to o that are pairwise disjoint except at o.

It would be natural to try to reduce this problem to the edge-disjoint case
with the help of an elementary construction. We were not able to find such a
reduction. However, the model worked out in previous sections helps us.

By a version of Menger's theorem, an F satisfies (=) if and only if
[Op(X)| 2 K for every X € V- S. Define a function p:2¥— Z U{ -0} by
p(X)=Kif 2+XCV-8§, =0if X=2,and = ~ co otherwise. Such a P
is intersecting supermodular, and Theorem 4.1 provides a min-max formula
for the minimum cost of F.

Our derivation also gives rise to a polynomial-time algorithm, since the
necessary oracles mentioned in Remark 1 at the end of Section 2 can be
constructed. However, it would be desirable to devise a more direct algo-
rithm.

We can apply Theorem 4.3 to this case as well. By choosing g{v)=K
(v € V) one can show that the necessary and sufficient condition in Theorem
4.3 automatically holds, and then one has

CoRoLLARY.  Suppose that a digraph G =(V, E) contains K internally
node-disjoint paths from a specified node s to any other node, and C loses
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this property if we delete any of its edges. Then the in-degree p(v) =K for
every vEV —s.

(Note that this corollary has an easy direct proof: if a node v distinct from
s has more than K entering edges, then take K internally node-disjoint paths
from s to v. It is easy to see that an edge entering v which is not used by
these paths can be deleted.) .

Let us conclude by mentioning that various other augmentation problems
occur in the literature. For further references see a recent paper of T.
Watanabe and A. Nakamura [29].
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