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Kernel systems of directed graphs
ANDRAS FRANK

9. In graph theory there is a number of min—max theorems of quite similar
type such that one is not a direct consequence of the other. For instance. a theorem
of 1. Edmonds states that in a directed graph there exist & edge disjoint spanning
arborescences rooted at a fixed vertex r (see the exact definitions and formulation
below) if and only il the indegree of every subsel ol vertices, not COnLEIng s
at least k. A version of Menger's theorem resembles Edmonds™ oner in a directed
graph there exist & edge disjoint paths from r to another fixcd vertes & if and only
if the indegree of cvery subsct of vertices, containing § but not r. is at Jeast k.

. It is a natural question whether there exists a common generahization of these
theorems of similar type. The purpose of this paper is to present a tool, by means
of which such a unification can be obtained on the one hand. and new min-—-max
theorems can be concluded on the other hand. This tool is the notion of a kernel
system, which is, roughly, a family of subsets of veriices of a dirccted graph which
is closed under intersection.

Perhaps the most interesting consequerices of min—max theorems concerning
kernel systems are the following:

a) A conjecture of J. Edmonds and R. Giles concerning directed cuts is solved
for graphs possessing an arborescence.

b) A min—max formula is given for the maximum number of cdges which
can be covered by K spanning arborescences rooted at a fixed vertex.

Some further corollaries of our results will be published in another paper [7]
where, among others, a min—max formula is given for the maximum number
of edges of a digraph which can be covered by & branchings.

At this point we refer to a recent, fundamental article of EomonDs and GiLes {2}
concerning ‘min—max relations for submodular functions.

Some of our notions are similar to those of Edmonds and Giles and in the
proof of Theorem 3 a relevant idea of their work will be used. However our results
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seem to be independent of the main theorem of [2]. The exact relation will be
explained in the last section.

Let G=(V, E) be a finite directed graph with vertex set 7 and edge set E.
Multiple edges are allowed, loops are excluded. Let r be a distinguished vertex,
called the roor of G. An arborescence rooted at r (or briefly r-arborescence) is a
directed spanning tree such that every vertex can be reached by a directed path
from r (see [1]). An r—s-path is a directed path from r to the vertex s.

We say that a directed edge e enters a subset X of vertices if the head of e is
in X but the tail is not. We say that a subset E” of edges enters a subset X of V
if at least onc clement of E’ enters X. The indegree ¢(X) and the outdegree 6(X)
of a subset X of ¥ is the number of edges entering X or ¥\ X, respectively. It is
well known that the function o(X) is submedular, ie. ¢(X)+g(Y)=o(XUY)+
+¢{XNY) for every pair X, Y of subsets of vertices.

For an arbitrary set X, X' X means that X’ is a family of not necessarily
distinct clements of X. |X| denotes the cardinality of X. We shafl use the notation
V\rinstead of P\ {r}. Two subsets X and Y of ¥\ are called crossing if XN Y =0,
XNY=#B, YNX#0. Otherwise X and Y are non-crossing. A family of subsets of
V\r is called laminar if its members are pairwise non-crossing. (These notions
occur slightly more generally in previous papers [2, 9].) A directed cut of G is a
nonempty set of edges entering a vertex set X provided S(V\X)=0.

1. Definition. A family .# of distinct subsets of vertices of ¥\ is called
a kernel system with respect to G if

1) o(M)=0 for every Mc.#;

2)if M, N¢.# and MN=® then MNN, MUN<.# The members of
4 are called kernels.

Examples. 1. #={M: MSV\r}. The second axiom is trivially satisfied,
the first one holds if G has an r-arborescence.

2. Let s be another fixed vertex of G and #,={M: MC V\r,5¢M). The
first axiom holds if there exists an r~-s-path.

3. My={M: MSV\r,6(M)=0}. If G is connected (in the undirected sense)
then the first axiom is fulfilled. The proof of the second one, as an easy exercise,
is left to the reader.

4. If # is an arbitrary kernel system with respect to G then the kernels of
minimum indegree form another kernel system

M = {M: M A, ¢(M) = min o(X)).

Xeb

The proof of the second axiom is as follows: Let k= Mﬁ e(X) and M, Ne#".
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Then |
ik =o(M)+o(NY= o(MUN)+o(MNN) = k+k
whence ¢(MUN)=p(MNN)=k, therefore MUN, MOINeA’.
5, Let .# be a kernel system and F be a subset of edges, then

Me = {M: Mc #, F does not enter M}
is again a kernel system. The axioms trivially hold.

2. let k be a positive integer.

Definition. A subset £’ of edges is called k-entering with respect to the kernel
system .#, if in the subgraph formed by E’, the indegree of every kernel is at least k.

Theorem 1. 4 subset E’ of edges is k-entering if and only if E’ can be parti-
tioned into k 1-entering subsets.

Proof. The necessity is trivial. For the sufficiency it can be assumed that
E’=FE. We are going to prove that E can be partitioned into a l-entering subset
E, and a (k—L)-entering subset E;. This assertion proves our theorem.

The subset E, will be construcied sequentially and once an edge has been
inserted into E, it is never changed. In an intermediate stage of the algorithm a
kernel M is called dangerous with respect to the current E if

ee-p{M)=k-1

Starting from the empty set E,, in every step we consider a maximal kernel
M such that E, does not enter M. Insert an edge e into Ej which enters M but
does not enter any dangerous kernel, and then we say that e was inserted into £,
because of M. The process stops when E; is l-entering.

To verify this algorithm we have to justify that the required edge e always
exists.

Claim 1. If f€E, then the head of f is not in M.

Proof. Suppose the contrary then the tailof f is also in M, by the algorithm.
Let E, denote the set of edges which were inserted into E, before f, and suppose
that f was inserted into E; because of M, Now M NM=0 therefore M MM
is a kernel. E, does not enter M MM and M/JMs=M, which contradict the

maximality of M, O
Claim 2. If M, is dangerous with respect fo E, then MpE M.

Proof. Since M, is dangerous, there exists an edge e,€E, entering Mp. The
head of this edge is in My, but not in M by Claim 1. O
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Claim 3. If M and N are dangerous kernels and MNN is nonempty, then M(\N
is dangerous as well.

Proof. k—1+k—1= mn|m_§5+mnlm,AZVWmmum_ﬂaczv.Tm?muEDZVW
z=k—1+k—1 whence mn,.m_AEDZvaI_. O

If every dangerous kernel is disjoint from M then an arbitrary edge entering
M can be inserted into E, and we are done since the new set EN\E, remains (k—1)-
entering. Otherwise let M, be a dangerous kernel such that Mp,MNM=0 and
M S\ M is as small as possible.

By Claim 2, M,\M0. There exists an edge e with tail in M, M and head
in M, M since otherwise

k—1 = 05-g,(Mp) = 965, (MpNM) = k—1

whence MMM is a dangerous kernel, contradicting Claim 2.

We assert that the edge e enters no dangerous set. If ¢ entered a dangerous
set M, then M’=M,NM, would also be dangerous by Claim 3. The existence
of such an M’ is in contradiction with the minimum property of M;,. O

Corollary 1. (J. EDMONDS [4]) A digraph G has k edge-disjoint r-arborescences
if and only if the indegree of every subset of V™\r is at least k. .

Proof. Apply Theorem 1 to the first example. The corollary follows from
the simple fact that a l-entering edge set surcly contains an r-arborescence. [

Corollary 2. (Directed edge version of Menger's theorem [11) In a digraph
there exist k edge disjoint r—s-paths if and only if the indegree of every subset of
V\r containing s is at least k.

Proof, Apply Theorem 1 for the second example. The corollary follows from
the simple fact that a 1-entering edge set surely contains an r—s-path. O

The next consequence settles in the affirmative a conjecture of J. EDMONDS
and R. GILES [2] in a special case.

Conjecture. An edge set E’ is a k-covering of directed cuts of a directed
graph if and only if E’ can be partitioned into k I-coverings of directed cuts. (An
edge set E’ is called a k-covering of directed cuts if every directed cut contains at
least k edges of E).

Corollary 3. The conjecture of Edmonds—Giles is true for graphs possessing
an arborescence.

Proof. Applying Theorem 1 to the third example we obtain that a k-covering
(that is a k-entering edge set) of those directed cuts which are directed away from
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r can be partitioned into k 1-coverings. However when the graph has an r-arbores-
cence then all of the directed cuts are of this type.

Remark. The proof of Theorem 1 can be considered as a generalization of
LovAsz’ proof in [8] of the afore mentioned theorem of Edmonds. It is, in fact,
a polynomial bounded algorithm provided that some simple operations can be
carried out in polynomial time on the kernels. These operations are as follows:

a) Find a maximal kernel M such that E does not enter M for an arbitrary
edge set E.

b) Decide whether E” is k-entering for arbitrary edge set E’.

The above three corollaries are of this type. In Corollary 1 we obtain LovAsz’
algorithm. In Corollary 2 our proof does not mean a new algorithm for Menger’s
theorem since the only way at hand to check b) is to use the classical augmenting
path method.

In Corollary 3 operation a) is simple because the required maximal kernel
M consists of those vertices which cannot be reached by a directed path from r
in the graph arising from G after contracting the edges of E’. Operation b) can be
carried out as follows: Let G* denote the graph which arises from G after in-
serting k—1 reversed copies of all the edges of E”. 1t can easily be checked that
E” is k-entering if and only if there exist k edge disjoint r—s-paths in G'* for every
vertex s€ V\v. This latter problem is polynomially solvable.

3, Let ¢ be a nonnegative integer function defined on the edge set E of G.
e(e) is called the weight of e.

Definition. A family .#’ of not necessarily distinct kernels of .# (i.e. .# ")
is called c-edge-independent if each edge e enters at most ¢(e) members of #'.

Theorem 2.

D max l.#’| = min 2 cle)
eEE
where the maximum is taken over all the c-edge-independent subfamilies A of K
while the minimum is taken over all the l-entering edge sets E’.
(2) The maximum can be realized by a laminar M’ too.

Proof. max=min. A simple enumeration shows that [#'|= 3 ¢(e) for
any c-edge-independent .’ and for any l-intering E’. e

max—=min, We are going to construct a c-edge-independent family #’ and
a l-entering edge set E’ such that _.\%_Mnm.n@.

The algorithm consists of two parts constructing .#” and E’, respectively. It
has the interesting feature that both of its parts are of the greedy type, i.e. both

5*
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Claim 3. If M and N are dangerous kernels and MNNis nonempty, then M(\N
is dangerous as well. .

Proof. k—t1+k—1= mnlﬁ@5+@?BAZVWQ?EQACZYTnoFEQ&D.?JW
=k—14+k—1 whence g g (MNN)=k—1. O

If every dangerous kernel is disjoint from M then an arbitrary edge entering
M can be inserted into E, and we are done since the new set E\ E, remains (k —1)-
entering. Otherwise let M, be a dangerous kernel such that M,NM=0 and
MpNM is as small as possible.

By Claim 2, M,\M 8. There exists an edge e with tail in Mp\M and head
in MMM since otherwise ‘

k—1 = 06-5,(Mp) = ¢c-5,(MpNM) = k-1

whence MM is a dangerous kernel, contradicting Claim 2.

We assert that the edge e enters no dangerous set. If ¢ entered a dangerous
set M, then M’=M,NM, would also be dangerous by Claim 3. The existence
of such an M is in contradiction with the minimum property of Mp. O

Corollary 1. (L. mv.Zozdm [4]) A digraph G has k edge-disjoint r-arborescences
if and only if the indegree of every subset of V\r is at least k.

Proof. Apply Theorem 1 to the first example. The corollary follows from
the simple fact that a l-entering edge set surely contains an r-arborescence. [

Coroliary 2. (Directed edge version of Menger’s theorem [1]) In a digraph
there exist k edge disjoint r—s-paths if and only if the indegree of every subset of
V\s containing s is at least k.

Proof. Apply Theorem 1 for the second example. The corollary follows from
the simple fact that a 1-entering edge set surely contains an r—s-path. O

The next consequence settles in the affirmative a conjecture of J. EDMONDS
and R. GILEs [2] in a special case.

Conjecture. An edge set E’ is a k-covering of directed cuts of a directed
graph if and only if E’ can be partitioned into k 1-coverings of directed cuts. (An
edge set E’ is called a k-covering of directed cuts if every directed cut contains at
least k edges of E’).

Corollary 3. The conjecture of Edmonds—Giles is true for graphs possessing
an arborescence.

Proof. Applying Theorem 1 to the third example we obtain that a k-covering
(that is a k-entering edge set} of those directed cuts which are directed away from
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r can be partitioned into k 1-coverings. However when the graph has an r-arbores-
cence then all of the directed cuts are of this type.

Remark. The proof of Theorem 1 can be considered as a generalization of
Lovisz’ proof in [8] of the afore mentioned theorem of Edmonds. It is, in fact,
a polynomial bounded algorithm provided that some simple operations can be
carried out in polynomial time on the kernels. These operations are as follows:

a) Find a maximal kernel M such that E” does not enter M for an arbitrary
edge set E'.

b) Decide whether E” is k-entering for arbitrary edge set E”.

The above three corollaries are of this type. In Corollary 1 we obtain Lovisz’
algorithm. In Corollary 2 our proof does not mean a new algorithm for Menger’s
theorem since the only way at hand to check b) is to use the classical augmenting
path method.

In Corollary 3 operation a) is simple because the required maximal kernel
M consists of those vertices which cannot be reached by a directed path from r
in the graph arising from G after contracting the edges of E”. Operation b) can be
carried out as follows: Let G+ denote the graph which arises from G after in-
serting k—1 reversed copies of all the edges of E”. It can easily be checked that
E” is k-entering if and only if there exist & edge disjoint r—s-paths in G* for every
vertex s€V>\y. This latter problem is polynomially solvable.

3, Let ¢ be a nonnegative integer function defined on the edge set £ of G.
c(e) is called the weight of e.

Definition. A family .#" of not necessarily distinct kernels of # (i.c. MH'CAH)
is called c-edge-independent if each edge e enters at most c(e) members of #".

Theorem 2.

(D max |#’| = min 3 c(e)
e<E’
where the maximum is taken over all the c-edge-independent subfamilies M’ of M
while the minimum is taken over all the l-entering edge sets E’,
(2) The maximum can be realized by a faminar A~ too.

Proof max=min. A simple enumeration shows that |.#’|= M c(e) for
any c-edge-independent .4’ and for any l-intering E’. e

max=min. We are going to construct a c-edge-independent family #" and
a l-entering edge set E’ such that [#'|= 2 cle)

ecE’
The algorithm consists of two parts constructing 4’ and E’, respectively. It

has the interesting feature that both of its parts are of the greedy type, i.e. both

uﬁ
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' and E’ will be produced sequentially and once a kernel or edge has been in-
serted into .4’ or E’, respectively, it is mever changed.

First part: Construction of 4.

First let #* be empty. In the general step we decide whether there exists a
kernel M which can be inserted into the current .4’ without destroying its
c-edge-independence. If the answer is “no” then the construction of .#’ terminates.

Otherwise let M be a minimal kernel which can be inserted into .#’ and let
us insert into .4’ as many copies of M as possible without destroying the c-edge-
independence.

The family .#" produced by the first part is obviously c-edge-independent.

In order to describe the second part we need some notations. Let the different
kernels of 4’ be My, M,, ..., M, (i.c. the first part terminated at the (k +1)-th step),
and suppose that these kernels have been inseried into .#” in this order. We call
an edge e saturated with respect to .4’ (or briefly saturated) if it enters exactly c(e)
members of .#’. Let E; (i=1,2,...,k) denote the set of those saturated edges
which have been saturated in the i step of the first part. It is easy to see that
(3a) E;#0 for i=1,2, ..., k;

(3b) E,NE;=8 for 1=mi<j=k;
(3c) If ecE, then e enters M;
(3d) If ecE,, i<j then e does not enter M,

Taking into consideration the construction of .#”, the following claim can be
checked easily.

Claim 1. If M(c.#', MCM,, and M<c.# then there exists a saturated edge
e which enters M but not M,, and then e is in E, where h=i. [

In order to verify (2) we show that .#” is laminar. For, otherwise, let M, and
M; be two crossing members of .#” (i<j). Applying Claim 1 with the choice M’
and M=M,\M; we cbtain that there exists an edge ¢ in E, (for some h<i)
which enters M but not M,. Then e enters M, a contradiction to (3d).

Second part: Construction of E’.

First let £” be empty. In the general step we decide whether E’ is l-entering.
If the answer is “yes” then the second part terminates.

Otherwise, let M be a maximal kernel such that the current E” does not enter
M. Let i be the minimum index for which E, enters M. Let us insert an edge e of
£, which enters M into E’. (We say that ¢ has been inserted because of M.)

The set E’ produced by the second part is obviously l-entering.

To verify (1) and the algorithm we have to show that there exists a unique

edge of £ entering M, for each member M, of .#’. This implies |#'|= 3 c(e),
. . . . nmn\
luking mto censideration the fact that the edges of E’ are saturated.
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Claim 2. If an edge e has been inserted into E’ because of N, and e enters a
member M, of #’, then N2M,.

Proof. Since e enters M,, using (3d) we obtain that e is in .mh. m.:. some j=I.
If NP M, then with the choice M; and M=NNM; Claim 1 implies that there
exists an edge ¢’ in E, (for some h<i) which enters M;\N but not M,. Then
¢ enters N which is in contradiction with the minimality of ;_.,‘miom h<j. O

Now suppose, indirectly, that two edges e,, e, of E’ enter a kernel M, ow M
Suppose that e, and e, have been inserted into E’ because of N, and N,, respectively,
and e, was inserted later than ¢,. By Claim 2, Ny, N,2 M, and e, does not enter
N,. Hence N,UN.=N, which coniradicts the maximality of N;. O

Remark. The proof of Theorem 2 can be considered as a mm:o_.mmnmno.b of
that of FULKERSON [5] given for maximum packing of rooted r-cuts. Our m_mozﬁ.:ﬁ
is polynomial bounded provided that the following simple operations can be carried
out in polynomial time. o

a) Find a minimal kernel M such that E” does not enter M for an arbitrarily
given edge set £’ o

b) Decide whether E” is 1-entering for a given edge set E”, and if it does
then find a maximal kernel M such that E” does not enter M.

All the following corollaries and problems are of such type.

Apply Theorem 2 to the first example:

Corollary 4. (EDMONDS [3], FULKERSON 151} In an edge-weighted digraph
the minimum weight of an r-arborescence is equal to the maximum number of c-edge-
independent vertex sets of V\r. 0O -

(A family of c-edge-independent vertex sets corresponds to a packing of r-
directed cuts in [5]).
Apply Theorem 2 for the second example:

Corollary 5. (FORD—FULKERSON [6]) In an edge-weighted digraph the minimunt
weight of an r—s-path is equal to the maximum number of ¢c-edge-independent vertex

sets containing s but not r. 3

The following corollaries seem to be new.

Problem 1. Suppose that the maximum number of edge disjoint r-arbores-
cences of a (weakly) connected digraph G=(V,E) is k (k=0). We want to
increase this maximum by using new edges. Let the set E, of possible new edges
be such that G*+=(V, EUE,) has k-1 arborescences. Assign to each edge ¢ of
E, a nonnegative integer weight c(¢). What is the minimum sum of weight: < f :he
.3@&8& new edges?
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Solution. Let us define a kernel system . Wwith respect to G,=(V, E;) as
follows:

M= M. pc(M)=k, M S V1)

{Observe that the kernel system .# with respect to G, is defined by means of G.)
Due to the above theorem of Edmonds (Corollary 1) we have to assure that the
indegree of all the subsets of F\r is at least k+1, that is, we have to find a mini-

mum weight l-entering subset of kernel system .#. Applying Theorem 2 for this
A we get:

Corollary 6. The minimum value of the weight sum of those edges of E, whose
insertion into G increases the maximum number of edge disjoint r-arborescences by
one, is equal to the maximum number of not necessarily distinct subsets of V™\r such
that (1) the indegree of the set in G is minimim (=k) and (ii) an arbitrary edge e of
E, enters at most c(e) subsets of them. O

Remark. A possible generalization arises naturally. Let G=(V, E) be strongly
k-edge-connected and E, be a set of new edges. Find a minimum subset E, of E;
such that Gt=(V, EUE,) is strongly (k+1)-edge-connected. However it is easy
to check that the Hamilton circuit problem is contained in this one in the case
k=0. Therefore this problem is NP-hard and this direction is hopeless.

Now a simple application of Corollary 6 will be presented.

Problem 2. Let us suppose that G=(V, E) has an r-arborescence. Let
F=(E, Ay be the hypergraph of all r-arborescence of G. Here the vertex set E of
F is the edge set of G and the edge set of F is the family of r-arborescences of G.
Determine the rank-function r of F. We recall the definition of the rank-function
r of an arbitrary hypergraph:

CH) r(E) = max laN E’| (E"E E)

(i.e. r(E’) shows at most how many edges of E’ can occur in an r-arborescence).
Since every arborescence consists of [F|—1 edges, our problem is equivalent to
the following:

Let us complete £ by a minimum number edges of ENE” so that the
completed E’ contains an r-arborescence. Applying Corollary 6 for the case when
the original graph is G'=(V, E”), E;=F~E’,¢e=1 and k=0, we obtain

Corollary 7. _.Am:.,..u.a wa: v (|V|—1—1t) where the minimum is taken over

¥ ¥,
all those laminar families of subsets V1, Vs, ..., V, of V\r for which E’ does not
enter any V, and an arbitrary edge of ENE’ enters at most one V,,
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Hence one can easily obtain

Corollary 8. A subset E’ of edges of G is a subset of an r-arborescence if and
only if \V|—1=|E’|+1t for an arbitrary 1-edge-independent laminar family of subsets
Vis Van o Ve 6f VNI such that E’ enters no V.

Remarks 1. One can immediately prove a slightly sharper awmna.o.n of this
corollary when in the necessary and sufficient condition the cardinalities of all

but one ¥, are one. . . . .
3. Some further special cases of the above corollaries are interesting for their

own sake. Let us apply Corollary 6 in the case if k=0 and mu. consists of the
reversed copies of all edges of E. We obtain a .588:._ of M.Eoo_._om_l%ozsmnn type
(but not the Lucchesi—Younger theorem itself), which wEE_w.mo:oém from _n._.a
theorem of EDMONDS—GILES [2], too (although oE.?.oom Eoc.amm a polynomial
algorithm as well). The reader may find it interesting to specialize won. the nmwn
k=1, E,=E and c=1. In this way a min—max theorem can be ov.SEma for the
minimum number of edges of G whose duplication increases the maximum number
of edge disjoint r-arborescences.

4. In this section a generalization of Theorem 2 will be given. C:ES the proof
of Theorem 2, this does not provide a polynomial algorithm. This is the reason
why Theorem 2 was discussed in the previous paragraph. .

Let .# be a kernel system with respect to G=(V, E) and let f be a nonnegative
integer function defined on the kernels.

Definition. The function f is called weakly supermodular on A if M, NEMA,
f(M)=0, f(N)=0, MNN=@ imply that
5 £§(M)+1(N) = fF(MUN)+I(M I N).
If already M, Né.# and MNN#=0 imply this inequality then f is called super-
modular.

Definition. A family E’ of not-necessarily distinct edges of E (ie. E'€E)
is called f-entering, if in the subgraph G'=(V, E’) the indegree of every kernel

M is at least f(M). .
Let ¢ be a nonnegative integer function defined on the edges of G.

Theorem 3. Let f be a weakly supermodular function on M. Then
(Y] : max > f(M)}= min > cle)

HC M e FCE J£f

where M’ is c-edge-independent, E’ is f-entering.
(7) The maximum can be realized by a laminar #’.
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Proof. ._uw.mﬂ we will prove (7} which will be used in the proof of (6), too. Wi
:&.o that this ﬁmnwE.nun is due to N. Robertson for f=1 and to mQBwﬂEm. mnm
Qmom wE.. an arbitrary supermodular function f. It can be assumed that the optim
M oowa,ﬁm of kernels with positive weights only. If M, N are crossin z.ﬂacwa
of #’ then replace them by MUN and MNN ie. ,\\H.\Q\Mﬁm ZVO@
CQS sz,. MNON}. It is casy to check that .#” is c-edge-independent a i d
since f is weakly supermodular, s ne

EmN..a. (M) WEW.& f(A).
”Mnom .\M is mdoﬂroa vaEHE o.,oa”mm-msu.nwnnana family. Apply this method as
g as there exist crossing members in the optimum family. The process terminates

since M|? increas
EW.& M| es at each step,

We need two simple claims.

Claim 1. Let e b ..
on A Lot ¢ an edge of G and let f be a weakly supermodular function

(M), if e does not enter M
L(M)=10, M) =0
f(M)—1, otherwise,
then f, is weakly supermodular,

The proof of the claim is trivial.

’“(0 note Emﬁ .ﬂrﬂ m:u.m.#c Ous 1)) w\ —v AX—
m ﬁH- UQ—.H H-Ow- superm
._..—mm.m- Wﬂdﬂﬂmcnm 13 not

. &O_m““s 2. M.mn cy(e)=k-cle) for a natural number k. If #"C.H is a laminar
-edge-independent family, th 1 .. o i
families. Jamily en it can be partitioned into k c-edge-independent

. wao of. The members of #” will be colored one by one with colors 0, 1, ... k-1
n the m.o:onm step let M be a maximal non-colored member of .#”. If Fﬂd ai&.
Wo.?.ﬁ...nocm? .oo_Onna member M’ of A" containing M then let M be colored by 0
therwise let M’ be a previously colored kernel with M’ 2 M, which received :m.
oo_om waﬁ If the color of M’ is i then we color M by i+1mod k
t is an easy exercise to verify that each subfami wi
. an :
color is c-edge-independent. O il of hernels with the same
aoso“uno“wr EM mvﬂvowaow (6) a simple enumeration shows that max=min. Let v
e left-hand side in (6). We use inducti —0 then t m
denote the uction on .:. If v=0 then the state-
Let M be an arbitrary kernel such tha
. t f(M)=0 and not all the ed i
M are of zero weight. There are two cases. © ecees enterig
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(a) There is an edge e with positive weight, entering M such that all the op-
timum (of weight v) c-edge-independent families saturate e (i.e. e enters just c(e)
kernels of the family with positive weight).

In this case v =v;—c(e). By the induction hypothesis there exists an E.CE for

which <_.nmN.‘ c(¢) and E] is f,-entering. Let E’'=EU{e}. Since v= u.mMm e(e)
<E, g

and E’ is f-entering we are finished with the proof.

(b) For each edge e, with positive weight and entering M there exists an
optimum c-edge-independent family ., which does not saturatc ;. Let "=
=4,UAM0.. . UMlU{M }. Then 4" is ¢,-edge-independent where ¢,=k-c and

W) = ke v+ E(M).

NE#”
By the proof of (7) there exists a laminar family .#” such that
> N = 3 i)
NeE#” Ne#™
Now by Claim 2, .#” can be partitioned into k c-edge-independent subfamilics.
However, the weight of one of these subfamilies is greater than v which is im-

possible. Hence case (b) cannot occur. 0
Theorem 3 reduces to Theorem 2 in the case f=1, therefore the corollaries

of Theorem 2 can be generalized. However, we emphasize only one consequence
of Theorem 3.

Problem 3. Let G=(F,E) be a digraph in which the maximum number
of edge-disjoint r-arborescences is & (k=0). We want to increase this maximum
to K (K=k) by multiplying edges. ‘What is the minimum number of the required
pew edges?

Solution. Due to the theorem of Edmonds (Corollary 1) we have to assure

just that in the extended graph the indegree of every subset of I\« is at least K.
Let .# be the kernel system defined in the first example. Let the function {

be defined as follows:
(8) f(M) = max {K—eo(M), 0}

o reach K as the indegree of M. In

that shows the number of edges stilt required t
problem of a minimum f-entering

this way our question is translated into the
edge set.
Claim. The above defined 1 is weakly supermodular.
Proof. Trivial. O

We note that f is not supermodular in general.
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Applying Theorem 3 for this f in the case ¢=1 we obtain a min—max formula
for the minimum number of new edges. Instead of the exact formulation of this

theorem we mention another problem which is equivalent to this one but is more
illustrative,

Problem 4. What is the maximum number of edges which can be covered
by K r-arborescences?

Solution. If there exist K edge disjoint r-arborescences then this number is
obviously K« (|¥|—1). Otherwise let a;, a, ..., ay be r-arborescences whose union
is as large as possible. Suppose that this union consists of m edges. Let us multiply
every edge of G by the number of r-arborescences from a,, a,, ..., a; containing it.
Of course this graph has already K r-arborescences. This means that
s=K-([V|-1})—m new copies of original edges assure the existence of X edge
disjoint r-arborescences. Conversely, if the insertion of s new copies of edges yields
the existence of K edge disjoint r-arborescences, then m=K-(|V|—1)—s edges
can be covered by X r-arborescences in G. In this way Problem 4 is equivalent to
Problem 3. Hence, as a consequence of Theorem 3, we obtain

Corollary 9. The maximum number of edges which can be covered by K
r-arborescences is equal to the minimum value of

E__\_LTM £(v)

where the minimum is taken over all the l-edge-independent laminar Jamilies of
subsets Vi, Vy, ..., ¥V, of V\r where t is arbitrary and function f is defined in (8),

There is an interesting special case of this corollary.

Corollary 10. The edges of G can be covered by K r-arborescences if and
only if for an arbitrary laminar 1-edge-independent family of subsets |V S 4
of V7, the number e, of edges entering no V; satisfies

©) e = K([V'|-1—1).

Remark. K. VIDYASANKAR [11] has proved a similar but simpler necessary
and sufficient condition for the problem in Corollary 10. He requires (9) only in
the case if the cardinality of all but one of the ¥,’s is one, with the two side-con-
ditions that the indegree of each vertex is at most K and every edge is in an
r-arborescence. The necessity of these two latter conditions is trivial (and obviously
our conditions imply them),

Now we formulate Corollary 9 in another way. Suppose again that G has an
r-arborescence. Let E” be a subset of edges of G and let r(E’) denote the maximum
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can have in common with an r-arborescence, i.e. r is the rank-

pumber of o8t > function r was determin-

function of the hypergraph of r-arborescences. We recall that
ed by a min—max formula in Corollary 7.

Corollary 9a. The maximum number of edges which can be covered by K

r-arborescences is equal to the

min (K +r(E")+|ENE").

E*CE

Proof max=min is true for any hypergraph. For the equality we show that

(10 min, (K-T(E+ ENE") = K(V|=D— _.M U

.., V, form a l-edge-independent family. It can be assumed that

where ¥, Vo (V). Let E” be the set of edges which do not enter
-

f(¥;)=0 whence f(V)=K—¢ .

V,. We have M. o(V))=|ENE"|. Obviously, an arbitrary r-arborescence
oo e i V’s. Thus r(E7=|V|—1~—t Hence
contains at least 7 edges entering one of the Fj's.
(10) follows, as required. [J ,

A similar version of Corollary 10 easily follows.

Corollary 10a. The edges of G can be covered by K r-arborescences if and only
if K-v(EY=|E’| for every E'CE.

The reader can easily observe the similarity between A.ucno:m_.w 10a wmn_vm
Theorem of C. St. J. A. Nasu-WiLLiams [10] on the covering of a matroid by
K bases.

5. In this last section we discuss the relationship voﬂéo.mb our Em:_a. mnw ﬁHﬂomo
of J. Edmonds and R. Giles. Roughly %omwm:.m the main difference Is t wa,MM
consider entering edges only while they deal with entering and outcoming €dg

ther. . . .

Sma_m&ﬁon& and Giles have defined the notion of crossing family. Our theorems

concern a special type of crossing family (when the members of the family do not
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contain a fixed vertex), but they cannot, however, be generalized for arbitrary
crossing family. The remark after Corollary 6 justifies this statement for The-
orem 2. The example in the Figure shows that Theorem 1 also fails for general
crossing families.

15— + o f

Let A={M:o(M)=2}={(1,2,3,4,6), (2,3, 6),(2), (1,2,4, 5, wv, {(4)}). The edges
cannot be colored with two colors so that both of the color classes enter every
kernel.
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