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A generalization of P. Seymour's theorem on planat integral 2-commodity fiows is given when
the underlying graph G together with the demand graph H (a greph having edges that connect the
corresponding terminal pairs) form a planar graph and the demand edges are on two faces of G.

1. Introduction

Let us be given an undirected graph G = (V, E) and & pairs of nodes (s, 1),
(8a,ta),. .. {8k, tg). The edge-disjoint paths problem is to find k pairwise edge-disjoint
paths connecting the corresponding pairs (s;,¢;). The pairs (s;, ;) are called terminal
pairs.

It is convenient to mark each terminal pair to be connected by an edge, called a
demand edge. The graph H = (V, F) formed by the demand edges is called a demand
graph while the original graph G = (V, E) is the supply graph. (Of course, H may
not be connected.)} .

The edge-disjoint paths problem is NP-complete even if A consists of two sets
of parallel edges {Even et al. {1}) but there are important special cases when it is
tractable. For a survey see Frank [2]. P. Seymour [5] settled the case when H consists
of two sets of parallel edges and G and H together are planar. The purpose of the
present paper is to present a generalization of Seymour’s theorem for the case when
(G + H is planar and the demand edges are placed on at most two faces of G.

Throughout the paper we work with an undirected connected graph G = (V, E)
that contains no loops but parallel edges are allowed. Here V denotes the node set
of G. We do not distinguish between an element v and the one-element set {v}. The
set of edges between A and V — A is called a cut and is denoted by V{A). If both 4
and V — A induce a connected subgraph, then V(A) is called a bond. It is well-known
that any cut can be partitioned into bonds.

An element e of E with endpoint » and v is denoted by € = wv(= vu). {Such
a notation is not precise because G may have parallel edges, but no ambiguity will
arise from this sloppiness.}

AMS subject classification (1980): 05 C 10, 05 C 38, 90 B 10
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For sets X, Y C V let dg(X,Y) denote the nu i
B RSy , mber of edges with o d i
X v.u\ and one end in ¥ — X. We use dg(X) for dg(X,V — X). ASrm%Mamm E_“M
ambiguous we leave out the subscript G.) For two graphs G = (V.E)and H = (V, F)

{(where E, F are disjoint but may contain elements that are parallel) G + H denotes

the graph (V, EU F).

2. The Theorem

A natural necessary condition for the solvability of the edge-disjoint paths prob-

lem is the cut criterion:

CUT CRITERION dg(X) > dy(X) forevery X CV.

Since any cut of G can be partitioned into bonds, the cut criterion holds if we

require the inequality above only for subsets X for which V(X)i
. is a bond.
%mnﬁwuﬁawmnmw.ﬂmnmﬁnm mﬁ.ﬂw_ “HGQQAN ) = dg(X) the surplus of cut V(X).
. on is equivalent to saying that the surplus of i -
ﬁmm%._hm. A cut V(X) is called tight if s(X) = 0. pius of every cut Is mon
e cut criterion is sufficient if the demand i
“ut uffic t graph consists of one set of
m&.mmm. ?w._m is the mm.mm-n:m._c_un undirected version of Menger’s ng.mEU.o %MMmmw“
criterion is not sufficient, in general, as the following simple example shows.

81 82

iy t,
Fig. 1

Let uscall a set X C V odd (or the cut Vg (X) odd) if i
ch d, (X)is odd. Clearl

the number of odd nodes is always e d c i )] o i i
o muanber of odd nodes is al ys everl and a set X is odd if and only if X contains

The crucial observation concerning odd cuts is that, gi

! atio t, given an odd set X
moEﬁ.Eu to the edge-disjoint paths problem, an odd Eﬁm&mn of m&mmmmmm dmﬂ%vww
particular at least one edge, cannot be used by the paths in the solution. Since ms a

tight cut every ed i - O
nocessary, ¥ edge must be used by a solution, the following criterion is obviously

INTERSECTION CRITERION ﬁ d74G(SNT) is even for
any two tight sets §,T C V.

W,Ummﬁém ﬁwmmnﬂwn Figure 1 the intersection criterion is violated

. Seymour [5] proved the following. Suppose that G+H is ; i
planar and H ¢

OM two sets A.u.m.vm.nm:m_ edges. Suppose furthermore that the cut criterion w&mwm%“m

the edge-disjoint paths problem does not have a solution. Then some edges of G can
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be contracted in such a way that the resulting graph G’ has at most four nodes and
the corresponding edge-disjoint paths problem still has no solution.

A slight refinement of Seymour’s theorem asserts that when G+ H is planar and
H consists of two sets of parallel edges, then the edge-disjoint paths problem has a
solution if and only if the cut criterion and the intersection criterion hold. Qur main

result is the following generalization:

Theorem. Suppose that G + H is planer and the demand edges are on at most two
faces of G. The edge-disjoint paths problem has a solution if end only if the cut
criterion ond the intersection criterion hold.

Remark 1. Note that in the theorem no parity restriction is imposed on the degrees
of nodes of G + H. If G + H is planar and Eulerian, then the cut criterion itself
is sufficient for the solvability of the edge-disjoint paths problem, irrespective of the
number of faces of G necessary to include the demand edges. This is another theorem
of P. Seymour from the same paper {1981] we have cited above.

Remark 2. M. V. Lomonosov [3] proved a maximization form of Seymour’s above-
mentioned feasibility-type theorem on planar integer two-commodity flows. With
some effort Lomonosov's theorem can be derived from Seymour’s (see Frank [2]}. It
would be interesting to find a maximization form of our result.

3. The Proof

The following equality will prove useful. For A, BCV
(3.1 dg{A) + dg(B) = dg(AN B) + dg(AU B) + 2dg(A, B).
We will use a more complicated relation due to G. Tardos [6]. Suppose that the
node set V is partitioned into 5 sets; A, M, N, X, Y. Then
(3.2) d(XUM)+d(YUM)+2d(A N)=d(XUN) +d(Y UN) + 2d(A, M).
The proof of both (3.1} and (3.2) consists of showing that the contribution of
any of the edges to the two sides of the identity is the same.
Lemma 1. Suppose that the cut criterion holds.
(a) If A and B are tight and dgg(A, B) = 0, then both AN B and AU B are tight and
da(A,B)=0.
(b) If A and B are tight and dgg(A,V - B) = 0, then both A— B and B— A are tight
and dg(A,V - B) = 0.
Proof. By applying (3.1) to G and H we have
dg(A) + dg(B) = dg(A) + dg(B) = de(AN B) +dg(AUB) +2dg(A,B) >
dyg(AN BY+dg(AU B)+2dg(4, B) = dg(A)+du(B)+2(dg(4, B)—dg(A, B))
from which the first part follows. We obtain part (b} if (a) is applied to A and
B.=V-~B. | ] ]
Let V(K) be a bond and C a facial circuit of G. Because of planarity V(K) and
E(C) have zero or two edges in common. This property will be extensively used in

the proof.
Let us recall that if the cut criterion does not hold, then there is a bond violating

it. An analogous statement holds for the intersection criterion.
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Lemma 2. Suppose that the cut criterion holds with respect to G and H but the
intersection criterion does not. Then there are sets S and T violating the intersection
criterion for which V(S) and V(T) are both bonds.

Proof. Let S and T be two tight sets viclating the intersection criterion for which
k(8)+k(T) is minimal where k(X ) denotes the number of components of G- V(X),
We show that V(S) is a bond. If not, then at least one of S and V — §, say S,
partitions into two non-empty parts §' and " with dg(S',5") = 0. Since v(S)
is tight, both V(') and V(5”) are tight, Moreover, exactly one of de.yg(8' NT)
and dg, y (8" N'T), say the first one, is odd. Therefore S’ and T also violate the
intersection criterion. However, as is easily seen, k(S') < k(S) contradicting the
minimal choice of § and 7. ]

Let us turn to the proof of the main theorem. We have seen the necessity of the
cut and intersection criteria. To prove the sufficiency let us assume that G + H is
a minimal counterexample. Then G is 2-connected since otherwise the problem can
easily be decomposed into smaller problems.

Assume that the terminal pairs are positioned on faces C; and 5.

Let us call a demand edge and its two end nodes of type © (i = 1,2) if it lies in
face C;. By symmetry we can assume that there are at least as many edges of type
1 as of type 2. We assume that C, is the outer face of G. Since G is 2-connected
every face of G is bounded by a circuit. It will cause no confusion that we use the
term C; to denote a face of G and the circuit of G bounding this face.

Since G'+ H is planar there are two internally disjoint subpaths P’ and P” of
C; such that the two endpoints ¢, ¢ of P! and the two endpoints s”, ¢ of P” are
terminal of type 1 and none of P’ and P contains a terminal node of type 1 as an
inner node. (It may happen that {s',#'} = {s”,¢"}.)

Delete the edges of P’ from G and remove one demand edge connecting s’ and
t' from H (that is, we remove a circuit from G + H). Let the resulting supply and
demand graph be G’ and H'. Let G and H” be defined analogously.

Lemma 3. The cut criterion holds for at least one of (G',H') and (G", H")

Proof, If the cut criterion does not hold for G’ and H !, then there is a set K violating
the cut criterion such that K and V — K both induce connected subgraphs of G'.
Then V(K) is a bond of G.

Therefore P’ and V(K) have at most two edges in common. Since the cut
criterion holds for G and H, Vg(K) does not separate s’ and ¢ and s(K) < 1.
By interchanging K and V — K, if necessary, we can assume that ¢/,¢ ¢ K and
K NV(P') # 0. By the choice of P' no terminal pairs of type 1 are separated by
V(K). Exploiting that dg(K) > 2 (G being 2-connected) and s(K) < 1 we see that
V{(K) separates a terminal pair of type 2.

Analogously, if the cut criterion does not hold for G” and H " there is a set L
for which s(L) < 1, s" ¢ ¢ L, LOV(P") # G and L separates a terminal pair of
type 2.

Since both K and L contain a node of C,, by planarity, s’ and # cannot be in the
same component of G — (K UL). Obviously, there is a subpath @ of C; connecting s
and one of s” and ¢", say 5", such that @ and K U L are disjoint. That is, s’ and 5"
are in the same component of G — (K U L), Therefore V — (K'UL) can be partitioned
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:;oHgmmﬂmbm:mz,mcorﬂrwﬁmnm:m?.w,ﬁ:mmmuaa&m,Z Mlm o.rmﬁcm
introduce the following notation: M :=KNL, X =K -L, YV:=L~ K.

Claim. At least one of dg{A, M) and dg(N, M) is zero.

. Suppose that dy(4, M) > 0. Then there is a nm«E.Ep_ pair .?:L:v such
m“.ﬁomu Muﬂvwcm s € Nﬁmmnnm MnV(C) =9, %a.EEE pair {31,%1) is of ﬁwvm mm
Analogously, if dg (N, M) > 0, then there is a terminal pair {52,t3) of type mcoa
that ¢, € M and s, € N. V(K and E(C;) have two edges in common. Since ¢, mﬂ.
t, are in K while s, and s, are not, the planarity of G + H implies that the cyclic

hese four nodes around C; is ¢, {3, 82, 81-
oammww»..uw V(L) and E(C;) have two edges in common, t,,t; € L and 5;, 82 ¢ h.“ J.m
see that the subpath of C; between s; and s; which does not contain w¢ is Iﬁmﬁ_wmﬂ
in G — (K U L). But this is impossible since s; € 4, $; € N and dg(4,N) = 0.

By the claim we can suppose that amfr M), say, is zero. We also know that
dg(A,N) = 0and dg{A,N) > 0. By applying (3.2) to G and H we get

2=1+4+1>s(XUM)+s(YUM)=
(X UNY+s(Y UN)+2[dg(A, M) — dg(A, M)] - 2dG(A,N) - dg(A,N)] =
3(XUN)+s(YUN) +2[dg(A,M)+dg(AN)]20+0+20+1} =2

fore we have equality throughout and, in particular, s(R) = s(L) = 1,
uANﬁSMWW s(YUN) Hn 0, dg(A, M) = 0, dy{A, N} = LIt follows gMa %ﬁm
is exactly one demand edge of type 1. Consequently, there is at most oamQ mBMs.
edges of type 2. Actually there is exactly one demand edge of type 2 mvsnmh + Hrmm
a counterexample. Therefore do(K) = 2 = dg(L) and dg(K) =1 = dg(L). M 3“
means that the two edges of G leaving K are common edges of C) and (%, and the

ids for L). . .
mma..ww“ >.M HH NVD L must be empty for if a node v is in K’ N L, then there is a path

in K from v to P'. But such a path leaves L along an wwamm that is not in C;. So we
1d have d{L) > 3. Weseethat K =X and L =Y. . .
ﬂcﬁmgnmm<§ Wamaw_vq dg (N, M) = 0. Therefore (3.2} can be applied with A and ¥
interchanged. We obtain that ¥ U A is tight. Let S:=V - (Y U \5 (=X UN)and
T:=V—(YUN) (=X UA). Now 5 and T violate the intersection criterion since
S and T are tight, K = SN 7T and dg, g(K) is 3, an odd number. 1

By Lemma 3 we can suppose that the cut criterion holds for G’ and H'.
Lemma 4. The intersection criterion holds for G' and H'.

i i i iteri i &’ and H'. Then
Proof. Let S and T violate the intersection criterion with respect to
UworomEBw 2 we can assume that each of §, V - §, T, V — T induces a connected
subgraph of G'. Therefore V;{S) and V(T are bonds and they have at most two

edges in common with E(C)). 1
Claim. Both V(8) and V(T) separate terminal pairs of type I and type 2.

i i de.y(S - T) is odd.
Proof. If S and T are tight and dg, g{(SN Hv is odd, then dg, g
Hﬂmummﬁm neither SN T nor § — T can be tight. By Lemma 1 dg{S,T) > 0 m.na
dg(8,V — T) > 0. Thus there are terminal pairs (s1,%) and (s2,%2) ﬂoH ﬂr_.ow
m“ﬂm WI T, the€T -8, 38, €S85NT, t; € V- {(§NT). These two terminal pairs
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cannot be of the same type. Indeed, let both terminal pairs be of type 1, say. If s,
and s; are not separated by ¢, and ¢; on C, then V{T'} and E(C,) have more than
2 edges in common. If s; and s, are separated by ¢, and t;, then V(8) and E(C})
have more than 2 edges in common. (]

¥ S and P’ have no node in common, then V{S) is tight for ¢ and H. If § and
P’ are not disjoint then, by the claim and the choice of P/, V(S) separates s’ and ¢/
and therefore § is tight for G and H in this case as well. Similarly T is tight for G
and H. Since dg, tr(X) has the same parity as d gy Lt (X) for any set X, we conclude
that § and T violate the intersection criterion for G and H, a contradiction. [

So far we have proved that both the cut criterion and the intersection criterion
hold for G’ + H’. Thus there is a solution to the edge-disjoint paths problem for
G' + H'. But this solution along with path P’ is a solution to the edge-disjoint paths
problem for G + H, a contradiction. [ |

A direct consequence of the main theorem is that the problem has a solution if
the cut criterion holds with strict inequality on every cut. The following example of
E. Korach shows that this statement, and therefore the main theorem is not true if
the demand edges are on three faces of G. Here the cut criterion holds and so does
the intersection criterion since there is no tight cut at all. On the other hand the
edge-disjoint paths problem has no solution.

Fig. 2

Remarks. Observe that the proof of the theorem gives rise to a polynomial time
algorithm provided that an oracle is available to test the cut criterion. But such an
oracle can easily be constructed. Indeed, we have mentioned that it suffices to check
the cut criterion for subsets X intersecting C; in a subpath (i = 1,2). First specify
subpaths P, of C; and check the cut criterion for sets X for which X N C; = P,.
This can be done by a max flow-min cut computation. There are (|C;| — 1}|C;|/2
subpaths of C;, and therefore at most O(|C, 2|C2|?) max flow-min cut computations
are necessary. (Actually, this bound can be replaced by O(n?n2) where n; denotes
the number of distinct terminals on Cj.)

We note that using matching theory one can construct more efficient methods
to test the cut criterion and this approach works in the more general case when we
only require that G + H is planar {Lovisz—Plummer [4]).

Finally we mention that, with some care, the algorithm suggested by the proof
can be made strongly polynomial in the (integer) capacitated version of the problem.
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