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Abstract
Frank, A., Submodular functions in graph theory, Discrete Mathematics 111 (1993) 231-243.

We describe various aspects of the use of submodular functions in graph theory, New proofs of
theorems of Mader and of Tutte are provided as well as a new application on making a digraph
~ k-edge-connected by adding a minimum number of edges.

1. Introduction

Edmonds [1] initiated systematic studies of submodular functions. Since then, it
has turned out that submodular functions play an important role in combinatorial
optimization and polyhedral combinatorics ( for a survey, see [5, 9] ). In this paper we
outline the various applications of submodular functions in graph theory.

In Section 2, by providing proofs of classical theorems of Hall, Menger and
Edmonds, we describe a basic technique based on submodular functions. Each of
these theorems concerns cut-type conditions.

Section 3 is devoted to proving theorems involving partition-type necessary and
sufficient conditions. Among others, a new proof is provided for Tutte’s disjoint trees
theorem. In Section 4 the splitting technique is introduced, while Section 5 is con-
cerned with the uncrossing technique. As an application, we provide a simple proof of
a difficult theorem of W. Mader on characterizing k-edge-connected directed graphs.
In the last section we exhibit a recent application of submodular functions. It is
a theorem about the minimum number of new edges to be added to a given digraph to
make it k-edge-connected.

Let V be a finite ground set. Two subsets X, ¥ of V are called intersecting if none of
XY, X—Y, Y—X is empty. If, in addition, ¥V —(X U Y)is nonempty, X and Y are
called crossing. For s,teV, we call a set X a t5-set if teX < V—sg.
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Let # be a family of subsets of V. # is called cross-free if there are no two
crossing members of it. & is called laminar if it contains no two intersecting sets. %
is called a subpartition of V if its members are pairwise disjoint nonempty subsets of
V. 1If, in addition, every element of V" belongs to a member of #, & is called a partition
of V.

Let G=(¥,E) be an undirected graph with node set ¥ and edge set E. We denote
an edge e connecting nodes # and v by uv or vu. This is not quite precise since
there may be parallel edges between u and v. But this ambiguity will not cause any
trouble.

For a directed graph G=(V, E), a directed edge e=uv is meant to be an edge from
u to v. In this case vu means the oppositely directed edge. u is the tail of e, while v is the
head of e.

Generally, by graph we mean an undirected graph and by digraph a directed
graph. For a graph or digraph G and a subset X of nodes, Eg(X) denotes the
set of edges with both end-nodes in X and is called the set of edges induced
by X. §¢(X) denotes the set of edges with at least one end node in X, For X, Y< V,
dg(X, Y) denotes the number of edges between X — ¥ and Y — X (in any direction). We
define dg(X):=dg( X, V—X). VG(X) denotes the set of edges between X and V—X.
Such a set is called a cut with sides X and V— X. Splitting off a pair uv, vz of edges
means that we replace the two edges uv,vz by a new edge uz. In a digraph G the
in-degree pg(X) (out-degree 63( X)) is the number of edges entering (leaving) X. When
it causes no ambiguity, we will leave out the subscript G. A digraph D=(V, A) is called
an arborescence if D arises from a tree by orienting the edges in such a way that every
node but one has one entering arc. The exceptional node, called the root, has no
entering arc.

A digraph is called k-edge-connected if p(X)=k for every 0= X < V. {For k=1 the
term strongly connected 1s used.)

A set function b :2¥ - R acting on the power set of a finite set ¥ is called submodular
if the inequality

B(X)+b(Y)2b(X A Y)+b(XUY) (1.1)

holds for every subset X and Y of V. In applications, often we encounter set functions
satisfying the reverse inequality in (1.1) for every X, Y. Such a function is called
a supermodular function. (In this note every occurring set function is meant to be 0 on
the empty set.)

Let G=(V,E) be a directed graph with node set V. It is not difficult to prove that
the in-degree function p is submodular. Actually, one has the following identity:

P +p(Y)=p(XuT)+p(XnY)+d(X, Y), (1.2)

where d(X, Y) denotes the number of edges between X —Y and Y—X (in any
direction). To prove (1.2), one has to check that every edge of G has the same
contribution to the two sides of (1.2).
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Let G=(V, W; E) be a bipartite graph. For X < V' let I'(X):={weW: there is an
edge vwe E with ve X }. Verbally, I'(X) is the set of neighbours of X. For X, Y < V we
have

FX)yor(X)=r(xuyY) and I'(X)nl'(Y)2I(XnY) (1.3)

Condition (1.3) easily implies the submodularity of |I'(X)).

2. Three theorems from graph theory
We are going to prove three fundamental min-max theorems of graph theory.
Theorem 2.1 (Hall [7]). In a bipartite graph G=(V, W, E) there is a matching covering
V if and only if
IF(X)|=|X] 2.1)
holds for every X < V.

Proof. The necessity of (2.1) is trivial. To see the sufficiency, we start with a definition
and a lemma. A set X < V'is said to be tight if X satisfies (2.1) with equality.

Lemma 2.2. The intersection and the union of two tight sets X and Y are tight.

Proof of Lemma 2.2. By applying (2.1) to XU Y and to XN Y and using the sub-
modularity of |I'|, we have

X[+ Yi=[D(X)|+ (Y= DX OuY) |+ | M XY
XY+ XA Y]=|X|+|Y] 2.2)

Hence equality must follow everywhere and, in particular, |[[(X U Y)|=|X u Y| and
N XN Y)=|XNY]| that is, both XU Y and X" Y are tight. [

Proof of Theorem 2.1 (conclusion). Suppose that G is a minimal counterexample of
Hall’s theorem. It follows that deleting any edge of G would destroy (2.1). Thereby

(%)  forevery edge sw (s ¥)of G there is a tight set X containing s so that s is the
only neighbour of w in X.

There is a node seV with d(s)>2 since, otherwise, G itself would be a matching
covering V, and then G would not be a counterexample. Let # and v be two neighbours
of s and let P denote the intersection of tight sets P,, P, corresponding, respectively, to
su and sv by (*). By Lemma 2.2, P is tight.

At least one of u and v, say u, has a neighbour in P—s since, otherwise, P —s would
violate (2.1). This contradicts ( *) since P, and P, include P. This contradiction shows
that no counterexample may exist, O
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Theorem 2.3 (Menger [12]) (directed, edge-version, in [3]). In a directed graph
G=(V,E) there are k edge-disjoint paths from s to t if and only if the following cut
condition

p(X)=k (2.3)
holds for every ts-set X = V.,

Proof. The necessity of the cut condition is obvious. To see its sufficiency, we use
induction on the number of edges. Call a t5-set T tight if p(T)=k.

Lemma 24. The intersection and the union of any two tight sets X, Y are tight.

Proof of Lemma 2.4. One has k+k=p(X)+p(Y)Zp(XnY)+p(Xu)2k+k,
from which equality must hold everywhere and the lemma follows. [

Proof of Theorem 2.3 (conclusion). We can assume that every edge ¢ enters a tight set
since, otherwise, e can be left out without violating (2.3). Let su be an edge of G with
u#t. (If no such edge exists, then the theorem is trivial.) There is a tight set entered by
su and, by Lemma 2.4, the intersection T of such sets is tight. There must be an edge uv
with veT for, otherwise, p(T—u)<p(T)=k, that is, T—u would violate the cut
condition.

Let G’ denote the graph obtained from G by splitting off the edges su and uv. We
claim that G’ satisfies the cut criterion. Indeed, if a set X violates the cut criterion in
G’, then ueX, v¢X and X is tight in G. But this contradicts the definition of T. By
induction, there are k edge-disjoint paths in G and, therefore, there are k edge-disjoint
pathsin G. OO

Theorem 2.5 (Edmonds [2]). Let G=(V, E) be a digraph with a specified node s. There
are k disjoint spanning arborescences of root s if and only if

p(X)=k 24

Jor every set X = V —s.

Proof (Lovasz [8]). The necessity is again clear. To prove the sufficiency, we proceed
by induction on k. The case k=0 is trivial. Starting from s we are going to build up
a subarborescence F of G rooted at s so that

(*) pe-r(X)=2k—1 holds for every X = V—s.

If we can find such a spanning arborescence then, by applying the induction
hypothesis to G—F (with k—1), we are done.

In the general step let F be an arborescence satisfying (%) and suppose that
V# V(F). We are going to find a one-edge-bigger arborescence F’ satisfying ( * ). Call
a set X © V—s critical if pg_ p(X)=k~—1. Obviously, any critical set intersects V(F).
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Lemma 2.6. The intersection and the union of two intersecting critical sets X and Y are
critical.

Proof of Lemma 2.6. One has k—1+k—1=pg p(X)+pp_pr(Y)Zpe-p(XNY)
+pe-r(XVY)2k—14+k—1, from which equality must hold everywhere and the
lemma follows. [

Proof of Theorem 2.5 (conclusion). Let T be a minimal critical set not included in
V(F). (If no such set exists, let T'=V¥.) There is an edge uv with ue¥V(F)n T,
ve T— V(F) for, otherwise, p(T— V(F))=pg_p(T— V(F))<k—1, contradicting (2.4).
We claim that uv cannot enter any critical set. Indeed, if there were a critical set
X entered by uv then, by Lemma 2.6, X nT would be critical, contradicting the
minimal choice of T. .
Therefore, F':= F 4+ uv is an arborescence satisfying (*) and F'is bigger than F. [

3. Partition condition

The three theorems proved in the preceding section have a feature in common. Each
of them sounds like this: “There exists something if and only if a certain inequality
holds for every subset X°. Sometimes, more complicated conditions are required that
include not only one set but also a subpartition of V. Here we provide two examples
where this is the case. In Section 6 one more example will be shown.

Edmonds’ theorem characterizes digraphs having k disjoint spanning arborescences
rooted at a certain node s. But what if we are interested in finding k disjoint spanning
arborescences with arbitrary roots? That is, there is no restriction on the k roots of the .
k arborescences to be found.

Theorem 3.1 (Frank [4]). In a directed graph G=(V,E) there are k disjoint arbore-
scences if and only if

2. p(X)=k(t—1) (3.1)

holds for every subpartition {X,,X,,...,X,} of V.

Proof. Necessity. Suppose F,,...,F, are k disjoint spanning arborescences and
F={X,,X,,...,X,} is a subpartition. Each F, enters at least t— 1 members of &.
Therefore, the contribution of one F; to the sum Y p(X;)is at least t — 1. Since we have
k disjoint arborescences, (3.1) follows.

Sufficiency. Assume that (3.1) holds. Add a new node s to G and also k parallel
edges from s to every node of G. In this enlarged digraph, clearly,

there are k edge-disjoint paths from s to every other node. (3.2)
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Second, one by one, discard new edges as long as possible without violating (3.2). Let
G’ denote the final digraph and p’ the in-degree function of G'. By Menger’s theorem,
(3.2) is equivalent to

p'(X)=k forevery XcV. (3.3)

Call a subset X < V critical if X satisfies (3.3) with equality and let # ={X,, ..., X,}
denote the family of maximal critical subsets of V. We know from Lemma 2.6 that the
intersection and the union of two intersecting critical sets are critical. This implies that
the members of % are pairwise disjoint, that is, # is a subpartition of V.

Claim 3.2. p'(V)=k, that is, V- is critical.

Proof of Claim 3.2. Indirectly, suppose there are k+1 edges e, ...,e;., entering V.
By the minimal property of G', discarding anyone of them destroys (3.3). Equivalently,
each e; enters a critical set and, hence, each e; enters a member of #. We have
kt=Y p'(X;)=2k+1+Y p(X;), contradicting (3.1). O

Proof of Theorem 3.1 (conclusion). Since (3.3) holds true, Edmonds’ theorem, when
applied to G’, shows that G’ contains k disjoint spanning arborescences rooted at s. By
Claim 3.2, each of these arborescences uses one single edge entering V. Hence, the
restriction of these arborescences to ¥V provides the desired k disjoint spanning
arborescences of G. [J

What about undirected graphs? What is a necessary and sufficient condition for the
existence of k disjoint spanning trees of an undirected graph?

Theorem 3.3 (Tutte [13]). A graph G=(V, E) contains k disjoint spanning trees if and
only if
es Zk(t—1) (34)

for every partition F ={Vi,...,V;} of V, where ez denotes the number of edges
connecting different Vi's. (That is ez =Y d(V;)/2.)

Proof. The necessity of (3.4) follows from the fact that, given a partition &, any
spanning tree must have at least t—1 edges connecting different members of #. By
Edmonds’ theorem, the sufficiency of (3.4) follows immediately from the following
orientation theorem.

Theorem 3.4. Given a graph G=(V,E) and a node seV, G has an orientation for which
p(X)=k for every X € V—s if and only if (3.4) holds.

Proof. If there is such an orientation, then p(¥;)>k for each V] not containing s and
then ez =Y p(V))=k(t—1).
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To see the sufficiency, extend G by a minimum number of edges sv (ve¥) so
as to have a required orientation. If this minimum is zero, we are done; so, assume
that it is positive. Let p denote the in-degree function of this orientation. We can
assume that p(s)=0. Call a set X = V—s critical if p(X)=k. Recall the following
results.

Claim 3.5. The intersection and the union of two critical sets with nonempty intersection
are critical.

Let e=st be a new arc in the given orientation and let 7 be the set of nodes
reachable from ¢t along a path.

Claim 3.6. If Z is critical and TnZ £, then Z< T.

Proof of Claim 3.6. Assume Z¢T. For Y'=V-—T we have k=p(Y)+p(Z)=
P(YNZy+p(YUZ)+d(Y,Z)2k+0+d(Y,Z)2k, where d(Y,Z) denotes the
number of arcs connecting Y—Z and Z—Y (in either direction). From this we get
p(YwZ)=0and d(Y,Z)=0. The first equality implies that te Z (by the definition of
T and by the assumption that T Z #0), while the second one implies that t¢Z
{because of edge st); this contradiction proves the claim. O

Proof of Theorem 3.4 (conclusion). Consider the following cases.

Case 1: There ts a node veT which is not contained in any critical set. Let
P be a directed path from t to v. Reorient the edges of P and discard e. The new
orientation is still good, a contradiction to the minimality of the number of new su
edges.

Case 2: Every node of T is in a critical set. Let Vi, V;,...,¥,_, denote the
maximal critical sets in 7. By Claims 3.5 and 3.6, these are disjoint sets and form
a partition of T. Let V:=V—T and #:={W,...,¥}. Since p(¥,)=0, we have
k(t—1)=Y (p(¥V):i=1,..,t=1)=Y (p(¥):i=1,...,t)=e} >ex, contradicting (3.4).
(Here e, denotes the number of edges in the enlarged graph connecting different
V’s) 0O

4, Splitting off

In Section 2, while proving Menger’s theorem, we have already used the splitting-off
technique. There is a great number of other applications of this technique and our
purpose now is to show the one that will be an important ingredient for characterizing
k-edge-connected digraphs.
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Theorem 4.1. (Mader [11]). Suppose that a node s of a digraph G' =(V +s, E') satisfies
d'(s)y=p'(s) and

(x)  for each pair of nodes x and y distinct from s, there are k edge-disjoint paths
from x to y.

Then, for every edge st, there is an edge vs such that vs and st can be split off without
destroying { x).
Note that, by Menger’s theorem, (=) is equivalent to
p'(X)=k, (4.1a)
(X)=k (4.1b)

for every proper subset §# X < ¥, where p’ and &’ denote, respectively, the in-degree
and out-degree function of G'.

Proof. In the proof we use the notation V':= ¥V +s. The following identity is easy to
prove. f (X nY)=p(X Y), then

HX)+3(V)=8(X—V)+8(Y—X)+d(X, Y), (4.2)

where d(X, Y) denotes the number of edges between XY and V—(Xu Y).

Lemma 4.2. For G',if X, Y are intersecting subsets of nodes for which {s}=X Y and
0'"(X)=0'(Y)=k, then 8'"(X ~Y)=8(Y—X)=k and d'(X, Y)=0.

Proof of Lemma 4.2. Applying (4.2), we obtain k+k=5"(X)+8'(¥)=8(X—T)+
S(Y—X)+d' (X, Y)=2k+k+d'(X,Y), from which 6'(X—Y)=6(¥Y—X)=k, and
d'(X,Y)=0 follows. O

Lemma 4.3. Suppose for A,B< V' that p'(A)=p'(B)=k<min(p'(AnB), p’ (AU B)).
Then p'(AnB)=p'(AuB)=k and d'{A, B}=0.

Proof of Lemma 4.3. We have k+k=p'(A)+p'(B)=p' (AnB)+p (AUB)+
d'(A,B)=k+k+d'(A,B), from which k=p’'(AnB)=p'(AUB), and d'(4,B)=0
follows. O

Call a subset @ < X < V in-critical if p’(X)=k and out-critical if &' (X)=k. X is
called critical if it is either out- or in-critical. (Note that V is never critical.)

Lemma 4.4. Let A and B be two intersecting critical sets. Then either (i) AUB is
critical or (i) B— A is critical and d'(A, B)=0.
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Proof of Lemma 44. If both A and B are in-critical and AUBc V then, by
Lemma 4.3, alternative (i) holds. If AUB=V, then Lemma 4.2, when applied to
X=V+s5—A, Y'=V+s—B, implies (ii). The situation is analogous if both 4 and
B are out-critical. Finally, let 4 be in-critical and B out-critical. Lemma 4.3, when
applied to A and V'+s— B, implies (ii). O

Proof of Theorem 4.1 (conclusion). A pair {vs, st} of edges cannot be split off without
violating (4.1) precisely if there is a critical set containing both v and z. Therefore, if
there is no critical set containing ¢, then any pair vs, st can be split off.

For two intersecting critical sets A, B containing ¢, only alternative (i) may hold in
Lemma 4.4 since J’(A, B)>0 in this case. Therefore, the union M of all critical sets
containing ¢ is critical again.

We claim that there is an edge vs with ve V' — M. Indirectly, suppose that no such
edge exists. If M is in-critical, then §'(V'— M) < p’(M)=k, contradicting (4.1b). If M is
out-critical, then 6'(s)=p'(s) implies that p’(V —M)=5'(M +s5)<8'(M)=k, contra-
dicting (4.1a).

By the choice of M, no critical set contains both v and ¢; therefore, the pair {vs, st} is
splittable. [

5. Uncrossing

Another useful technique that finds many applications is the so-called uncrossing
procedure. The power of this machinery is nicely shown by the following proof of
another theorem of Mader [10]. The original proof was quite complicated.

Recall that a digraph G=(V,E) is called k-edge-connected if p(X)=k for
every nonempty proper subset X of V. By Menger’s theorem, this is equivalent
to saying that, for any two nodes u and v, there are k edge-disjoint paths from
u tov.

We say that G is minimally k-edge-connected if it is k-edge-connected, but deleting
any edge destroys this property.

Theorem 5.1 (Mader [101). Every minimally k-edge-connected digraph with at least two
nodes has two nodes with in- and out-degree k.

Proof. Call a set critical if p(X)=k.

Lemma 5.2. If X and Y are crossing critical sets, then both X n Y and X U Y are critical
and d(X, Y)=0.

Proof of Lemma 52. We have k+k=p(X)+p(Y)=p(XnY)+p(XUY)+
d(X, Y)=k+k. Whence, the lemma follows. [
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Proof of Theorem 5.1 (continued). Choose a minimal family 2 of critical sets so that
(*) every edge enters at least one member of Z.

By definition, such an # exists. If there are two crossing members X,Y of &,
replace X and Y by X nY and X U Y. By the first part of Lemma 5.2, the new family
consists of critical sets and, since d(X,Y)=0, it satisfies (). Since
| XI?+|YP<|X ~n Y| +]|X U Y| repeating this procedure we end up, in finitely many
steps, with a cross-free family satisfying (). So, we assume that £ is cross-free.

We are going to show that, for any given node s, there is a node t distinct from
s such that p(t)=4(t)=k.

Let F:={XeR: s¢X}, #:={V—X: seXeR} and ¥:=H# uF. Suppose that
Y(X|: Xe &) is minimal. Note that % is laminar and (*) transforms into

(**) every edge either enters a member of & or leaves a member of # (or both).

Case 1: Every member of % is a singleton. Let X:={xeV—s: {x}e#} and
Y:={xeV—s:{y}e#'}. We want to show that X n ¥ #§. Suppose that this is not the
case. Then {+=*) implies that §(X)=0, from which X =@ follows. But this is not
possible since the head of any edge su must be in X.

Case 2: There is a member X of % with more than one element. Let X be minimal.
By symmetry, we can assume that X is in #.

Claim 3.3. The digraph (X, E(X)) induced by X is strongly connected.

Proof of Claim 5.3. Assume, indirectly, that there is a subset § £ ¥ = X for which no
edge of G goes from X —Y to Y. Since p(Y¥)>k and p(X)=k, every edge entering
X must enter Y and p(Y)=k. Therefore, in # we can replace X by Y, contradicting
the minimal choice of &. O

Proof of Theorem 5.1 (continued). Let A:={xeX:{x}e# }and B:={xeX: {y}es#}.
If A~ B is nonempty, we are done. Suppose that ANB=0.

Claim 54. A=0.

Proof of Claim 5.4. 4+ X for, othérwise, X can be left out from # without destroying
(*=). If, indirectly, 4#9 then, by Claim 5.3, there is an edge uv with uc 4, veX — A.
However, such an edge would violate (**). (O

Claim 55. B=X.
Proof of Claim 5.5. The tail of any edge induced by X must be in B; therefore, B is

nonempty. If B, indirectly, is not X then, by Claim 5.3, there is an edge uv with
ue X — B, ve B. However, such an edge would violate (). O
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Proof of Theorem 5.1 (conclusion). We have shown that p(X)=k and §(x)=k for
every xeX. Hence, k| X|=}%(d(x): xeX)=6(X)+|E(X)|Zk+|E(X)|=k+Y(p(x):
x€X)—p(X)=k|X|, from which equality follows everywhere. In particular, p(x)=k
for every xeX. [

By combining Theorems 4.1 and 5.1 we obtain the following theorem.

Theorem 5.6 (Mader [12]). A digraph G is k-edge-connected if and only if G can be
obtained starting from a single node by applying in any order the following two
operations:

Operation A: Add a new edge connecting the existing nodes.

Operation B: Pick up k arbitrary (distinct) edges, subdivide each by a new node and
then identify the k new nodes by shrinking them into one node.

6. Augmenting digraphs

This section is devoted to demonstrating a recent application of the submodular
technique. Let G=(V, E) be a digraph which is not k-edge-connected. Our purpose is
to make G k-edge-connected by adding new edges. What is the minimum number of
new edges or, equivalently, when is it possible to make G k-edge-connected by adding
at most y new edges?

Theorem 6.1 (Frank [6]). A digraph G=(V,E) can be made k-edge-connected by
adding at most y new edges if and only if

> (k—p(X))<y (6.1a)
and

> (k=8(X )<y (6.1b)
hold for every subpartition {X,,X,,....X,} of V.

Proof. Necessity. Suppose G'=(V,EUF}) is a k-edge-connected supergraph of G,
where F denotes the set of new edges. Then every subset X; of V has at least k— p(X)
new entering edges. Therefore, the number of new edges in G’ is at least Y(k— p(X,))
and (6.1a) follows. The proof of (6.1b) is analogous.

Let G'=(V+s5, E’) be a digraph with in-degree and out-degree function p’ and &',
respectively. The following lemma was proved in Section 4 (Lemma 4.3).

Lemma 6.2. Suppose for A,B< V that p’'(A)=p'(B)=k<min(p’'(AnB),p'(AUB)).
Then p'(AnB)=p'(AuB)=k and d’(A, B)=0.

Proof of Theorem 6.1 (continued). We prove the sufficiency in two steps. Let s be
anode notin Vand V':=V+s.
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Lemma 6.3. G can be extended to a digraph G'=(V +s,E’) by adding a new node s,
y new edges entering s, and y new edges leaving s in such a way that, for every subset
P£XcV,

o' (X)=k, (6.2a)
§'(X)=k (6.2b)

hold, where p' and &' denote the in-degree and out-degree function of G, respectively.

Proof of Lemma 6.3. We prove that it is possible to add y edges leaving s so that (6.2a)
is satisfied. This will imply (by reorienting every edge of G) that it is possible to add
y edges entering s so that (6.2b) is satisfied. First we add a sufficiently large number of
edges leaving s so as to satisfy (6.2a). (It certainly will do if we add k edges from s to
v for every ve V.) Second, discard new edges, one by one, as long as possible without
violating (6.2a). Let G’ denote the final extended digraph. The following claim implies
Lemma 6.3. O

Claim 6.4. 5'(s)<y.

Proof of Claim 6.4. Call a subset § = X = Vin-critical if p'(X)=k. Let S:={veV, svis
anedgein G'}. An edge sv cannot be left out from G’ without violating (6.2a) precisely
if sv enters an in-critical set. Therefore, by the minimality of G’, there is a family
F ={X,,X;,...,X,} of in-critical subsets of ¥ covering § and we can assume that  is
minimal.

Case 1. & consists of disjoint sets. Then we have kt=Y(p'(X,): i=1,...,t)=
¢'(s)+T(p(X;) i=1,...,¢) and, hence, by (6.1a), o' (s)=Y(k—p(X;)i=1,...,0)<y.

Case 2: There are two intersecting members A, B of #.If AUB#V, then AUB is
in-critical by Lemma 6.2 and then, replacing 4 and B in % by AuUB, we are in
a contradiction with the minimal choice of t. Therefore, AUB=V.

Let Yi:=V—A4 and Y,:=V—B. Then &(Y;)=p(4) and 3(Y,)=p(B). By (6.2b),
we have y2k—3(Y1)+k—06(Y2)=k—p(A)+k—p(B)2k—p'(A)+k—p’'(B)+6'(s)
=4'(s).

Therefore, the proof of the Claim 6.4 and Lemma 6.3 is complete. [

Proof of Theorem 6.1 (conclusion). The theorem immediately follows by y repeated
applications of Theorem 4.1. O
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