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Covering branchings

ANDRAS FRANK

In a previous paper [4] we proved, among others, a min-max theorem con-
cerning cuts of a directed graph. Now this theorem will be applied in order to pet
some new min-max theorems about branchings and arborescences. For example.
a good characterization is given for the problem of the existence of & branchings
covering all of ihe edges of a directed graph. This theorem can be considered as
a directed counterpart of a theorem of Nash-Williams about covering forests.

Another corollary is a directed analogue of Tutte’s theorem about edge disjoint -
spanning trees. A directed graph has k& edge disjoint spanning arborescences
{possibly rooted at different vertices) if and only if, for every family of 1 disjotint
subsets of vertices, the sum of their indegrees is at least k{/—1}. This theorem
differs from Edmonds’ one concerning the existence of & edge disjoint spanning
arborescences rooted at a fixed vertex. However we shall use Edmonds’ result in
the proof.

Let G=(V, E) be a finite directed graph with vertex set ¥ and cdge set £
Multiple edges are allowed, loops are excluded. Let - be a distinguished vertex of G.
We use the notation U=\ {r}.

An arborescence a is a directed tree such that every edge is directed toward
a different vertex. It is well known that an arborescence has a unique vertex (of
indegree ) from which every other vertex can be reached by a directed path. This
vertex is called the roof of a. A spanning arborescence of G rooted at » is called
an r-arborescence.

A branching b 1s a directed forest, the components of which are arborescencces.

" We say thal a directed edge ¢ enters a set X of vertices if the head of ¢ is in
X but its tail is not. We say that a subset E” of edges enters X if ai least one element
of £’ enters X.

The indegree g5(X) of a subset X of V is the number of cdges entering X. The

following inequality is straightforward: ggfXY+og(¥)z oo (N )Y +p (VY ),
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For an arbitrary set X, X'CX means that X’ is a family of not necessarily distinct
elements of X.

A family & of subsets of U is called laminar if at least one of X\ Y, Y\ X,
XNY is empty for any two members of #

Let f be a non-negative integer valued function defined on the subsets of U.
f is called weakly supermodular if X, YSU, 1(X), f(¥)>0 and XNYx=0 imply
XN +AY)=FXU)+XNY). If X, YSU and XN Y¥=0 already imply it
then f is called supermodular.

A family E’ of not necessarily distinct edges of G (ie. E'€E) is called
f-entering if in the graph G'=(V, E’) the indegree of every subset X is at least £(X).

Let ¢ be a non-negative integer valued function on £. A family # of not
necessarily distinct subsets of U is called c-edge-independent if each edge ¢ of &
enters at most ¢(e) members of #.

The following theorem was proved in a slightly other form in [4].

Theorem 1. If § is weakly supermodular and @(Y)=0 implies f(Y)=0 then
max DXy =min X cle)

XEF E'CE o¢E

where & is c-edge-independent (F2Y) and E'CE is f-entering. The maximum
can be reglized by a laminar #.

Let & be a natural number and FCE.

Problem 1. What is the maximum number M of edges of F which can be
covered by k r-arborescences of G?
The case F=E was discussed in [4]. We formulate this problem in another form.

Problem la. What is the minimum number m of not necessarily distinct
edges of G which, together with F, contain k edge disjoint r-arborescences?

The tiwo problems are equivalent because Mz=k(|VV|—1)—m -and
m=k({{V|—-1)—M, hence
n m+M = k(V|-1)

By a theorem of J. EDMONDS [3, 5] a digraph has k edge disjoint r-arborescences
if and only if the indegree of every subset of ¥\ {r} is at least k. Therefore
m=min |E’| where E’ is f-entering and the function f is defined as follows:

F'@F
f(X) = max (0, k—gg(X)) for XSU

where g (X) is the indegree of X in the subgraph H=(V, F). Obviously f is
weakly supermodular. (Observe that F is used only to define f). Applying Theorem 1
to G and to this function f, with the choice c¢(e)=1 (e€ E), we get m=max > 1x)
where & is l-edge-independent. This, together with (1), proves reF
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Theorem 2, If H=(V, F) is a subgraph of G=(V, E) then the maximum
number of edges of H which can be covered by k r-arborescences of G is equal to

min [k(|V |- 11—+ .M en (V)]

where the minimum is taken over all l-edge-independent laminar families
F={V1, Vo, ..., ¥} (V,SU).

Problem 2. Let H=(l/, F) be a directed graph (there is no distinguished
vertex). What is the maximum number M of edges which can be covered by k
branchings?

Complete H by a new vertex r and by |U| new edges which are joined from
r to all other vertices of U, ie. V=UU{r} and E=FU{(r,x): xcU}. It is easy
to check that the maximum number of edges of H which can be covered by &
r-arborescences of G=(V,E) is M. Apply Theorem 2 and observe that in this
case a laminar family of subsets of U consists of pairwise disjoint subsets. Thus
we have

Theorem 3. The maximum number of edges of H=(U, F) which can be
covered by k branchings is equal to

min [k(JU]—£) + N._ eu(V)]

i=1

where the minimum is taken over all families of disjoint subsets V; (i=1,2, ...,1)
of U. . ’

A simple application of this theorem provides an analogue of Tutte’s disjoint
spanning trees theorem [8].

Theorem 4. H=(U, F) has k edge disjoint spanning arborescences {possibly
rooted at different vertices) if and only if

@ .M o) = k(t-1)

Jor every family of disjoint subsets V, (i=1,2,...,1) of U.

Proof. H has k edge disjoint spanning arborescences if and only if at least
k(|U|—1) edges of H can be covered by k branchings, i.e., by Theorem 3,

k(IU|=t)+ 3 ey(V}=k(IU|—1), which is equivalent to (2). [
<1
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Another consequence of Theorem 3 is

Theorem 5. The edges of H can be covered by k branchings if and only if
3 k(U|-5 = e

Jor every family of disjoint subsets Vi, Vs, ..., V, of U, where e, denotes the number
of edges nor entering any V,.

Proof. By Theorem 3 we have to mmmEd that i_Q_IS.TN.mm:QV_E
But this is equivalent to (3), because e +Mmmﬁv‘b IFl. 0O

Theorem Sa. The edges of H can be covered by k branchings if and only if
(4a) the indegree of cvery vertex is at most k, and
(4b) the edges of H (in the undirected sense) can be covered by k forests.

Proof. The necessity of the conditions is obvious. For the sufficiency we verify
that (4a) Ea (4b) imply (3). Let Vi, Vi, ..., ¥, be disjoint subsets of U. Let

Q/C V; (¥, may be empty) and let e{X) denote the number of edges with
tails and :nmn_m both in X. Then

M §€+Mm3 %IME_\_.T@“ES&. a

x€V,

Remark. The last theorem can be considered as a new “linking” theorem. Let
4, denote the circuit matroid (on F) of H considering H as an undirected graph.
Let .#, denote the matroid on F in which a subset is defined to be independent if
it contains no two edges directed toward the same vertex. Now Theorem 5a states
that if F can be covered by & independent sets of .#, and can be covered by k in-
dependent sets of .#, then F can be covered by k sets which are independent in
both .#, and .4,.

Another special case of this statement, when .#; and .4, are transversal
matroids, was proved by BRuaLDI [2). However, this statement is not true in general:
Let .#, be the circuit matroid of K, (the complete graph on 4 vertices) and .#, be
defined such that a subset in independent if it contains no disjoint edges of K.

Now we prove a Vizing type theorem which is due to Mosgsyan [6] for y=1.

Theorem 6. If in H=(U, F) the indegree of every vertex is at most K and
H does not contain y+1 edges with the same heads and tails then F can be covered
by k=K+y branchings.

Proof. (4a) holds obviously. To prove (4b) we have to verify that e(X)=
=k(|X|—1) for XSU. This condition is equivalent to (4b) by a well-known
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theorem of Nasu-WiLiams [7]. If |[X[y=k then e(X)=[X|(|X|-Dy=
=k(X]-1). If in turn |[X|y=k then e(X)=|X|-K=|X!Ek—n=k{X|-1). O

Finally, a theorem is stated which is also a consequence of Theorem 1. The
proof is left to the reader.

Theorem 7. The edges of H=(U, F) can be covered by k spanning arborescences
if and only if k{|U|—1—t+d)=e, for every l-edge-independent laminar family
F =V, ..., V), where ¢, is the number of edges not entering any V, and d denotes
the maximum number of V,’s containing any vertex.
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