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PRESERVING AND INCREASING LOCAL EDGE-CONNECTIVITY
IN MIXED GRAPHS *

JPRGEN BANG-JENSEN!, ANDRAS FRANK?, anp BILL JACKSONS

Abstract. Generalizing and unifying earlier results of W. Mader, and A. Frank and B. Jackson,
we prove two splitting theorems concerning mixed graphs. By invoking these theorems we obtain
min-max formulae for the minimum number of new edges to be added to a mixed graph so that the
resulting graph satisfies local edge-connectivity prescriptions. An extension of Edmonds’s theorem on
disjoint arborescences is also deduced along with a new sufficient condition for the solvability of the
edge-disjoint paths problem in digraphs. The approach gives rise to strongly polynomial algorithms
for the corresponding optimization problems.
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1. Introduction and preliminaries. Our main concern, the edge-connectivity
augmentation problem, is as follows: given a mixed graph M, what is the minimum
number (or, more generally, the minimum cost) -y of new edges to be added to M so
that in the resulting graph M’, the local edge-connectivity A(z,y; M’) between every
pair of nodes z,y is at least a prescribed value r(z,y)?

Several special cases were solved earlier for directed and undirected graphs. First,
let M be undirected. When r = 1, the minimum cost augmentation problem reduces
to a minimum cost tree problem. For r = 2, the problem was solved independently by
Eswaran and Tarjan [4] and Plesnik [22]. For this case, the minimum cost augmenta-
tion problem is already NP-complete.

The uniform case r = k for an arbitrary integer &£ > 2 was first solved by Watanabe
and Nakamura [24], who developed a polynomial time algorithm as well as a min-max
relationship. Slightly later, Cai and Sun [1] also solved this special case. The algorithm
of Watanabe and Nakamura has been improved by Naor, Gusfield, and Martel [21].
Neither of these algorithms gives rise to a strongly polynomial time algorithm in the
capacitated case. The first such approach was given by Frank [6]. The same paper
includes a complete solution of the generalization to arbitrary (symmetric) demand
functions r(u, v).

For directed augmentation, the case r = 1 was solved by Eswaran and Tarjan [4]
while the general uniform case r = k(> 1) was solved by Frank [6]. Another interesting
approach is by Gabow [9]. A related problem on augmentation was solved by Gusfield
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[12], who described a way of adding a minimum number of directed or undirected
edges to a mixed graph so that each edge belongs to a (possibly mixed) circuit with
no backward directed edge. (Note, however, that our general mixed augmentation
problem is not a generalization of Gusfield’s.) Finally, several degree-constrained and
node-cost variants were also solved by Frank [6].

On the negative side, for directed graphs the nonuniform demand problem was
shown to be NP-complete by Frank [6] even if r{u,v) = 1 for every pair of nodes
u,v of a specified subset T C V and r{u,v) = 0 otherwise. In this light, relatively
little space is left for possible generalizations admitting good characterizations and/or
polynomial time algorithms. (This sentence may serve as an excuse in case the reader
feels that the hypothesis of the generalizations we discuss below is more technical than
necessary.)

In the present paper we show how the augmentation problem for mixed graphs
can be solved for certain demand functions that are more general than the uniform one.
(By a mized graph M we mean a graph that may have both directed and undirected
edges.) When the starting graph is mixed, one may wish to add both directed and
undirected edges. Unfortunately, we do not have anything to say about this general
case. Our results concern only the two extremes, when either only directed edges or
undirected edges are allowed to be added to the given mixed graph M.

Splitting off a pair of edges e = us, f = st means that we replace € and f by a new
edge ut. The resulting mixed graph will be denoted by Mef. This operation is defined
only if both e and f are undirected (respectively, directed) and then the newly added
edge ut is considered undirected (directed). Accordingly, we speak of undirected or
directed splittings.

Two theorems of W. Mader concerning directed and undirected splittings are im-
portant tools in the proofs by Frank in [6]. Here we follow an analogous line, and
the basis for the present generalization is an extension of the existing splitting theo-
rems. When a splitting-off operation is performed, the local edge-connectivity never
increases. The content of the splitting-off theorems is that under certain conditions
there is an appropriate pair {e = us, f = st} of edges whose splitting preserves all
local or global edge-connectivity between nodes distinct from s.

An interesting by-product of our investigations is an extension of Edmonds’s
theorem on the existence of k£ disjoint arborescences [2]. A new sufficient condition
will also be deduced for the existence of k edge-disjoint paths in a directed graph
connecting specified pairs of nodes.

Given two elements s,t and a subset X of a ground-set U, we say that X is an
st-setif s € X,t &€ X. X separates s from t (or s and t} if | X N {s,t}| = 1. A family
{X1,...,X:} of pairwise disjoint, nonempty subsets of U is called a subpartition.

Let G = (U, E) be an undirected graph. de(X,Y) denotes the number of undi-
rected edges between X —Y and Y - X. dg(X,Y) :=da(X,U~Y)(= de(U - X,Y)).
de(X) stands for dg(X,U — X). Observe that dg(X,Y) = dg(U — X,U —Y). When
it will not cause ambiguity we shall leave out the subscript.

PROPOSITION 1.1. For X,Y C U,

(1.1a) da(X) +de(Y)=de(XNY)+de(X UY) + 2de(X,Y),
(1.1b) do(X) +de(Y) =dg(X = Y) +de(Y — X) +2dc(X,Y).

For a directed graph D = (U, A), pp(X) denotes the number of edges entering
X,6p(X) := pp(U — X), and Bp(X) := min{pp(X),ép(X)). Note that Sp(X) =
Bp(U — X). dp(X,Y) denotes the number of edges with one end in X — Y and one
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endinY — X. dp(X,Y) :=dp(X,U-Y)(=dp(U — X,Y). An out-arborescence F is
a directed tree in which every node but one has in-degree 1 and the exceptional node,
called the root, is of in-degree 0. (Equivalently, there is a directed path from the root
to every other node of F.)

PROPOSITION 1.2. For X,Y C U,

(1.2a) pp(X) + pp(Y) = pp(X NY) + pp(X UY) +dp(X, ).
If 6p(X NY) = pp(X NY), then

(1.2b) pp(X) +pp(Y) = pp(X = Y) + pp(Y = X) + dp(X,Y).
If 6 p(X UY) = pp(X UY), then

(1.2¢) pp(X) +pp(Y) = 6p(X = Y) + 6p(Y — X) + dp(X,Y).
If$p(X NY)=pp(X NY) or 6p(X UY) = pp(X UY), then

(1.2d) Bp(X) + Bp(Y) 2 Bp(X —Y) + Bp(Y — X) +dp(X,Y).

Proof. Equation (1.2a) follows by showing that each edge has the same contribu-
tion to the two sides. A similar argument shows that pp(X)+ pp(Y) = pp(X —Y) +
pp(Y —~ X) +dp(X,Y) + {pp(X NY) — 6p(X NY)) bholds for any digraph D from
which (1.2b) follows. The derivation of (1.2¢) is analogous.

Let us prove (1.2d). The two cases are clearly equivalent: Substitute U — X for
X and U ~Y for Y. So assume that 6p(X NY) = pp(X NY). If fp(X) = pp(X)
and Gp(Y) = pp(Y) then by (1.2b), Bp(X) + Bp(Y) = pp(X} + pp(Y) = pp(X -
Y)+pp(Y = X)+dp(X,Y) > Bp(X = Y)+ Bp(Y — X) +dp(X,Y). The case when
Bp(X) = 6p(X) and Bp(Y) = 6p(X) is analogous. Finally, suppose that 8p(X) =
pp(X) and Bp(Y) = ép(Y). Let Y’ := U — Y. Then, applying (1.2a) to X and Y’ we
get Bp(X) + Bp(Y) = pp(X) + pp(Y") = pp(X NY") + pp(X UY") + dp(X,Y") =
pp(X —Y)+6p(Y - X)+dp(X,Y) > Bp(X = Y)+ Bp(Y - X)+dp(X,Y). D

Let M = (U,AU E) be a mixed graph composed as the union of a directed
graph D = (U, A) and an undirected graph G = (U, E). Let pm(X) := pp(X) +
de(X), 6m(X) :== 6p(X) + da(X), and Bup(X) := min(pom(X), 51 (X)). We say that
a node v of a M is di-Eulerian if pp(v) = ép(v). M is called di-Eulerian if every node
of M is di-Eulerian. ‘

By combining Propositions 1.1 and 1.2, we obtain the following proposition.

PROPOSITION 1.3. For X,Y C U,

(1.3a)  pu(X)+pm(Y) =pm(XNY)+ pm(XUY) +dp(X,Y) + 2da(X,Y).
If6p(X NY) = pp(X NY), then

(1.3b)  pm(X) +pu(Y) = pu(X = Y) + pr(Y — X) + dp(X,Y) + 2dc(X, Y).
If6p(X UY) = pp(X UY), then

(1.3¢)  pm(X)+pu(Y)=6m(X -Y)+6m(Y — X) +dp(X,Y) + 2da(X,Y).
If6p(XNY) = pp(XNY) or 6p(XUY) = pp(X UY), then

(1.3d)  Bm(X)+Bu(Y) 2 Bu(X - Y) + Bu(Y ~ X) +dp(X,Y) + 2de(X,Y).
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By a feasible path (or simply path) of a mixed graph M we mean a sequence
{vo, vov1, v1, V102,02, ..., Un—1,Un—1Vn, ¥n }, where each v;viy1 is a directed or undi-
rected edge of M. The local edge-connectivity A(s,t; M) = A(s,t) from s to ¢ is in
the maximum number of edge-disjoint paths from s to ¢. By a version of Menger’s
theorem, this is equal to the minimum of §5(S) + dg(S) over all si-sets S. Note that
A(s,t) can be computed by a max-flow min-cut (MFMC) computation.

Let U be a set and r(z,y)(x,y € U), an arbitrary symmetric, nonnegative func-
tion. Define a set function R as follows. Let R(@) = R(U) = 0, and for X Cc U
let '

(1.4) R(X) := max(r(x,y) : z,y € U, X separates z and y).

Clearly, R(X) = R(U - X).
LEMMA 1.1. For arbitrary X,Y C U, at least one of the following two inequalities
holds:

(1.5a) R(X)+R(Y)<R(XNY)+R(XUY),
(1.5b) R(X})+RY)<RX-Y)+R(Y - X).

Proof. First observe that if Y is replaced by U — Y, then (1.5a) and (1.5b) trans-
form into each other. Let (z,2’) be a pair that maximizes (z, 2’) over all pairs which
are separated by at least one of the sets X and Y. By symmetry we may assume that
z € X and 2’ € U — X. By replacing Y by U — Y, if necessary, we may also assume
that 2 € Y.

If 2’ € Y, thenr(z,2') = R(X) = R(Y) = R(X-Y) = R(Y —X), and hence (1.5b)
holds (actually with equality). If 2’ ¢ Y, then r(z,2) = R(X) = R(XUY) = R(X -
Y). Clearly, R(Y) < R(X NY) or R(Y) < R(Y — X). Accordingly, (1.5a) or {1.5b)
holds. 0

Let M = (U, AU E) be a mixed graph with a specified node s satisfying ppr(s) =
Oa1(s). Throughout this paper we will use the notation V := U — 5. Let

(1.6) T(M) = {z eV :pum(z)# om(z)}

be the set of non-di-Eulerian nodes. Observe that pa(T(M)) = p(T(M)) and hence
T(M) never consists of one element. Let k be a positive integer and assume that

(1.7) Mz, y; M) >k for every z,y € T(M).
Suppose that r(x,y) satisfies

(1.8a) r{z,y) <k forevery z,y €U, and
(1.8b) r(z,y) =k for every z,y € T(M).

For X C U define ¢(X) := R(X) — Bu(X).
LEMMA 1.2. For X.Y C U, at least one of the following two inequalities holds:

(1.9a) g(X)+qY)<g(XNY)+gXUY)-(2de(X,Y) +dp(X,Y)),
(1.9b) (X)) +9(Y) <X -Y)+4g(Y — X)~(2dc(X,Y) +dp(X,Y)).

Proof. Since ¢{X) = q(U — X), the inequalities in (1.9) transform into each other
when X is replaced by its complement U —X. Therefore, we can assume that Sm (X) =
pm(X) < 6y (X) and By (Y) = pm(Y) < Sm(Y)- |
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If R satisfies (1.5a), then by subtracting (1.3a) from (1.5a) we obtain (1.9a).
Now assume that R does not satisfy (1.5a). Then at least one of T(M)N X NY and
T(M)—(XUY) is empty, otherwise (1.4) and (1.8) would imply that R(X) = R(Y) =
R(XNY)=R(XUY) = k, and hence (1.5a) would hold. Therefore (1.3d) holds.
Furthermore, by Lemma 1.1, R satisfies (1.5b). Subtracting (1.3d) from (1.5b) we
" obtain (1.9b). O
For z,y € U, let us define

(1.10a) ra(z,y) == min(k, Mz, y; M)) ifz,yeV,

(1.10b) : rmlz,y) =0 ifse{x,y}

Note that r)s depends on M, s, and & and satisfies (1.8).

LEMMA 1.3. ym(x,y) = rum(y, ).

Proof This clearly holds if A(z,y; M) = My, z; M) and, by (1.10b), s € {z,y}-
Assume that z,y € V and A(z,y; M) < Ay, z; M). There is an z§-set X for which
dm(X) = Az, y; M). We cannot have A(z,y; M) < k since at least one of the sets
X and U — X, say X, is then disjoint from T(M). But then pp(X) = 6p(X) and
hence Az, y; M} = ém(X) = pm(X) > Ay, x; M), a contradiction. Therefore, k <
Az, y; M) < My, x; M), that is, rar(2,y) = k = rar(y, x) as required. 0

Define

(1.11) Rp(X) := max(ra(z,y) : X separates z and y).

Note that by (1.10) Rar(X) = Ry (V — X) for every X C V.
LEMMA 1.4. For any subset X C V separating nodes x,y € V,

(1.12a) Bum(X) 2 Rm(X) 2 rm(z,y).

Moreover, if AMz,y; M) < k, then there is a subset Xo of V separating x and y for
which

(1.12b) B (Xo) = ru(x,y).

Proof. By symmetry we may assume that £ € X and y € V—X. Then ry(z,y) <
Mz, y; M) < 6p(X) and rm(y, z) < Ay, 73 M) < pam(X). From this and Lemma 1.3
we get Bar(X) > ru(2z,y). This, in turn, along with the definition of Ras(X), implies
(1.12a).

If A(z,y; M) < k, then A(x,y; M) = rym(z,y) and, by Menger’s theorem, there
is a subset X C V separating z and y for which Sp(Xo) = A(z,y; M) and (1.12b)
follows. 0

Let sp(X) := Bum(X) — Rp(X). By Lemma 1.4, sp(X) > 0 for every X C V.
We call a nonempty set X C V tight (dangerous) if sp(X) = 0(sp(X) < 1). We
may distinguish between the two possible types of tight (dangerous) sets by use of
the prefix “in” or “out.” Note that V is not tight if par(s),éar(s) > 0. Lemma 1.2
immediately provides the following lemma.

LEMMA 1.5. For X,Y C V, one of the following inequalities holds:

(1.132) sm(X)+sm(Y) > sm(XNY) +spm(X UY) +2da(X,Y) +dp(X,Y),
(1.13b) sa(X) +sm(Y) > sm(X = Y) +sm(Y — X) +2de(X,Y) + dp(X,Y).
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We are going to prove two splitting theorems for M. In §2 each edge incident to
s is directed, while in §3 the edges incident to s are all undirected.

2. Directed splitting. When a splitting operation is carried out, the local edge-
connectivity may drop. There are theorems for directed graphs stating that global or
local edge-connectivities may be preserved by an appropriate choice of edges to be
split off. One is from Mader [20).

THEOREM 2.1. Let D = (V + s, A) be a directed graph for which Mz,y; D) > k
for every x,y € V and p(s) = 6(s). Then, for every edge f = st there is an edge e = us
such that Az, y; Def) > k for every z,y € V.

The next theorem was proven by Frank [5] and Jackson [13].

THEOREM 2.2. Let D = (V + s, A) be a directed Eulerian graph, that is, p(z) =
8(z) for every node x of D. Then, for every edge f = st there is an edge € = us such
that A(z,y; Def) = A(z,y; D) for every z,y € V.

Our first result is a common generalization of these two theorems. (Recall the
definition of function rps(z,y) in (1.10).)

THEOREM 2.3. Let M = (V + 5, AU E) be a mized graph, satisfying (1.7). As-
sume that s is incident only with directed edges and ppm(s) = 6p(s) > 0. Then, for
every edge f = st, there is an edge e = us such that

(2.1) Mz, y; Mef) > ry(z,y)  for everyx,y € V.

If M = D is a directed graph and A(z,y; D) > k for every z,y € V, then
rm(z,y) = k and we are back at Theorem 2.1. If M = D is directed Eulerian
graph and k := max(A(z,y; D) : 2,y € V), then we are back at Theorem 2.2.

We call a pair {e, f} satisfying (2.1) splittable. This is equivalent to requiring
that

(2.2) Taref (Z,Y) 2 rm(z,y) for every z,y € V.

Repeatedly applying Theorem 2.3 pjs(s) times, one obtains the following theorem.

THEOREM 2.4. Let M = (V + 5, AU E) be a mized graph satisfying (1.7). As-
sume that s is incident only with directed edges and pup(s) = 6u(s). Then the edges
entering and leaving s can be matched into pum(s) disjoint pairs so that A\(z,y; M+) >
M (Z,y) for every x,y € V, where M+ denotes the mized graph arising from M by
splitting off all these pairs. .

Proof of Theorem 2.3. We may assume that every edge of M is directed since
replacing each undirected edge with a pair of oppositely directed edges does not affect
the local edge-connectivities. (Incidentally, this means that having a mixed graph in
Theorem 2.3 rather than a directed one is not a big thing; the point is that Theorems
2.1 and 2.2 can be combined into one.) Note that for edges e = us, f = st, one has
Bumer(X) = Bum(X) — 1 if u,t € X and Bpges(X) = Brp(X) otherwise.

CrLAM 2.1. A pair {e = us, f = st} is splittable in M if and only if there is no
tight set X containing u and t.

Proof. First suppose that X is a tight set containing u and ¢. Then SBa.s(X) +
1 = Bm(X) = Bym(X). There are nodes z € X,y € V — X such that Ry (X) =
rm(z,y). By applying (1.12) to Mef we obtain rprer(2,9) < Bpres (X) < Bm(X) =
Ry (X) = ru(z,y), that is, {e, f} is not splittable.

Conversely, suppose that {e, f} is not splittable. Then there are nodes z,y € V
such that A(z,y; Mef) < rp(z, y) < k. Then rper(z,y) = A(z,y; Mef), and by apply-
ing Lemma 1.4 to M¢/ we see that there is a set X C V separating z and y for which
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T

z

T=e

Fic. 1. Here k = 2,T consists of three nodes, and there are no two edge-disjoint
out-arborescences rooted at ~z with both coniaining every element of T. Observe that
plr) =1 < 6(x) = 2 holds for the only node = not in T.

Buresr (X) = 7ppe5(2,y). Using (1.12a) we have Op(X) — 1 < Bages (X) = Tpges (z,y) <
rm(z,y) = 1 € Ry(X) — 1 < Bm(X) — 1. Hence equality follows everywhere. In
particular, Ba(X) = Ry (X), that is, X is tight. Also, Ba(X) — 1 = Bages (X), that
is, u,t € X. o

CLAIM 2.2. There are no two maximal tight t5-sets.

Proof. Assume, indirectly, that X and Y are such sets. Apply Lemma 1.5. If
(1.13a) holds, then we have 0+ 0 = sy (X) +sm(¥Y) > s (X NY) + sy (X UY) +
dp(X,Y) 2 0, from which sy (X UY) = 0, contradicting the maximality of X and Y.

If (1.13b) holds, then we have 0+0 = sp(X) + sm(Y) > s (X = Y) + sp(Y —
X) +dp(X,Y) > 0+ 0+ dp(X,Y). Hence dp(X,Y) = 0, which contradicts the
existence of the edge st. [

If there is no tight t3-set, then choose an arbitrary edge e = us of M. If there
are tight ¢3-sets, then by Claim 2.2 there is a unique maximal one denoted by X. We
claim that there is an edge e = us with u € X. Assume this is not the case. Then the
existence of the edge st and the fact that par(s) = 6ar(s) imply that (V- X) < p(X)
and ppm(V — X) < 8(X), that is, Bp(V — X) < Bam(X). This is impossible, however,
since Bm(V — X) > Ry(V — X) = Ry (X) = By(X). By Claim 2.1 the pair {us, st}
is splittable. 0

Mader [20] showed how his Theorem 2.1 implies the following basic result of
Edmonds on edge-disjoint arborescences.

THEOREM 2.5 [2], [3]. In a digraph D = (U, A) with a special node z there are
k edge-disjoint spanning out-arborescences of root z if and only if p(X) > k holds for
each subset X C U — z of nodes (or, equivalently, there are k edge-disjoint paths from
z to every other node of D.)

The following possible generalization naturally emerges. In addition to z, we are
given a subset T C U — z so that p(X) > k for every subset X CU — 2, X NT # @.
Is it true that there are k edge-disjoint out-arborescences rooted at z so that each
contains every element of T7 The answer is yes if T' = U — 2 (by Edmonds’s theorem)
or if |T| = 1 (by Menger’s theorem). But Lovész [15] found the example in Fig. 1
which shows that such a statement is not true in general. In this light, the following
result might have some value.

THEOREM 2.6. Let D = (U, A) be a digraph with a special node z called a root, .
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and let T" := {x € U — 2z : p(z) < §(x)}. Assume that A\(z,x; D) > k(> 1) for every
xz € T'. Then there is a family F of k edge-disjoint out-arborescences rooted at z so
that every node x € U belongs to at least r(x) := min(k, A(z, z; D)) members of F.

Proof. The theorem is trivial if |U| = 2, so suppose that |U/| > 3. We may assume
that there is no edge in D entering z. Now U —~ T” — z is nonempty; otherwise p(z) <
&{z) would hold for every node of D, which is not possible since Y p(z) = |A] =
> 8(x).

Let s € U —T" — z be a node for which r(s) is minimum. By the hypothesis made
on T”,7(s) < r(x) for every z € U. Extend D by adding p(x) — 6(z) parallel edges
from x to z for each x € U — T” — 2, and k parallel edges from x to z for each x € T".
Let IV denote the resuiting digraph.

Clearly, T(D') C T’ + z. We claim that (1.7) holds for D’. This is equivalent to
saying that pp/(X) > k, and ép/(X) > k holds for every subset X C V — z for which
X NT’ is nonempty. The first inequality follows from the hypothesis. The second
one follows from the fact that ép/(X) = pp(X) = Y (pp'(2) — ép'(z) : 2 € X) >
pp(X) 2 k.

We can apply Theorem 2.3, which implies that there are edges e = us, f = st
such that A(z,z; Dy) > r(z) holds for every z € U — s, where D; denotes the digraph
arising from D’ by splitting off e and f. It is also clear that A(z,s; D) > r(s) — 1.

By induction there is a family ¥ = {F,..., Fi} of k edge-disjoint out-arbor-
escences in D) rooted at z such that each node z belongs to at least (x) members of
F for x € U — s, and s belongs to at least r(s) — 1 members of F. Let a = ut denote
the edge of D; which results from the splitting of f = st and e = us.

Suppose first that one member of F, say F1, contains a. If (i) s is not contained
in F1, define Fy := Fy —~a+e+ f. If (ii) s is contained in F}, let P denote the unique
subpath of F) from z to s with its last edge h = ws. If P does not use a, define
Fy := F) —a+ f. If P uses a, define F} := F} — a — h+ ¢ + f. Finally, if no member
of F contains a, define Fy := Fj_

By these constructions F is an out-arborescence of I containing each node be-
longing to F plus, possibly, node s. Hence we have a family F = {F, F,, ..., Fi} of
k out-arborescences of D so that each node x other than s belongs to at least r(z) of
them, and s belongs to at least r(s) — 1 of them. If s belongs to at Jeast r(s) members
of F, then this family satisfies the requirements of the theorem. If (i) occurred, then
we are surely in this case.

Suppose s is contained in precisely r(s) — 1 members of F. Then (ii) occurs and
by the choice of s,7(x) > r(s) for every x € U. Hence every node z is in strictly more
members of F than s is. Therefore, there is a member F of F containing z but not
s. By the construction of F, at least one of the edges e = us and h = ws is not
used by the out-arborescences of F. Accordingly, choose z to be u or w. We conclude
that by replacing the out-arborescence F' by F + zs in F, we obtain a family of k
out-arborescences satisfying the requirements. Q

Clearly, if in Theorem 2.6, M(z,z; D) > k holds for every z € U, then we are
back at Edmonds’s theorem. Another special case may also be worth mentioning.
Call a digraph D = (U, A) with root z a preflow digraph if p(z) > é6(x) holds for
every £ € U — 2. (The name arises from an MFMC algorithm of Karzanov [14] and
Goldberg and Tarjan [11], where a preflow was defined as a function on the edge-set
of a digraph so that the in-sum is at least the out-sum at every node except the root.)
An easy, well-known fact from network flow theory is that any fiow from the source
to the terminal may be decomposed into path-flows. The following corollary may be
considered as a generalization. '
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F1G. 2. Here k = 2 but the example can easily be generalized to arbitrary k. In fect, we can
have arbitrarily maeny paths between s; and t; (3,5 = 1,2,...,k) and still not have the edge-disjoint
paths.

COROLLARY 2.1. In a preflow digraph D = (U, A), for any wnteger k(> 1) there is
a family F of k edge-disjoint out-arborescences of root z such that every node belongs
to min(k, A(z, x; D)) members of F. In particular, if k = max(A(z,z; D) : x € U - 2)
then every z belongs to A(z,x; D) members of F.

Y. Shiloach [23] pointed out that Edmonds’s theorem immediately implies the fol-
lowing pretty result. Given k pairs (s1,t1),...,(sk,tx) of nodesin a k edge-connected
digraph D, there are edge-disjoint paths from s; to ¢; (i = 1,... k).

Using Theorem 2.6 we have the following generalization.

COROLLARY 2.2. Let (s1,t1),...,(sk,tx) be k pairs of nodes in a digraph D =
(U, A) such that for every node x with p(z) < §(x) or x = t; there are edge-disjoint
paths from s; to x(i = 1,... k). Then there are edge-disjoint paths from s; to t; (i =
1,...,k).

Proof. Extend the digraph by a new node 2 and an edge zs; for each i = 1,...,k.
By Theorem 2.6 there are k edge-disjoint out-arborescences rooted at z such that
each contains every t;. Since there are k edges leaving z, each edge zs; belongs to
one of these out-arborescences denoted by F;. Now F; includes a path P; from s; to
t; (i =1,...,k), and these paths satisfy the requirements. 0

Note that if we only impose the condition in Corollary 2.2 on the vertices ti,i=
1,2,...,k, then D may not have edge-disjoint paths from s; to t; (i = 1,2, ..., k). This
can be seen from the example in Fig. 2.

7

3. Undirected splitting. Generalizing earlier results of Lovasz [16], [17] (see
also {18]), Mader proved the following powerful theorem on undirected splitting. For
a short proof, see Frank {7]. In what follows U = V + s will denote the node set of the
graph in question. We will use the terms R, 7ar, 80, par, and Bar introduced in §1.

THEOREM 3.1 [19]. Let G = (V +5,E) be a (connected) undirected graph in
which 0 < dg(s) # 3 and there is no cut-edge incident to s. Then there exists a poir
of edges € = su, f = st such that A(z,y; G) = Mz, y; Gef) holds for every x,y € V.

The main result of this section is an extension of Mader’s theorem to mixed
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graphs. Let M = (V + 5, AU E) be a mixed graph composed from a digraph D =
(V + s, A) and an undirected graph G = (V + s, E) so that s is incident only with
undirected edges. By a cut-edge of a mixed graph M we mean an edge e € E such
that M — e is disconnected (in the undirected sense).

‘THEOREM 3.2. Suppose that in M = (V +s, AUE), node s is incident only with
undirected edges, 0 < dp{s) # 3, and

(3.1) there is no cut-edge incident to s.

Let k > 2 be an integer satisfying (1.7). Then there is a pair of edges e = su, f = st
such that

(3.2a) Mz, y; Mef) > ry(z,y)  for every z,y € V.

We call a pair {e, f} satisfying (3.2a) splittable. Inequality (3.2a) is equivalent to
the following:

(3.2b) Tames(2,y) > ru(a,y) for every 2,y € V.

In order to make repeated splittings, the following lemma is useful.

LEMMA 3.1. If {e, f} is splittable in a mized graph M satisfying the hypothesis
of Theorem 3.2, then Mef satisfies (3.1).

Proof. Let x and y be two neighbours of s. We claim that Az, y; M) > 2. Indeed,
A(z,y; M)} > 1 since zs,ys € E by the assumption. If Az, y; M) = 1, then there is
an zy-set X with 6p(X) = 0 and de(X) = 1. Let h denote the unique edge of G
between X and V' + s — X. Then & is either zs or ys. Since k > 2, one of the sets X
and V + s — X is disjoint from T(M). By (1.7), pp(X) = 6p(X)(= 0), showing that h
is a cut-edge incident to s. Thus A(z,y; M) > 2. By (3.2a), Mz, y; Mef) > 2 for every
two neighbours z,y of s. This implies the claim. o

A closely related form of Theorem 3.2 is as follows.

THEOREM 3.3. Let M = (V +5,AUE) be a mized graph with a node s such that
s s incident only with undirected edges, d(s) is even, and (3.1) holds. Let k > 2 be an
integer satisfying (1.7). Then the set of edges incident to s can be matched into d(s)/2
disjoint pairs so that Az, y; M*) > ra(z,y) for every z,y € V, where M+ denotes
the mized graph arising from M by splitting off all these pairs.

This theorem is analogous to Theorem 2.4 except that Theorem 3.3 does not hold
for £ =1 (see Fig. 3).

CLAIM 3.1. Theorems 3.2 and 3.3 are eguivalent.

Proof. First assume the truth of Theorem 3.2 and let {e, f} be a splittable pair.
By Lemma 3.1, Theorem 3.2 can be applied dc(s)/2 times. Theorem 3.3 follows by
bbserving that a pair splittable in M¢f is splittable in M as well.

Conversely, assume that Theorem 3.3 is true. If dc(s) is even, then there is
nothing to prove, so assume that dg(s) is odd. Then dg(s) > 5. Let M’ denote a
mixed graph arising from M by adding a new node = and three parallel undirected
edges between x and s. Property (3.1) holds for M’ and hence Theorem 3.3 applies
to M'. Since dg(s) > 5, among the (dg(s) + 3)/2 splittable pairs in M’ provided by
Theorem 3.3, at least one pair {e, f} must consist of original edges. Clearly, {e, f}is
splittable in M, as well. 0

Proof of Theorem 3.3. By Lemma 3.1 it suffices to prove that there is one split-
table pair. We may suppose that every undirected edge h of M is incident to s,
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F1G. 3. There is no way to match the edges at s so that the mized graph remains strongly
connected.

otherwise we could replace A by two oppositely directed edges. Let M denote a coun-
terexample in which every edge not incident to s is directed and the total number
of nodes and edges is minimum. It is clear that M is connected (in the undirected
sense). Note that for X C V and edges e = su, f = st one has fByrer(x) = Bu(X) — 2
if u,t € X and Bpper (X) = Brm(X) otherwise. 0

CLaM 3.2. A pair {e, f} of edges e = su, f = st is splittable if and only if there
s no dangerous set X containing t and u.

Proof. First suppose that X is a dangerous set containing u and ¢. Then
Brres(X) +2 = Bm(X) < Rpm(X) + 1. There are nodes z € X,y € V — X such
that Ry (X) = rm(z,y). By applying Lemma 1.4 to Mef, we obtain rps.s(z,y) <
Brer(X) = Bu(X) =2 < Ry(X).— 1 =rum(z,y) — 1, that is, {e, f} is not splittable.

Conversely, suppose that {e, f} is not splittable. Then there are nodes z,y € V
such that A(z,y; Mef) < ry(z,y) < k. Then rper(x,y) = Mz, y; Mef), and by
applying Lemma 1.4 to M/ we see that there is a set X C V separating z and v,
for which Bpres(X) = rpses(z,y). Using (1.12a) we have Sp(X) — 2 < Bper(X) =
Taer (2,y) STm(z,y) — 1 < Rm(X) — 1 < Bu(X) ~ 1. Hence By (X) < Rm(X)+1,
that is, X is dangerous. Furthermore, Oar(X) > Bases(X), that is, u,t € X. O

CramM 3.3. Let X C V be a tight set. A pair {e = su,f = st} of edges is
splittable in M if the corresponding pair {e’, f'} is splittable in the contracted mized
graph M’ := M/X.

Proof. For a subset Z of nodes of M for which either Z C V — X or X C Z,
let Z' denote the subset of nodes of M’ corresponding to Z. For such a Z, clearly
Ry (Z2') > Rm(Z) and ppmr(Z') = pm(Z). Therefore, if Z is dangerous in M, then Z’
is dangerous in M’. This fact and Claim 3.2 imply that

there is no dangerous set Z in M containing u and ¢

(*) such that X C Zor ZC V — X.

By claim 3.2, if {e, f} is not splittable in M, there is a dangerous set Y containing
u and ¢. If (1.13a) holds for X and Y, then 0+ 1 > sp(X) + s (Y) > sp(X NY) +
sM{XUY) > su(XUY), that is, Z:= X UY is dangerous, contradicting (*).

If (1.13b) holds, then 0+ 1 > sp(X) + sm(Y) 2 sm(X = Y) + s (Y — X) +
2JG(X,Y) > sy — X))+ QJG(X,Y). Hence sp(Y — X) < 1 and CIG(.X,Y) = 0,
in particular, u,t € X NY. That is, Z := Y — X is dangerous and contains u and ¢,
contradicting (¥) a

We call a tight set X trivial if |[X| = 1. Since M is a minimal counterexample,
Claim 3.3 shows that

(3.3) in M every tight set is trivial.
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CLAIM 3.4. For every u,v €V,
(3.4) TM(U, U) = mln(ﬁM ('U-), 6M ('U)-, k)‘

Proof. By (1.12a), min(B (), B (v)) > rar(u,v), so if A(u,v; M) > k, then (3.4)
follows. If A(u,v; M) < k, then by Lemma 1.4 there is a set X C V separating u and
v, such that B (X} = Rm(X) = ry(u,v). That is, X is tight and by (3.3), |X| =1,
from which the claim follows. D

CramM 3.5. V —T(M) as nonempty.

Proof Let Y :={v eV :pp(v) >ép(v)}},X :={veV:pp(v) <bp(v)}. If the
claim is false, then X and Y form a partition of V. By the definition of X and Y there
is a directed edge h := zy from X to Y.

Let M’ := M — h. Then T(M') C T(M) and, since k > 2, (3.1) is valid for M’.
Since par(y) > ém(y) = k, the set {y} is not in-tight. Similarly, {x} is not out-tight.
Using this fact and (3.3) we get that h does not enter any in-tight set. Therefore,
Az, v; M) = A(u, v; M) for every u,v € V. Since T(M’) C T(M), (1.7) holds for M’.
Because of the minimality of M, M’ is not a counterexample and there is a pair {e, f}
of edges splittable in M’. Hence {e, f} is splittable in M as well, a contradiction. 0

Let ¢ € V — T(M) be a node for which

(3.5) Bu(to) is minimum.

We distinguish between two cases.

Case 1. dg(s,to) > 1.

In order to be consistent with the notation in earlier claims, for Case 1 let us
rename to by t. That is, dg(s,t) > 1.

CLAIM 3.6. For every t3-set X(X # {t}),

(3.6) Ru(X —t) > Ru(X).

Proof. There is a pair of nodes z,y such that z € X,y € V — X, and lRM(X) =
™(z,y). If x # ¢, then Ry (X —t) > rim(2,y) = Ru(X) and (3.6) follows. Assume
that x = ¢ and let u € X — ¢ be an arbitrary node. By (3.4) we have Rp(X) =
ra(t,) = min(Ba(2), Bar(y), k) and Rag (X — £) > rar(u,) = min(Bar (u), Bas (£), k).
Hence (3.6) follows if Ba(u) > Bum(t) or if Bar(u) > k. So assume that Bar(u) < Bar(t)
and Bum(u) < k. By (3.5), u must be in T(M). Since T{M) never consists of a single
node, (1.7) implies that 8ps(u) > k, a contradiction. O

CramM 3.7. If X C V is dangerous, then da(s,X) < dg(s,V — X).

Proof. Let a := dg(s,X) and 8 = dg(s,V — X), and assume that X is, say,
in-dangerous. We have Ry(V — X) = Ry(X +8) = Ru(X) > pu(X) - 1 =
M(V-X)-B+a—-12>Ru(V - X)—F+a-1, from which a < 8 + 1 follows.
However, we cannot have equality, otherwise dg(s) = 28+ 1 would follow, contradict-
ing the hypothesis of the theorem that dg(s) is even. 0

Let S denote the set of neighbours of s. Since no pair {su, st} is splittable in M,
Claim 3.2 implies that every element of S belongs to a dangerous t3-set. Let £ be
a minimal family of such dangerous sets so that U(X : X € £) 2 S. By Claim 3.7,
|£] > 2. We may assume that the members of £ are maximal dangerous t3-sets.

CrAamM 3.8. |L| > 3.

Proof. By Claim 3.7, |£] > 2. Assume that £ has just two members, X and Y.
Since S C X UY, by Claim 3.7 we have dg(s,X) < dg(s,V — X) < dg(5,Y) <
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de(s,V —Y) < dg(s,X), a contradiction. Here the two strict inequalities hold since
SCXUYandteSNXNY. 0O

CLAIM 3.9. For every two members X,Y of £, | X-Y|=|Y-X{=1,dp(X,Y) =
0, and de(X,Y) = 1.

Proof. If (1.13b) holds for X and Y, then 1+ 1 > sy (X) + sm(Y) 2 s X —
Y)+sm(Y — X)+2de(X,Y) > 0+0+2, and hence dg(X,Y) =1 and both X - Y
and Y — X are tight. By (3.3) the claim follows.

If (1.13b) does not hold, then (1.13a) does. Since X and Y are maximal dangerous
sets, smM(XUY) > 2, and hence 1+1 > sy (X)+sm(Y) 2 sm(XNY)+ s (XUY) >
0 + 2. Therefore, s (X NY)=0and by (3.3) | X NY| =1, that is, X NY = {t}. By
Claim 3.6, Ry(X —t) > Rpy(X) and Rpy(Y —t) > Rp(Y). Therefore, Ra(X) +
BRu(Y) < Ry(X —t) + Ry(Y —t) = Rmu(X = Y) + Ry(Y — X). That is, (1.5b)
holds for Ryy.

Since X nY = {t}, (1.3d) holds and, therefore, (1.13b) holds, a contra-
diction. 0

Let X, X2, X3 be three members of £ and Z := X; N X2N X3. By the minimality
of £, each X; has an element z; not in any other member of £. By Claim 3.9 it follows
that X; = Z+2;(1=1,2,3) and JD(X,',XJ') = O,Jg(Xi,Xj) =1for(1<i<j<3).
Hence only one edge leaves or enters Z, namely, the edge st. That is, st is a cut-edge,
contradicting (3.1). This contradiction shows that Case 1 cannot occur.

Case 2. dg(s,to) = 0.

Since M is connected, pa(to = dar(to) > 0. Let ato and tob be arbitrary edges in
M so that, if possible, a # b. Note that a = b only if tg has just one neighbour in M.
Let M’ denote the mixed graph arising from M by splitting off atp and #pb.

Clearly, T(M) = T(M’) and A(to,v; M’} > A(to,v; M) — 1 holds for every v €
V —to. Moreover, we claim that A(u,v; M7) = A(u,v; M) for every u,v € V —ig. This
is straightforward if a = b, and follows from (3.3) and Claim 2.1 if a # b. Therefore,
we have

(3.7a) rae(to,v) > rym(to,v) =1 forevery v € V — ¢,

(3.7b) ra (u, v) = rar{u,v) for every u,v € V — ¢q.

CrLamM 3.10. M’ satisfies (3.1).

Proof. If (3.1) is not true for M’, there is a set C C V separating ¢y from a and b
with par(C) = ém(C) = 2 such that there is just one undirected edge h = sz entering
C and one of the edges ato and tpb enters C while the other one leaves C.

Let b’ = su be another undirected edge of M. Then u # 2 and we claim that
Mu, z; M) > 2, otherwise there is a zti-set X with par(X) = 1. Since dg(X) >
1,pp{X) = 0. Since k > 2, X cannot separate any two members of T(M) and hence
6p(X) = pp(X) = 0. But then A or &’ is a cut-edge violating (3.1).

Au,z; M) > 2 and pp(C) = 2 imply that C is tight. By (3.3), |C| = 1, that
is, C = {2} = {to}. The existence of edge h contradicts the assumption that
dg(s,t0) = 0. ]

By the minimality of M, M’ is not a counterexample of Theorem 3.3. Since (3.1)
holds for M, there is a pair {e := su, f := st} of undirected edges splittable in M’.
Since we are at Case 2, t # {o.

CLamM 3.11. {e, f} is splittable in M.
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Proof. By claim 3.2, if the pair {e, f} is not splittable in M, then there is a
dangerous set X C V containing v and £. By (3.7), Ras(X) > Ry (X) — 1. Using the
fact that X is not dangerous in M’, that is, Br(X) > Ry (X) + 2, we obtain

(3-8) Pu(X) 2 B (X) 2 Ran (X) + 2 > Rag(X) +1 > Bar(X).

Hence equality follows everywhere, in particular, Ry, (X) = Rm(X) — 1. This
and (3.7) imply that Rar(X) = rar(to,y) for some y € V, which is separated from #g
by X, and

(39) ™ (tUs y) >TM (3"% y)

for any z € V, which is separated from y by X.

If o € X, then choose = := ¢, an element different from to- Iftg e V-X,
then there must be an element z € V — X — to; otherwise, V — X = {¢;}, from
which Ba(X) > Bum(to) + 2 follows. Using (3.4) we have Ry (X) = ra(to,y) =
min{Ba(y), Bu(to), k) < Bulto) < Pm{X) — 2, contradicting the hypothesis that X
is dangerous.

In both cases, from (3.9) and (3.4) we have min(Bu(to), Brm(y), k) = rar(to, y) >
rm(2,y) = min(By(z), Br(y), k), which implies Bu(z) < Bu(to) and Bu(z) < k.
The first inequality shows, by (3.5), that 2 € T'(M), while the second one implies, by
(1.7), that z ¢ T(M), a contradiction. [

Claim 3.11 contradicts the fact that M is a counterexample. Thus Case 2 is also
impossible and the proof of Theorem 3.3 is complete. ]

We mention two special cases. In the first, ry, (z,y) = k is assumed, while the
second concerns mixed graphs with all di-Eulerian nodes.

COROLLARY 3.1. Suppose that in a mized graph M = (V + 5, AU E), node s is
incident only with undirected edges, 0 < d(s) # 3, and there is no cut-edge incident to
s. Let k > 2 be an integer such that Az, y; M) > k for every z,y € V. Then there is
a pair of edges e = su, f = st such that Az, y; Mef) > k for every z,y € V.

COROLLARY 3.2. Suppose that in a mizred graph M = (V 4+ 5, AUE), node s is
incident only with undirected edges, 0 < d(s) # 3, there is no cut-edge incident to s,
and ppm(v) = Sp(v) for every node v € V. Then there is a pair of edges e = su, f = st
such that A(z,y; Mef) = Az, y; M) for every z, yeVv.

Note that this corollary is already a generalization of Mader’s Theorem 3.1.

We close this section by pointing out that for a mixed graph M = (V +5, AUE),
one cannot always split away a pair of edges incident to s in such a way that for every
pair of vertices x,y € Vmin(A(z,y; M), Ay, z; M )) is preserved. Such an example is
given in Fig. 4.

4. Increasing edge-connectivity. This section is offered to exhibit two new
edge-connectivity augmentation results according to whether only directed or undi-
rected edges are allowed to be added. We will formulate the results for mixed starting
graphs, but these forms are clearly equivalent to the cases when the starting graph
is a directed graph. Therefore, our first theorem is basically a directed augmentation
theorem in which both the starting graph and the new edges to be added are directed,
while in the second theorem the starting graph is directed and the new edges are
undirected.

In both theorems we have the same requirement for the demand function r,
namely, r(z,y) is symmetric, not larger than a specified positive integer k, and pre-
cisely k for pairs of non-di-Eulerian nodes z,y. An interesting phenomenon in the case
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Z=e

FiG. 4. Here £ and £+ 1 denote the maultiplicity of the arcs. It is not difficult to see that
min(A(z,y; M), A(y, z; M)) = 241 for any choice of £,y € Z, and none of the two possible splittings
at s preserves this.

of undirected augmentation is that for k = 1, the necessary and sufficient condition is
different from the one given for & > 1.

Our proof method strongly follows that of Frank [6], which had two ingredi-
ents. The first was the splitting theorems of W. Mader, while the second was an
observation that the set of degree vectors of possible augmentation forms a so-called
contrapolymatroid, a matroid-like structure. The idea of using a splitting theorem for
augmentation problems dates back to as early as 1976 (Plesnik [22]). Cai and Sun
[1] also use splitting theorems. Actually, this approach was our main motivation in
developing stronger splitting theorems in §§2 and 3.

To be more specific, let N be a mixed graph composed from a directed graph
D = (V,A) and an undirected graph G = (V, E). Let T(D) :={veV:pplw) #
6p(v)} be the set of non-di-Eulerian nodes of D. Let k be a positive integer and let
r(z,y){z,y € V) be a nonnegative integer-valued demand function satisfying

(4.1a) r(z,y) =r(y,z) <k forevery z,y€V, and

(4.1b) r(z,y) =k for every z,y € T(D).
Let R(@) = R(V) =0, and for X C V let

(4.2) R(X} := max(r(z,y) : X separates z and y).
Let us define
(4.3a) gin(X) == R(X) — pr(X),

(4.3b) . out (X) i= R(X) — 6n(X).
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THEOREM 4.1. Given a mized graph N = (V, AU E), positive integers k,~, and

a demand function r(x,y) satisfying (4.1), N can be extended to a mized graph N+

by adding v new directed edges so that

(4.4) | Az, y; N*) 2 r(z,y) for everyz,yeV

if and only if

(4.5a) D an(X:) <
and |
(4.5b) 3 gout(X) < 7

hold for every subpartition {Xi,...,X:} of V.

Proof. 1t can be assumed that V is a directed graph because undirected edge of N
can be replaced by a pair of two oppositely directed edges, and this operation does not
affect the local edge-connectivity. That is, N = D. Let N+ denote an augmentation
of D with 4 new edges.

CLAIM 4.1. N+ satisfies (4.4) if and only if

(4.6) pn+(X) 2 R(X) and y+(X) > R(X)

hold for every X C V.

Proof. If N* satisfies (4.4), then for any subset X separating x and y, py+1X) >
Az, y; N*) 2 r(z,y). Hence pn+(X) > R(X) for every X C V. The second inequality
in (4.6) follows analogously. Conversely, assume that (4.6) is satisfied. By Menger’s
theorem there is a yZ-set X for which A(z,y; N+) = py+(X). Hence Mz,y; N+) =
pn+(X) 2 R(X) = r(z,y) as required. 0

We first examine the proof of necessity. By (4.6) we have v > 3 pp+(Xi) —
2 pp(X:) =2 Y R(X:) — 3 pp(X:) = Y qin(X:), that is, (4.5a) holds. Inequality
(4.5b) follows analogously.

The proof of sufficiency is structured as follows. First, we extend D by adding a
new node s together with new directed and undirected edges incident to s. Secondly,
we get rid of some new edges. Finally, we replace each remaining undirected edge by
a pair of oppositely directed edges and apply Theorem 2.4.

To be more specific, extend D by adding a new node s, k parallel undirected edges
connecting s and z for every € V — T(D), and k parallel directed edges from s to
and z to s for every x € T(D). The resulting mixed graph M satisfies

(4.7a) pm(X) 2 R(X),
(4.7b) bm(X) > R(X)
for every X C V.

Let s(X) = Bm(X) — R(X), 8in(X) = pm(X) — R(X), and sout(X) = Sar(X) —
R(X) for X C V. By (4.7) these “surplus” functions are nonnegative. We say that
X is R-tight, in-R-tight, and out-R-tight if s(X) = 0,5;n(X) = 0, and seui(X) = 0,
respectively.

Secondly, starting with the undirected edges and then continuing with the directed
ones, discard new edges from M one by one as long as possible without violating
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(4.7). Henceforth we use M to denote the final graph. Recall the notation B (X) =
min{pap{X), p(X)). During this process new R-tight sets may arise, and if a set
becomes R-tight at any moment, it stays so throughout.

LEMMA 4.1. 6u(S) < v and pm(s) < 7.

Proof. We prove only the first inequality; the second is analogous. In M,

(4.8) every directed edge e = sz enters an in-R-tight subset of V,

since otherwise e could have been discarded without violating (4.7).
We also claim that in M,

(4.9) every undirected edge sz enters an in-R-tight set X CV — T(D).

Indeed, let M’ denote the current graph at the moment of the discarding phase when
the last undirected edge has been discarded. The fact that e cannot be discarded
means that there exists a set X C V containing z so that S (X) = R(X). Since
at this moment no new directed edge has yet been discarded, X cannot contain any
element of T(D). That is, X C V — T(D) and hence pp(X) = ép-(X), that is, (4.9)
follows.

Let S := {z € V — T(D): there is an undirected edge sz of M}. Let Sin := {z €
T(D): there is a directed edge sz of M}. Let us call an in-R-tight set X extreme if
there is no in-R-tight set Y with XN(SUSin) C YN(SUSi), and if XN(SUSin) =Y N
(S U Sin) for an in-R-tight set Y, then X C Y. Thus X is as large inside S U Si, as
possible, and subject to this, X is as small outside S U Sj, as possible. 0

CLAIM 4.2. For any two in-R-tight sets XY, at least one of the following holds:

(a) X UY is in-R-tight;

(b) both X —Y and Y — X are in-R-tight and X NY N(SU Sin) = &;

() T(D)CXUY and XNY NT(D) # .

Proof. If (1.5a) holds, then by (1.3a), 0+ 0 = $;n(X) 4 sin(Y) = sin(X NY) +
sin(X UY) > 0. It follows that s;r(X UY) = 0, that is, (a) holds.

Now suppose that {1.5a) does not hold. If X NY NT(D) # @, then T(D) C X U
Y, otherwise R(X) = R(Y) = R(XNY) = R(XUY) = k and (1.5a) would hold. That
is, we are at alternative (c).

So assume that X NY NT(D) = @. Now (1.3b) applies to M and by Lemma
1.1 inequality (1.5b) holds. We obtain pp(X) + pm(Y) = pm(X = Y) + pae (Y —
X) +dp(X,Y) +2de/(X,Y), where D’ and G’ denote the directed and undirected
part of M, respectively. Combining this inequality with (1.5b) we get 0 + 0 =
$in(X) + 5in(Y) 2> $in(X = Y) + 850(Y — X) +dp(X,Y) + 2de(X,Y) > 0. It follows
that 5in(X —Y) = 0 = sin(Y ~ X) and dp/(X,Y) = 0 = 2dg(X,Y), that is, (b)
holds. 0

By (4.8), there is a family F; of in-R-tight sets whose union includes S;,,. We may
choose F1 so that its members are extreme sets and |Fi| is minimum.

CLAIM 4.3. F, is either a subpartition or consists of two members whose union
includes T(D).

Proof. If F, is not a subpartition, then it has two members X, Y with XNY # @.
Since the members of F; are extreme and |#1| is minimal, alternatives (a) and (b)
cannot occur in Claim 4.2. Therefore, {c) must hold. 0

Let Z := T(D)U(X : X € F1). By (4.9}, for every y € S — Z there is an in-
tight set Y C V —T'(D) containing y. We claim that Y NZ = @. If not, then X NY #
@ for a member X of F;. But this contradicts Claim 4.2 because alternatives (a) and
{b) cannot hold since X is extreme; since (¢} cannot hold either since Y NT(D) = @.
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Therefore, there is a family 72 of in-R-tight subsets of V — Z whose union includes
S — Z. Assume that || is miniumum and, subject to this, (| X| : X € F) is
minimum.

CLamM 4.4. F> is a subpartition of V — Z.

Proof. Indirectly, let X, Y be two members of 2 with X N'Y # &. This contra-
dicts Claim 4.2 because the minimal choice of 7, implies that neither alternative (a)
nor (b) may hold, and (c) is also impossible since X,Y CV — Z C V —T(D). 0

Let 7 := 71U F,;. By Claim 4.4, if 7, is a subpartition so is F. By (4.5a),
v 2 2 (R(X) —pp(X) : X € F) =3 (R(X) — pm(X) : X € F) + 6m(s) = 6m(s) as
required for the lemma.

If 7, is not a subpartition, then by Claim 4.3 it consists of two members A, B with
T(D) C AUB. Now R(A—B) = R(A) = R(B—A) = R(B) = k and pp(X) = ép(X)
for every X € F,. Furthermore, (1.2c) applies to A and B, from which §p(4 — B) +
ép(B — A) < pp(A) + pp(B).

By applying (4.5b) to the subpartition consisting of A - B, B — A, and the mem-
bers of 7, we get v > [R(A— B)—ép(A— B)]+[R(B—A) —6p(B—A)]+ S (R(X) -
6p(X): X € 73} > [R(A)—pp(A)|+[R(B) — pp(B)]+ 3 (R(X)—pp(X) : X € F2) >
(R(A) — pr(A)] + [R(B) — pm(B)] + 2(R(X) ~ pm(X) : X € Fo) +6m(s) = 8m(s),
and the proof of Lemma 4.1 is complete. a

By adding back some discarded new edges, if necessary, we may assume that
dm(s) = pm(s) = y. Now replace each undirected edge of M by a pair of oppositely
directed edges. By our construction, the resulting digraph D’ satisfies T(D’) € T(D).
Therefore, we can apply Theorem 2.4 to M := D’. The resulting digraph N+ := M+
satisfies (4.4). O

Remark. It is interesting to note that if a node v is di-Eulerian in D (that is,
pp(v) = 6p(v)), then v is di-Eulerian in the augmented D+ as well.

Let us mention two corollaries. For simplicity we formulate them for directed
starting graphs. In the first one we assume that T is empty, that is, D is di-Eulerian.
Then k may be chosen arbitrarily large and hence r is not bounded above.

COROLLARY 4.1. Given a di-Bulerian digraph D = (V, A) and a symmetric
demand function r,D can be extended to o digraph D+ by adding v new edges so
that Mz,y; Dt) > r(z,y) for every x,y € V if and only if ¥ qin(Xi) < v and
> Gout(X:) < v hold for every subpartition {X\,..., X} of V. Furthermore, D+ may
be chosen to be di-Eulerian.

In the second application we do not have any positive demand for di-Eulerian
nodes.

COROLLARY 4.2. We are given o digraph D = (V, A), positive integers k,~, and
a subset T C V so that pp(v) = 8p(v) holds for everyv € V —T. D can be ertended
to a digraph Dt by adding v new directed edges so that A(z,y; D) > k for every
x,y € T if and only if

(4.10) D (k—pp(X)) <y and Y (k—8p(X:)) <7
hold for every subpartition {Xy,..., Xt} of V for which XiNT.T — X, # @i =
1,...,0).

The special case T = V of this corollary was proven in Frank [6].

Our next goal is to prove an augmentation theorem when only undirected edges
are allowed to be added. Our result is a generalization of Theorem 5.5 in [6], where
the starting graph is an undirected graph. Let N be a mixed graph composed from a
directed graph D = (V, A) and an undirected graph G = (V, E), and let r(z,y) be a
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demand function satisfying (4.1). We say that a component C of N is marginal (with
respect to 7) if r(u,v) < A(u,v; N) for every u,v € C, and r(u,v) < A(w,v; N) +1 for
every u, v separated by C. In other words, C is marginal if we do not want to increase
the local edge-connectivity between the element C, and the demand for increased local
- edge-connectivity between a node in C and a node outside C is 0 or 1.

THEOREM 4.2. We are given a mized graph N, integers k > 2,7 > 0, and a
demand function r(z,y) satisfying (4.1} so that there are no marginal components. N
can be extended to a mired graph Nt by adding v new undirected edges so that

(4.11) Mz, y; N*) > r(z,y) foreveryz,yeV

if and only if

(4.12) > (R(X:) — Br(X:)) < 2v
holds for every subpartition {X1,...,X:} of V.

Remark. If N has a marginal component, then the above min-max theorem is
not true as is shown by the empty graph on four nodes (taking r(xu,v) = 1). For the
special case when N is undirected, in [6, Thm. 5.3] a very simple reduction method
was used to get rid of marginal components. The same method easily generalizes to
mixed graphs. Since no new idea is required, we leave out the details.

Proof. Again we may assume that N is a directed graph, that is, N = D. Let N+
denote an augmentation of D with v new undirected edges.

CLAIM 4.5. N+ satisfies (4.11) if and only if

(4.13) Bn+(X) > R(X)

holds for every X C V.

Proof. First suppose that N+ satisfies (4.11). By applying Lemma 1.4 to N+,
we obtain that By+(X) > ry+(z,y) = r(z,y) for any subset X separating z and y.
Hence (4.11) follows.

Conversely, assume that (4.11) is satisfied. By Menger’s theorem there is a yz-
set X for which A(z,y; N*) = py+(X). Hence Az, y; Nt) = py+(X) > Bu+(X) >
R(X) > r(z,y) as required. 0 _

We first examine the proof of necessity. If N+ satisfies (4.11), then by Claim 4.5
there are at least R(X) —~ SBn(X) new edges between X and V — X. Therefore, the
number 7y of new edges is at least half of E:=1 (R(X:) — Bn (X)),

We now examine the proof of sufficiency. First, extend D by adding a new node
s and k parallel edges connecting s and « for every z € V. The resulting mixed graph
M satisfies

(4.14) Bm(X) 2 R(X)

for every X C V.

Second, discard new edges one by one as long as possible without violating (4.14).
Henceforth we use M to denote the final mixed graph and let S := {z € V : there
is an edge in M between s and z}. We call an R-tight set X extreme if there is no
R-tight set Y with X NS C Y NS, and if, in addition, X NS =¥ N S for an R-tight
set Y, then X CY.

LEMMA 4.2. dp(s) < 2v.
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Proof. Since no further new edge can be left out of M without violating (4.14),
there is a family F of R-tight sets whose union includes S. We may choose F so that
its members are extreme and |F| is minimum. 0

CLAIM 4.6. F is a subpartition of V.

Proof. Assume indirectly that X NY # & for some X,Y € F. By Lemma 1.2, at
least one of the following inequalities holds:

0+0=5(X)+s(Y)>s(XNY)+s(XUY)+2de(X,Y)

(4.15a) +dp(X,Y) >0,
04+0=s(X)+s(Y)>s(X-Y)+s(Y —X)+2da(X,Y)
(4.15b) +dp(X,Y) >0,

where G' denotes the undirected part of M.

If (4.15a) holds, then s(X UY) = 0, that is, X UY is R-tight, contradicting the
fact that X,Y are extreme. If (4.15b) holds, then s(X —Y) = s(Y — X) = 0 and
dg'(X,Y) = 0. Therefore, both X — Y and Y — X are R-tight and XNY N S = 2,
which again contradicts the extremality of X and Y. O

By (412), 2y > L(R(X) - Bo(X) : X € F) = S(R(X) - Bu(X) : X €
F) +dum(s) = dp(s), and Lemma 4.2 follows. D

By adding back new edges which are parallel to existing new edges, we may assume
that das(s) = 2. We claim that there is no cut-edge of M incident to s. Indeed, if
e = st were such an edge, then let C' denote the component of M — e containing ¢.
Since e is the only edge of M leaving C,C is a marginal component contradicting the
hypothesis.

The theorem now immediately follows from Theorem 3.3. B

If N is an undirected graph in Theorem 4.2, then every node is di-Fulerian,
and hence r may be an arbitrary symmetric function. Therefore, Theorem 4.2 is a
generalization of the following result from [6].

COROLLARY 4.3. Given an undirected graph G = (V, E) and a symmetric demand
function r(x,y) > 2, it is possible to add v new undirected edges to G so that in the
resulting graph G+, A(x,y; G+) > r(z,y) holds for every pair of nodes x,y if and only
if Y_(R(X:) — de(Xi)) < 2v holds for every subpartition {X;} of V.

In another special case, r = k > 2.

COROLLARY 4.4. Let N = (V,AU E) be a mized graph and let k > 2,v > 1 be
integers. N can be made k-edge connected by adding v new undirected edges if and
only if

> (k= Bu(X:)) <2y

holds for every subpartition {X1,...,X:} of V.

The example in Fig. 5 shows that for £ = 1, Corollary 4.4 (and hence Theorem
4.2) is not true in general. However, we can prove the following theorem.

THEOREM 4.3. A mized graph N with connected underlying graph can be made 1-
edge-connected (= strongly connected) by adding v new undirected edges if and only if
(*) every family F of v+ 1 disjoint subsets of nodes contains (not necessarily distinct)
members X,Y for which pn(X) > 0 and én(Y) > 0.

Proof. First, suppose that E’ is a set of new undirected edges whose addition
makes N strongly connected, and there is a family F of v+ 1 disjoint subsets of V' so
that for each member of F, say, pn(X) = 0. Since the underlying graph is connected,
Xo:=V —U(X : X € F) is nonempty. Moreover, since there is no edge (undirected
or directed) connecting distinct members of 7, N — Xy has at least v+ 1 components.
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FIG. 5. It is easy to see that we need three edges here, but k = 1 implies Y (k — Bn(X;)) < 4,
which suggests that two edges would suffice.

Since the union of any j members of (7 = 1,...,4 + 1) must be connected to the
rest by an element of £/, we get |E’| > v+ 1, showing that () is necessary.

To see the sufficiency we may assume again that N is directed. Now (*) implies
(4.10) for £ = 1 and T =V, and hence, by Corollary 4.2, there are v directed edges
whose addition makes N strongly connected. If we leave out the orientations of the
newly added edges we get the required undirected augmentations. 0

5. Variations, polyhedra, and algorithms. In this section we briefly outline
some variations of the augmentation problem, the polyhedral background, and some
algorithmic aspects. We are concerned here with the case when only undirected edges
are allowed to be added. A similar approach was discussed in detail in Frank [6]. Since
no new idea is required, we refer the reader to that paper for definitions and details.
For the directed augmentation problem, we have not yet found analogous methods to
handle minimum node-cost and degree-constrained versions. This is a possible subject
of future research.

Let N, k,~,r be the same as in Theorem 4.2, but this time, rather than finding a
minimum cardinality augmentation, we are interested in an augmentation satisfying
(4.11) in which the degree of every node is a prescribed value.

THEOREM 5.1. Given a mized graph N = (V, A+ E) and an integer-valued vector
m:V — Zt for which

(5.1) m(V) is even,

N can be extended to N+ satisfying (4.11) by edding a set F' of new undirected edges
for which dp(v) = m(v) for every v € V if and only if

(5.2) m(X) + Bn(X) = R(X) for every X C V

Proof. Add a new node s and m(v) parallel undirected edges between s and v for
every v € V. Since there is no marginal component of N, in the extended graph there
is no cut-edge incident to s. We may apply Theorem 3.3 and the result immediately
follows. 0

From this easy derivation one should realize that Theorem 5.1 is nothing but a
reinterpretation of Theorem 3.3. Let us call an integral-valued vector m satisfying
(5.1) and (5.2) an augmentation vector.

Let ¢ : 2V — Z be an integer-valued set function. We call g skew supermodular if
g(@) = 0 and

(5.3a) g(X)+q(Y)<g(XNY)+¢XUY) or

(5.3b) a(X) +9(Y) < g(X ~ ¥) +q(¥ - X)
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hold for every pair of subsets X,Y C V (we point out that other names were used
earlier instead of skew supermodular, for example, weakly supermodular [10] and X-
supermodular [8]). The following theorem was proved in [6, Thm. 7.1] for set functions
of form ¢(X) = R(X) — dg(X). However, its proof relied only on one feature of ¢,
namely, that q is skew supermodular. Hence we state the theorem in this more general
form.

THEOREM 5.2. Where q is a skew supermodular function, the polyhedron

(5.4) Clg):={2:RV:220,2(X) > q(X) for every X C V}

is a contrapolymatroid C(p), where the unique fully supermodular function p defining
C(q) is given by

(5.5) p(A) := max (Z g{A;i) : {A1,..., At} a subpartition of V) .

By Lemma 1.2, q := R — By is skew supermodular and hence Theorem 5.2 ap-
plies. We find that the augmentation vectors m are precisely the integer-valued ele-
ments of C(g) satisfying (5.1).

We briefly indicate how this fact can be used for degree-constrained and minimum
node-cost augmentations. Suppose first that we have a nonnegative cost function
c:V — R,, and we are interested in an augmentation of a mixed graph N that
satisfies (4.11). Also, the total cost of new edges is minimum. Here the cost of an
edge uv is defined to be c(u) + ¢(v).

It was shown in Frank [6] that with a slight modification of the greedy algorithm
we can find a minimum cost integer element m of a contrapolymatroid for which m(V)
is even. That is, with the help of the greedy algorithm, first find an integer vector
m’ that minimizes cz over C(g). If m/(V) is even, define m = m’. If m/(V) is odd,
define m(v,) by adding 1 to m'(v,), where v, is an element of V of least cost, while
m(z) := m/(z) for ¢ € V — v,. This way we obtain a minimum cost augmentation
vector m and, by Theorem 5.1, m determines a minimum node-cost augmentation
satisfying (4.11).

To consider the degree-constrained augmentation, let f : V — Zand g: V —
Z U {0} be two functions with f < g. When does there exist an augmentation of
N satisfying (4.11) for which f(v) < dp(v) < g(v) holds for every v € V7 Let B :=
{r e R: f <z £ g} denote a box. By Theorem 5.1 the desired F exists if and
only if there is an integer element m of B N C(g) with the additional property that
m(V) is even. The intersection of a box and a contrapolymatroid is a generalized
polymatroid. It was shown in [6, Prop. 6.10] that a g-polymatroid defined by a strong
pair (p, b) has no integer element m for which m(V) is even if and only if p(V') = b(V)
is odd (a submodular function b and a supermodular function p form a strong pair if
B(X)—p(Y)>bX-Y)—p(Y — X) holds for all X,Y C V, where V is the groundset
for b and p). From this one can derive the following theorem.

THEOREM 5.3. Given N,k,r as in Theorem 4.2 and integer-valued vector f,g, N
can be extended to N+ satisfying (4.11) by adding a set F' of new undirected edges for
which f(v) < dr(v) < g(v) for every v € V if and only if ¢(X) < g(X) for every
@ C X C V, and there is no partition F := {Xo, X1,..., X}, where only Xo may be
empty, with the following properties: f(Xo) = g(Xo),9(X:) = ¢(X:)(i =1,...,t), and
g(V) is odd.

Minimum node-cost degree-constrained augmentation problems can also be han-
dled with the same technique.
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To conclude, let’s briefly say something about the algorithmic aspects. The proof
of Theorem 4.2 consisted of two parts: the edge-deletion phase and the splitting-off
phase. An argument analogous to the one used in [6] shows that the edge-deletion
phase can be carried out on a graph with n vertices by performing 2n2 MFMC compu-
tations. The splitting-off phase requires no more than n3 MFMC calculations. Since
one MFMC calculation can be carried out in O(n3) steps, the overall complexity of
the algorithm is O(n6). Actually, these bounds are valid for the more general problem
when the starting graph is endowed with integer capacities on the edges and we are
allowed to add a new edge in any number of copies. Theoretically, this problem is not
more general since we can replace an edge by as many parallel edges as its capacity
will hold. But from a computational point of view such a reduction is not satisfactory.
Fortunately, the MFMC algorithm is strongly polynomial, and hence the approach
outlined above gives rise to strongly polynomial time algorithm in the capacitated
case as well.
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