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ON INTEGER MULTIFLOW MAXIMIZATION*
ANDRAS FRANK'!, ALEXANDER V. KARZANOV}, AND ANDRAS SEBOS

Abstract. Generalizing the two-commodity flow theorem of Rothschild and Whinston [Oper.
Res., 14 (1966), pp. 377-387] and the multifiow theorem of Lovész [Acta Mat. Akad. Sci. Hungaricae,
28 (1976), pp- 129-138] and Cherkasky [Ekonom.-Mat. Metody, 13 (1977), pp. 143-151], Karzanov
and Lomonosov [Mathematical Programming, O. I. Larichev, ed., Institute for System Studies, 1978,
pp. 59-66] in 1978 proved a min-max theorem on maximum multiflows. Their original proof is quite
long and technical and relies on earlier investigations into metrics. The main purpose of the present
paper is to provide a relatively simple proof of this theorem. Our proof relies on the locking theorem,
which is another result of Karzanov and Lomonosov, and the polymatroid intersection theorem of
Edmonds [Combinatorial Structures and Their Applications, R. Guy, H. Hanani, N. Sauer, and J.
Schonheim, eds., Gordon and Breach, 1970, pp. 69-87). For completeness, we also provide a simplified
proof of the locking theorem. Finally, we introduce the notion of a node demand problem and, as
another application of the locking theorem, we derive a feasibility theorem concerning it.

The presented approach gives rise to (combinatorial) polynomial-time algorithms.
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1. Introduction. Let G = (V, E) and H = (T, F) be two undirected graphs so
that T C V. We call a path of G H-admissible if it connects two nodes z,y of T so
that zy € F. G will be called a supply graph, H a demand graph, and the elements of
T terminals while the other elements of V' are called inner nodes. The mazimization
problem consists of finding a maximum number of edge-disjoint H-admissible paths.
If H consists of one edge, then Menger’s theorem gives an answer.

In general, the problem is NP-complete even in the special case when G is Eu-
lerian. (A graph is called Eulerian if the degree of every node is even.) There are,
however, important special cases when the problem is tractable. Rothschild and
Whinston [13] proved a max-flow-min-cut-type theorem when (G, T) is inner Eule-
rian and H consists of two edges. (We say that the pair (G,T) is inner Eulerian if
the degree d(v) is even for every inner node v.} Another result is due, independently,
to Lovész [12] and Cherkasky [1]. They solved the maximization problem when H is
a complete graph and G is inner Eulerian. In [8] Karzanov and Lomonosov found a
common generalization of these two theorems. Their original proof is rather lengthy
and technical and it is certainly much more difficult than those of the two special cases
mentioned above. Details of these proofs were described in [4] and [10, 11]. Later
Karzanov [6, 7] gave another proof which was based on the splitting-off technique and

* Received by the editors March 21, 1995; accepted for publication (in revised form) March 21,

1996.
bttp:/ /www.siam.org/journals/sidma/10-1/28772.htm!

¥ Department of Operations Research, Eétvos University, Miizeum krt. 6-8, Budapest, Hungary
H-1088. The research of this author was partially supported by Hungarian National Foundation
for Scientific Research grant OTKA T17580 and was partially carried out while the author visited
Leibniz-imag and was supported by the Région Rhéne-Alpes.

1 Institute for System Analysis, Prospect 60 Let Okyabrya 9, 117312 Moscow, Russia (karzanov@
cs.vniisi.msk.su).

§ CNRS, Leibniz-imag, 46 avenue Felix Viallet, 38031 Grenoble cedex 1, France (andras.
sebo@imag.fr). The research of this and the first author was partially supported by the European
project DONET.

158



ON INTEGER MULTIFLOW MAXIMIZATION 159

gave rise to a strongly polynomial solution algorithm. However, this latter proof was
also rather complicated.

The main contribution of this paper is a relatively simple proof of the theorem of
Karzanov and Lomonosov. The proof relies on two ingredients: the so-called locking
theorem, which is another result of Karzanov and Lomonosov (8], and the polyma-
troid intersection theorem of Edmonds [2]. For completeness, we will also provide a
simplified proof of the locking theorem. Since both of these ingredients can be solved
by a {combinatorial) polynomial-time algorithm, the approach gives rise to an alter-
nate strongly polynomial-time algorithm for the (capacitated) maximization problem
in question which is faster than that in [6].

In what follows we do not distinguish between a one-element set {x} and its only
element x. For a set X and an element ¢ let X + ¢ denote the union of X and ¢. For
a vector m : § — R we use the notation m(X) := 3 (m(s) : s € X). A family of
pairwise disjoint nonempty subsets of a set S is called a subpartition of S. For two
elements s,t a set X is called a t3-setif t € X,s ¢ X. An integer-valued vector or
function is called even if each of its values is an even integer. For a polyhedron P we
use the notation P/2 := {z/2 :z € P}.

For a graph G = (V, E) the cut {X,V — X| denotes the set of edges with precisely
one end node in X. Its cardinality is denoted by d(X)(= d(V — X)). d(X) is called
the degree function of G. Let d(X,Y") denote the number of edges with one in X — Y
and the other in ¥ — X. Let d(X,Y) :=d(X NY,V — (X UY)). It is easy to prove
that d satisfies the following identities for every pair X,Y of subsets of V:

(1.1) d(X)+d(Y) =d(XNY)+d(XUY) + 2d(X,Y),

(1.2) dX)+d(Y)=d(X -Y)+dY - X) +2d(X,Y).

Let A and B be two disjoint subsets of V. A path connecting an element of A and
an element of B is called an (A, B)-path. A path connecting two distinct elements of
A is called an A-path. A(A, B;G) or simply A(A, B) stands for the maximum number
of edge-disjoint (A, B)-paths. By Menger’s theorem A(A, B) = min{(d(X): AC X C
V — B).

Orne may consider a fractional version of the edge-disjoint paths problem. Let
G and H be as before. By an H-multiflow or briefly multiflow x we mean a family
{P,,P,,...,P;} of paths of G along with nonnegative coefficients ay,as,...,a so
that each F; connects the end nodes of a demand edge. z is called integer-valued if
each o; is an integer.

If each P; connects an element of A and an element of B (that is, when H is a
complete bipartite graph with bipartition (4, B)), we speak of an (4, B)-flow. For an
H-multiflow z let 2(€) := Y (v : P; uses e) (e € E) and z(t) := Y (; : P; ends at ¢)
(t € T). For a given capacity function ¢ : F — R,, z is called c-admissible if
z(e) < ¢(e) for every e € E.

2. The locking problem. Let G = (V, E)} be a graph and T' C V' a subset of
terminal nodes. For a subset A C T the notation A(A4,T — A; G) will be abbreviated
by A(A; G) or by A(A) when no confusion can arise. Throughout the paper we assume
that the current (G, T) is inner Eulerian.

Lovész [12] and Cherkasky [1] proved the following theorem.

THEOREM 2.1. For an inner Eulerian pair (G,T) the marimum number of edge-
disjoint T-paths is equal to (3_A(t) : t € T)/2.
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An equivalent formulation now follows.

THEOREM 2.1'. Given an inner Eulerian pair (G,T), there is a family F of
edge-disjoint T-paths in G so that F contains A(t) paths ending at t for eacht € T.

In other words, there is a single family of edge-disjoint T-paths that includes
maximum families of edge-disjoint (¢,T — t)-paths simultaneously for all ¢ € T'.

Karzanov and Lomonosov [8] extended this theorem. To formulate their result
let us say that a family F of edge-disjoint T-paths locks a subset A C T if F contains
A(A) (A, T — A)-paths. Furthermore, we say that F locks a family £ of subsets of T
if F locks all members of L.

Theorem 2.1’ asserts that there is a family F of paths that locks all singletons of
T. Is it always possible to find a family of edge-disjoint T-paths that locks a specified
family £?7 The answer, in general, is no, as is shown by Figure 1. Here £ consists
of three pairwise crossing sets. (Two subsets X,Y of T are called crossing if none of
X-YY-X XNnY,T-(XUY) is empty.)

Figure 1 indicates why it is natural to require £ to be 3-cross-free. A family £ of
subsets of T is called 3-cross-free if it has no three pairwise crossing members.

LOCKING THEOREM 2.2 (see (8,5,10,11]). Let (G,T) be inner Eulerian and L
a 3-cross-free family of subsets of T. Then there is a family of edge-disjoint T -paths
that locks L.

A proof of a slightly weaker version was sketched in [8]. The present proof relies
on an idea of splitting used previously in [5], but is technically simpler. Splitting off a
pair of adjacent edges e = st, f = sz of a graph G refers to an operation that replaces
e and f by a new edge connecting = and ¢ (this way we may introduce parallel edges
between r and t). The resulting graph is denoted by G¢f.

Proof. We may assume that T — A € L for each A € £ because for A € £ adding
T — A to £ affects neither 3-cross-freeness nor lockability. Also assume that G is
connected.

We proceed by induction on the number of edges incident to the elements of V —T'.
If this number is zero, then the statement is trivial. Therefore, there is an edge e = st
with £ € T, s ¢ T. We are going to show that there is an edge f = sz for which

(2.1) MA;G) = MA;Gf) forevery A € L.

From this the theorem follows since, by induction, there is a family F of T-paths
of G¢f locking £. If a path P € F uses the new edge h of G&f having arisen from the
splitting of e, f, then revise F by replacing A in P by e and f. By (2.1) the revised
F locks £ in G.

CLAIM 1. Suppose for X, Y CV that XNT CY NT and that d(X) = A(X N
T),dY)=XNYNT). Thend(XNY) = ANXNT),d(XUY)=AYNT) andd(X,Y) =
0.

Proof. Since XNT CYNT we have (XNY)NT = XNT and hence d(X NY} >
A(X NT). Anslogously, (X UY)NT =Y NT and d(X UY) > A(Y NT). Therefore,
by (L1, A(XNT)+ AY NT)=d(X)+d(Y)=d(XNY)+d(XUY) +24(X,Y) >
AMXNT)+ MY NT)+2d(X,Y), from which the claim follows. O
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Callaset X CV tightif XNT € £ and d(X) = AM(X NT). Since £ is closed under
complementation, V — X is tight if X is tight. Because (G, T} is inner Eulerian, a
pair of edges e = st, f = sz will satisfy (2.1) precisely if

(2.2) there is no tight set X witht,z € X CV —s.

CrAamM 2. There are no three marimal tight t3-sets.

Proof. Let X,Y,Z be maximal tight ¢5-sets. Since £ is 3-cross-free, two of the
three sets X NT, Y NT,ZNT, say X NT and ¥ N T, are noncrossing,.

Then either XNT CYNT or YNT C XNT or T C XUY. In the first two cases
Claim 1 implies that X UY is tight, contradicting the maximality of X and Y. In the
last case, by applying Claim 1 to X' =V — X and Y, we obtain that d(X’,Y) =0,
contradicting the existence of edge st. a

Let S denote the set of neighbors of s.

CramM 3. It is not possible to cover S by two tight t3-sets.

Proof. Suppose that § C X UY, where X and Y are tight t3-sets. Let a =
d(s,X - Y),8:=d(s,Y ~ X),v:=d(s,X NY). By symmetry we may assume that
a>pB. {X+s)NT = XNT implies that d(X + s) > A(X NT). On the other hand,
since 7 is positive, we have d(X + s) = d(X) —a — v+ 8 < d(X) = M(X N T), which
is a contradiction. a

By Claims 2 and 3 there is an edge f = sz satisfying (2.2), and then (2.1) holds;
the proof of Locking Theorem 2.2 is complete.

Remark. One may be interested in other possible locking theorems when, rather
than 3-cross-freeness, some other property is assumed for the family £ C 27 to be
locked. On the negative side, Karzanov and Pevzner [9] showed that for every L,
including three pairwise crossing sets, there is a graph G and a subset T' of its nodes
so that (G, T) is inner Eulerian and there is no family of T-paths locking all members
of £. On the other hand, there are other locking theorems in which some restrictions
are imposed on the relationship of G and the family £. For example, let G be a planar
Eulerian graph and let T := {¢1,..., %} denote the nodes of its outer face in the cyclic
order. If we define £ to consist of all subsets of T' of form {¢;,...,¢;} (1 <i<j<k)
then, although £ is not 3-cross-free when k > 4, the locking theorem holds. (This
is a theorem equivalent, by planar dualization, to a result of Hurkens, Schrijver, and
Tardos [3].

We will need a slight extension of Theorem 2.2. Let m : T — Z be a nonnegative
integer-valued function on T'. A family F of edge-disjoint T-paths is called m-inde-
pendent if every terminal ¢t € T is the end of at most m(t) members of F. Let A, (A)
denote the maximum number of edge-disjoint m-independent (A, T—A)-paths. We say
that a family F of edge-disjoint T-paths m-locks e subset A C T if F is m-independent
and contains A, (A) (4,T — A)-paths. Furthermore, we say that F m-locks a family
L of subsets of T if F m-locks all members of L.

The following theorem is a straightforward consequence of Theorem 2.2 and will
be used in the proof of Theorem 4.3.

THEOREM 2.3. Let G be inner Eulerian and L a 3-cross-free family of subsets of
T. Let m : T — Z, be a vector so that m(t) + d(t) is even for t € T. Then there is a
family F of edge-disjoint T-paths that m-locks L.

Proof. Let G’ be a graph arising from G by splitting every node ¢t € T in the
following way: add a new node t’ along with m(t) parallel edges between ¢ and ¢’ and
replace each edge xt of G by zt’. The result immediately follows when Theorem 2.2
is applied to (G',T). 0
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3. Flows and polymatroids. A nonnegative set function b : 27 — R, is called
a polymatroid function if

1. 5(0) =0,

2. b is monotone increasing, i.e., 5(X) > b(Y) when Y C X C T,

3. b is submodular, i.e., J(X)+b(Y) 2 b(XUY)+ (X NY) for X,Y CT.

The degree function d of a graph G satisfies properties 1 and 3 but typically not
2.

A polyhedron P(b) := {x € RT,z > 0,2(4) < b(A) for every A C T} is called a
polymatroid. It is called integral if every vertex of P is integer-valued.

The concept of a polymatroid was introduced by Edmonds [2]. He proved that a
polymatroid uniquely determines its defining polymatroid function. Furthermore, a
polymatroid is integral if and only if b is integer-valued.

For a polymatroid P(b) the face B(b) := {z : z € P,z(T) = b(T)} of P(b) is
called the basis polyhedron and its elements are the bases. Edmonds also proved the
following result.

THEOREM 3.1 (see {2]). For an (integral) polymatroid P(b) and an (integer-
valued) vector x € P(b) there is an (integer-valued) basis y with y > .

The polymatroid intersection theorem of Edmonds states that the linear system
of two polymatroids is totally dual integral (TDI). Here we need only the following
consequence.

THEOREM 3.2 (see {2|). For two polymatroid functions a and b defined on the
power set of T

max(z(T) : z € P(a) N P(b)) = min(a(X)+ (T — X): X CT).

Furthermore, if a and b are integer-valued, the maximum is attained by an integer
vector.

It follows that there is a vector z in P{a) N P(b) and a bipartition {4, B} of T so
that (A) = a(A) and z(B) = b(B), and if a and b are integral-valued, then so is .

Let G = (V, E) be a graph endowed with a capacity function ¢: E — R,. Let
T be a subset of nodes and A C T, B := T — A. Define P4 := {m € R% : there is a
c-admissible (A, B)-flow z for which z(v) = m(v) for every v € A}.

For X C Alet fa(X) :=min(6(Y):Y CV,X CYNT C A). Here 6.(Y) :=
d-(cle) : e € [Y,V —Y]). Clearly, fa is submodular and monotone increasing. By
a multiterminal version of the max-flow min-cut (MFMC) theorem a vector m €
R4 belongs to P4 if and only if m(X) < fa(X). Therefore, P4 is a polymatroid.
Furthermore, if ¢ and m are integer-valued, then there is a c-admissible integer-valued
(A, B)-flow z for which z(v) = m(v) for every v € A.

Let G = (V, E) be an Eulerian graph and T a subset of nodes. Define ¢ by ¢(e) = 1
for every e € E. Let T:= {11, T%,...,Tx} be a partition of T and A; := A(T},, T —T3).
Let P denote the direct sum of polymatroids Pr,, Pr,,...,Pr,.

LeMMA 3.3. Let g be an integer basis of P. Then there is o family F of edge-
disjoint T-paths connecting distinct members of T so that each t € T is the end point
of exactly q(t) paths of F.

Proof. For each T; € T let X, be a minimal subset of V for which X; N T = T;
and d{X;) = A;. We claim that these sets are disjoint. If, indirectly, X; N X; # 0
for some 1 <4 < j < k, then (1.2) implies A; + A; < d(X; — X;) +d(X; — X;) <
d(X;) +d(X;) = i+ X;. Hence A; = d(X; — X;), contradicting the minimality of X;.

We claim that there is a family 75 of edge-disjoint paths in G connecting distinct
Xi's and not using edges induced by any X; so that Fy contains XA; = d(X;) paths
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ending in X; for each ¢ (1 < i < k). Indeed, apply Theorem 2.1’ to the pair (G',T"),
where the graph G’ arises from G by contracting each X; into a node denoted by t;
and T/ := {t1,...,tx}.

Since q is a basis of P, for each T; there is a family F] of ¢(T;) (= A = d(X))
edge-disjoint paths in G connecting T; and T — T;, so that each ¢ € T; is the end
node of g(t) members of F;. For each member of F; erase the edges outside X; and
denote by F; the family of the resulting paths. By glueing together the paths in
Fo and the paths in F; (i = 1,...,k) we obtain a family F of paths satisfying the
requirements. 0

LEMMA 3.4. Let q be an integer basis of P and m an integer vector for which
m > q. Then an m-independent family F of T-paths that m-locks T contains at least
q(T)/2 paths connecting distinct members of T.

Proof. By Lemma 3.3, A\(T;) = q(T3). The assumption m > ¢ implies that A, >
Ag. Since F m-locks T, there are A, (T;) > A (T;) = q(T}) paths in F connecting T;
and T — T; for each ¢ = 1,...,k, from which the lemma follows. n|

Remark. Since q is a basis, F contains at most ¢(7;) (T;,T — T;)-paths, and
therefore F contains at most ¢(T")/2 paths connecting distinct members of 7. That
is, the number of such paths in F is precisely ¢(T")/2, but we will not need this fact.

Let A and B be two partitions of T and let £ := AU B. Let H be a demand
graph on T so that uv is an edge of H if and only if no X € £ includes both % and v.

For A; € Alet a;(X) (X C A;) be a set function defined by a,(X) := A(X,T—A,).
We saw above that a; is a polymatroid function. Define b; analogously for B. For
X CT let

(3.1) a(X) = a(XNA) and BX):=) bi(XNB;).

Then o and b are polymatroid functions. Let P(a) and P(b) be the polymatroids
defined by a and b, respectively.

LEMMA 3.5. Let m’ be an arbitrary even vector in P(a)NP(b) and h := m/(T)/2.
Then there are h edge-disjoint H-admissible paths.

Proof. Since G is Eulerian, P(a/2)(= P(a)/2) is an integral polymatroid. By
applying Theorem 3.1 to P(a/2) and to z := m’/2 we find that there is an even basis
m, of P(a) so that m, > m’. Analogously, there is an even basis my of P(b) so that
my > m’. Define a vector m by m(t) := max(mg(t), mp(t)) for t € T. Clearly, m is
even and mq(t) + mp(t) > mit) + m'(t) for each t € T. Hence

Mo (T) + mp(T) - m(T) > m/(T).

Since L is 3-cross-free, we can apply Theorem 2.3. Let F denote the family of
m-independent T-paths provided by the theorem. Then |F| < m(T)/2.

We are going to prove that the number h’ of H-admissible paths in F is at least
h. (Note that a path is not H-admissible precisely if it connects two nodes belonging
to the same member of £.)

By applying Lemma 3.4 with the choice 7 := A, P := P(a),q := mq, we find
that there are at most |F| —m,(T)/2 paths in F having both end nodes in the same
member of A. Analogously, there are at most |F| —m;3(T)/2 paths in F having both
end nodes in the same member of B.

Hence ' > | F| — (1F|-ma(T)/2) — (1F|-ms(T)/2) = (mq(T) +my(T))/2— | F|2
(mqo(T) + mp(T) — m(T))/2 = m/(T)/2 = h, as required. 4]

(Note that an element ¢ € T need not be the end node of exactly m’(¢) members
of the family assured by Lemma 3.5. For further comments, see the beginning of
section 6.)
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4. Maximization. Let G = (V, E) be a supply graph and H = (T, F) a demand
~graph so that T C V and £ N F = §. Throughout this section we assume that the
pair (G, T) is inner Eulerian; that is, d(v) is even for every v € V — T, where d stands
for the degree function of G.

The mazimization form of the edge-disjoint paths problem consists of finding a
maximum number g = (G, H) of edge-disjoint H-admissible paths. We can easily
get an upper bound on p. Let us call a subpartition {X, Xa,..., Xx} of V admissible
if T' € UX; and each X; N T is stable in H(i = 1,...,k). Clearly,

(4.1) w(G, H) <y d(X)/2.

The value ) d(X;)/2 will be called the value of the subpartition. Let r = 7(G, H)
denote the minimum value of an admissible subpartition. We have u < 7.

Figure 2 shows that we do not have equality, in general.

There are two known special cases when equality holds. Theorem 2.1 shows that
this is the case if H is a complete graph on T'. Reformulating Theorem 2.1, we have
the following theorem.

THEOREM 4.1. Suppose thet (G,T) is inner Eulerian and the demand graph H
is complete. Then u(G,H) = 7(G, H).

Another special case for which 4 = 7 is when H consists of two edges; that is,
H =2K,. .

THEOREM 4.2. Suppose that (G, T') is inner Eulerian and H consists of two edges
sit; (1=1,2). Then u(G,H) =7(G, H).

This is a theorem of Rothschild and Whinston. Actually, they proved it in the
following simpler form.

THEOREM 4.2 (see [13]). Suppose that (G,T) is inner Eulerian and H consists
of two edges s;t;(i = 1,2). Then p(G, H) is the minimum cardinality v of a cut
X,V — X] of G for which {s;,t;} N X =1 (i=1,2).

(The equivalence of the two forms, that is, 7 = 7/, may be proven as follows. Since
a cut [ X,V — X] for which {s;,#} X =1 (i = 1,2) provides an admissible partition
of special form, clearly 7’ > 7. To see the other direction let P:= {X1,..., X} be a
minimal admissible subpartition of G for which % is minimum. Then r = ¥ d(X;)/2,
and since |T'| < 4, we have 2 < k < 4.

If k = 2, then both X; and X, contain exactly two terminal nodes which are not
connected in H. Furthermore, if say d(X1) < d(X3), then {X;,V — X} would also be
an admissible partition whose value is not bigger than that of {X;, X2}. Therefore,
{X1,V — X1} is another optimal admissible partition and hence 7/ = 7.

If & > 3, then there are two members of P, say X; and X, such that each contains
one terminal node and these two terminal nodes, say s; and sp, are not connected
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in H. But now by replacing X; and X9 by X, U Xo we obtain another minimal
admissible subpartition, contradicting the minimum choice of k. 0y

Let us call a graph H = (T, F) bistable if there are two partitions .A and B of T
such that for z,y € T ry is an edge of H precisely if £ and y belong to different parts
of A and different parts of B. It is easily seen that a graph is bistable if and only if its
complement is the line graph of a bipartite graph. (It can also be shown that bistable
graphs are those for which the family of maximal stable sets of H can be partitioned
into two parts, each consisting of disjoint sets.)

Clearly, a clique or, more generally, a complete k-partite graph, is bistable and
2K, is also bistable. Therefore, Theorems 2.1 and 2.2 are special cases of the following.

THEOREM 4.3 (see [6;10,11]). Suppose that (G,T) is inner Eulerian and H =
(T, F') is bistable. Then u(G,H) = (G, H).

A proof of a slightly weaker, half-integral version was previously sketched in [8].
The reader may feel that bistable demand graphs form a rather peculiar class of
graphs and there may be larger, more natural classes of graphs for which u = 7 holds.
Karzanov and Pevzner [9], however, showed that if H = (T, F) is not bistable and
contains no isolated nodes, then there is a supply graph G = (V| E), with T C V and
(G,T) inner Eulerian, so that u(G, H) < 7(G, H).

In section 6 we will outline our original plan of proof, which was intended to use
only Theorem 3.2, and we will point out why that attempt failed. This perhaps will
help the reader understand how we were led to invoke the locking theorem in the
proof below.

Proof. By (4.1) we have u(G, H) < 7(G, H). To see the other direction, first we
prove that the theorem follows from its special case when the graph is completely
Eulerian. So suppose the theorem is true for (G’, H') whenever ' is Eulerian and we
want to prove it for (G, H) when G is inner Eulerian. Let K denote the set of nodes of
G with odd degree. Since (G,T) is inner Eulerian, K C T'. If K is empty, we are done.
If not, for anew node t, let 7" :=T +tand V' :=V +t. Let B' :=EU{xt:z € K}
and F' := FU{zt: x € T}. Then G' := (V', E') is Eulerian and H' := (T',F') is
bistable. Let p' and 7/ denote, respectively, the maximum and minimum in question
concerning (G’, H'). By the assumption g/ = 7.

Obviously, there is an optimal solution to the maximization problem concerning
(G', H') in which every edge xt, = € K, is itself a path in the solution. Thus we have
g’ = p+|K|. Furthermore, let M’ be an optimal admissible subpartition for (G’, H')
so that t € X € M. Since every edge zt, z € T, belongs to H', X NT = {¢}. Hence
M--{X} is an admissible subpartition for (G, H), and therefore 7 < 7/ — | K|. We can
conclude that u = ' — |K| = 7' — |K| > 7, as required.

Let .A and B be the two partitions of T defining the bistable graph H. Note that
each stable set of I7 is a subset of some S € AUB. Let a and b be defined by (3.1).
Since P(a)/2 and P(b)/2 are integral polymatroids, by Theorem 3.2 there exist an
even vector m’ in P(a) N P(b) and a bipartition {4, B} of T so that

(4.2) m'(A) = a(A) and m'(B)=b(B).

Hence we have m/(T) = a(A) + b(B). By Lemma, 3.5 there are m'(T)/2 edge-disjoint
H-admissible paths in G. Thus the proof will be complete if we find an admissible
subpartition of value (a(A) + b(B))/2. To this end let us assume that A4 is a maximal
subset of T for which A and B := T — A satisfy (4.2). We claim that

(4.3) a(A+1t) > a{A) for every element ¢t € B.
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Indeed, if we have a(A + t) = a(A) for some element ¢ € B, then a(4) = m/(4) <
m'(A+1t) < a(A+1t) = a(A), from which m'(A+t) = a(A + ¢) and m/(¢) = 0.
Furthermore, b(B) = m/(B) = m/(B — t) < b(B — t) < b(B), and hence m'(B — t} =
b(B—t); that is, the bipartition {A+t, B—t} of T' would also satisfy (4.2), contradicting
the maximal choice of A. (Note that, because of this choice of A and B, the role of
A and B will not be fully symmetric.)

For each A; € A for which AN A; is nonempty there exists a set X; C V for
which ;N A C X;NT C A; and d(X;) = a(A; N A) = m'(A; N A). Here the last
equality follows from (4.2) and the definition of a. Analogously, for each B; € B for
which BN B; is nonempty there exists a set Y¥; for which B;NB CY; NT C B; and
d(Y;) = b(B; N B) = m/(B; N B). Assume that both X; and Y; are chosen minimal
and let K := {X;: A; € A, A;N A nonempty} U {Y; : B; € B, B; N B nonempty}.

LEMMA 4.4. K is an admissible subpartition of value {a(A) + b(B))/2.

Proof. Clearly, each element of T' belongs to at least one member of X, and we
show that no more than one. That is, we claim that

(4.4a) X;NTCA
and
(4.4b) Y,NTC B.

We have m/(A4;NA) = a(A;NA) = d(X;) > a(AiNX;) > m'(AiNX;) > m/(A;NA),
and hence a(A; N A) = a(A; N X;). Hence (4.4a) must hold, for otherwise there is an
element ¢ € (X; NT) — A and t would violate {4.3).

Also, m'(B; N B) = b(B;NB) =d(Y;) > b(B; NY;) > m/(B;NY;) > m'(B; N B),
and hence m'(t) = 0 for every t € ¥; M A. We have m/(X; N 4) + m'(Y; N B) =
m’(AiﬂA)-i-m’(BjﬂB) d(X)+d( )2 d(X; - Y;)+d(Y; — X;) > a((X; - Y;)N
A)+b((Y;—X;)NB) > m'{(X;-Y; )nA)+m’((Y —X;)NB) = m'(X;NA)+m'(Y;NB).
Hence d(Y]) = (Y, N B)=m' (Y;’ M B) holds for Y] := ¥; — X;. Therefore, if (4.4b)
is not true and there is an element t € (Y; NT) — B which belongs to, say X;, then
Yj’ 'is a proper subset of Y}, contradicting the minimal choice of Y;. Hence the proof
of (4.4) is complete.

We claim that K is a subpartition. Assume to the contrary that LN K # @
for some K,L € K. By the definition of K and by (4.4) we have LN K NT = @.
The minimal choice of the members of K implies that d{K) < d(K — L). But then
d(K)+d(L) > d(K — L)+ d(L — K) > d(K) + d(L), which is a contradiction.

By its definition, K is admissible and its value is (3, d(X;) + 30, d(Y5))/2 =
(i e{ANA;) + 37, b(B N By))/2 =m!(T)/2, as required. o

By Lemmata 3. 5 and 4.4 and by (4.2) we have pp > m/(T)/2 = (a(A) +b(B))/2 >
7, and the proof of Theorem 4.3 is complete.

5. Algorithmic aspects. In this section we briefly outline how the proof above
gives rise to a strongly polynomial (combinatorial) algorithm in the capacitated case.
(Informally, a polynomial-time algorithm is strongly polynomial if the number of steps
does not depend on the magnitude of the occurring capacities and costs.)

The input of the algorithm consists of two graphs G = (V, E) and H = (T, F),
where T' C V. G is endowed with a nonnegative rational capacity function ¢ : E =
Q. We assume that H = (T, F) is given by two partitions A= {A;, Aa,..., A} and
B= {By,B,,..., By} of T so that zy € F if and only if each A; and each B; contains
at most one of x and y. (Note that if a graph H is given by its incidence matrix,
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one can test H efficiently for bistability. Namely, decide first by enumeration whether
there are more than 2|T'| maximal stable sets of H. If the answer is yes, then H is not
bistable. If the answer is no, then H is bistable if and only if the intersection graph
of the maximal stable sets is bipartite.}

The output of the algorithm consists of a c-admissible H-multilow z, so
that Y (z(t) : t € T) = }_(6.(Z) : Z € K), and an admissible subpartition X =
{Z1,2Z3,...,2Z;} of V. Moreover, if c is integer-valued and Fulerian in the sense that
é.(v) is even for every node v € V, then the output x is integer-valued as well.

Actually, we will assume that ¢ is integer-valued and Eulerian. If this is not
the case, one can multiply through the capacities by 2N, where N denotes the least
common denominator of the capacities. If ¢ is inner Eulerian, we can apply the
reduction described in section 4 to obtain a completely Eulerian case.

First, we remark that the proof of Theorem 2.2 immediately provides a polynomial-
time algorithm for the set system L= AUB when c is identically 1. It is not difficult
to show that, for general integer-valued Eulerian ¢, if in every step one splits off as
much capacity as possible, then the algorithm is strongly polynomial (cf. [5]). In what
follows we comment on the use of the polymatroid intersection algorithm to construct
an even vector 7’ and an admissible subpartition occurring in the proof of Theorem
4.3.

For disjoint sets X,Y C V let A.{X,Y") denote the value of a flow between X and
Y. With the help of a MFMC computation A.(X,Y) can be computed in (strongly)
polynomial time.

For A; € A let a;(X) (X C A;) be a set function defined by a;(X) := A (X, T —
A;). Define b; analogously. For X C T let a(X) := )} a;(X N A;) and b(X) :=
3°b;(X N Bj). Let P(a) and P(b) be the polymatroids defined by a and b. It is
known from polymatroid theory that P(a/2) = P(a)/2 (and P{b/2) = P(b)/2). Since
¢ is Eulerian, both a/2 and b/2 are integer-valued, and hence P{a)/2 and P(b)/2 are
integral polymatroids. Therefore, if z is an integer-valued vector in P(a/2) N P(b/2)
for which z(V) is maximum, then m’ := 2z is an even vector in P(a) N P(b) for
which m/(V) is maximum. By Theorem 3.2 there is a bipartition {4, B} of T so that
z(A) = a(A)/2 and 2(B) = b(B)/2 holds. Hence m'(A) = a{A) and m'(B) = b{B).

There is a (combinatorial) strongly polynomial algorithm, due to Schonsleben
[14], for computing z (and hence m') and {A, B}. This algorithm works if an oracle
is available to minimize a(A) — z(A) and b(A) — z(A) over AC T, where z : T — Q
is a vector. In our case this oracle can indeed be constructed by invoking the MFMC
algorithm, and this way one obtains a purely combinatorial strongly polynomial al-
gorithm for computing m’ and A, B satisfying (4.2). Using the proofs of Claims 1
and 2 in the proof of Theorem 4.3, one may compute in strongly polyncmial time an
integer-valued maximum multiflow and an admissible subpartition of minimum value.

Karzanov [6] described a more direct way to compute ' and a minimal admissible
subpartition. His method consists of one MFMC computation on an appropriately
defined auxiliary digraph on |V{|T| nodes, and its complexity is O{¢(|T||V|)), where
@(n) denotes the complexity of an MFMC computation on a network with n nodes.

Next, the even basis m, of P(a) (respectively, m; € P{b}) defined in the proof
of Theorem 4.3 can be constructed by |.A] (respectively, |B|) MFMC computations.
Thus, vector m defined in (4.4) can be computed from m' in O(|T|e(|V])) steps.

The m-locking problem can be solved by applying at most O(|V|) splitting-off
operations at every node v € V — T, each operation consists of finding |A| + |B|
maximum flows in G. This requires O{|]V{*(]A] + |B)e(|V])) or O(|[V3Tle(|V])
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m’ = (2,2,2,0) € P(a) N P(b)

H A={U1,U2,1)3,U4},B=n
Bl o |t m=(2,2,22)

B.l o 1w P, = (v1,vs,vs, v2)

2 Py = (vg, v6,v3)
ALA A P3 = (v4,vs,v6,v3)

P4 = (1.!1,1}5,1)4)

Fic. 3.
operations.

Thus, the overall complexity of the algorithm is O(|V|2|T|o(|[V]) + (|T||V]). If
one uses an MFMC algorithm of complexity ¢(n) = O(n?), this gives an O(|V|?|T|)
upper bound for the running time of the algorithm (to be compared with the com-
plexity O(|V|%T|2) of the algorithm in {6]).

6. Node demand problems. The reader might have a feeling that invoking
the locking theorem in the proof above contains a seemingly unnecessary twist. In
fact, we originally tried to prove Theorem 4.3 by using the following more natural
and direct approach, but Figure 3 will show why our attempt failed.

Recall that the polymatroid intersection theorem ensured the existence of a max-
imum even vector m’ in P(a) N P(b) for which m/(T)/2 is precisely (G, H). Theorem
4.3 would follow if there existed a system of H-feasible paths so that each t € T is the
end node of precisely yn'(t) of them. Unfortunately, such a system need not always
exist, as is shown by the figure.

Demand graph H is defined by the partitions A := {{v1,v4}, {v2}, {v3}} and
B := {{v1,va}, {va,v4}}. Here {{v1,v4,v5}, {2}, {v3}} is an admissible subpartition
of value 3; that is, the maximum (G, H) is at most 3. On the other hand, there
are three H-admissible edge-disjoint paths in G, namely, P, := (v1,vs, vg,v3), Py :=
(vo,ve, v3), P := (v, us, U5,v4). Hence the value of the primal and dual optima, is 3.
It can easily be checked that this system of paths is the only optimal solution. The
bad thing is that two nodes (v; and vy) are the end nodes of just one path (that is,
an odd number of them). Therefore, there is no hope to obtain these paths by first
determining an optimal even vector m’ in the intersection of the two polymatroids in
question and then finding H-admissible paths so that each node t € T is the end node
of m'(t) of them. Furthermore, one must insist on the evenness of m’ since Theorem
2.2 is true only for such vectors.

(Incidentally, vector m’ := (2,2,2,0) is an optimal element of the polymatroid
intersection and {A := T, B := 0} is a bipartition of T satisfying (4.2). Vector m
arising in the proof is m := (2,2,2,2). When Theorem 2.3 is applied to this m we
obtain a family 7 of four paths, namely, P, := (v1,vs,vs, v2), P2 := (vo, vs,v3), P3 :=
(v3, s, V5, v4), Py := (v1,Vs,v4). Among these paths Py is the only non-H-admissible,
and we obtain Py, /%, P3 as an optimal solution to the maximization problem.)

Although this direct approach to the maximization problem did not prove suc-
cessful, it led us to the following problem to be considered for its own sake.

Let G = (V, E) be a graph H = (T, F), a demand graph with T C V. Moreover,
let m: T — Z, be a demand function. The node demand problem consists of finding
a system of H-admissible paths so that each terminal t is the end node of precisely

m(t) paths. We call the problem and also the vector m feasible when such a solution
exists. '
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The node demand problem is called Eulerian if it is inner Eulerian and m(t)+d(t)
is even for each ¢t € T. We call a demand graph H two-covered (one-covered) if every
node £ € T belongs to at most two (exactly one) maximal stable sets of H. Note
that bistable graphs are always two-covered but a five-element circuit, for example, is
two-covered and not bistable. It can be shown that a graph H is two-covered if and
only if H is the complement of the line graph of a triangle-free graph.

THEOREM 6.1. Suppose that the node demand problem defined by (G, H,m) is

Eulerian and H 1s two-covered. Then it is feasible if and only if the following condition
holds:

(6.1) m{S) —m(XNT - 8) <d(X)

forevery X CV and S € X NT where § is stable in H.

Proof. Since S is stable in H, in a solution to the node demand problem each path
with an end node in S has the other end node in T'— S. Among these m{S) paths
at most m{X NT — S) may end in X ~ 5, and hence at least m(S) ~m(XNT — 5)
must end outside X, from which (6.1) follows.

To prove the sufficiency first observe that the family £ of maximal stable sets of
H is 3-cross-free. Indeed, for a contradiction, let 51, S, 53 be maximal stable sets of
H which are pairwise crossing. Since H is two-covered, $; NS> N.S3 = @ and there are
distinct elements a € 51N S2,b € S2N Sy, c € S3N 5. Now {a,b,c} is stable and a
maximal stable set S containing a, b, ¢ is distinct from each S;. But then the element
a (and b, ¢, as well) would belong to more than two maximal stable sets, contradicting
that H is two-covered.

CLAIM 4. A, (S) = m(S) for any stable set S of H.

Proof. Recall that ),,(S) was defined to be the maximum number of edge-disjoint
paths connecting S and T' — S so that each z € T is the end node of at most m(z)
of them. By a version of the Menger theorem A,,(S) = min(d(X) + m(S — X) +
m(T — 85— X) : X CV). (Indeed, apply the edge-disjoint undirected version of the
Menger theorem to the graph arising from G by adding two new nodes s, so that
s (respectively, t) is connected to each node z in S (respectively, in T — §) by m(z)
new parallel edges.)

If X denotes the set where the minimum is attained, then, by (6.1), we have
An(8)=d(X)+m(S—-X)+m(XNT-8)>2m{(SNX)-m(XNT - S)+m(S —
X)+m(XNT — 5) =m(S), and the claim follows. 0

Apply Theorem 2.3 to G, m, £ and consider the path system F provided by the
theorem (where £ is the collection of maximal stable sets of H).

CLAIM 5. F is a solution to the node demand problem.

Proof. Let S be an element of £, that is, a maximal stable set of H. Since JF
locks S, F contains A,,(S) = m(S) paths connecting § and T — 5. This shows that
each node z in S is the end node of precisely m(x) members of F and that each path
in F having an end node in S must have the other end node in T' — S.

Because every node z of H belongs to a maximal stable set of H, r is the end
node of precisely m(z) members of F. Moreover, since every pair of nonadjacent
nodes x,y of H belongs to a maximal stable set of H, no path in F may connect z
and y; that is, F consists of H-feasible paths.

Remark. The condition in Theorem 6.1 may be formulated in an equivalent form.
By taking S := X N Z in (6.1), we see that (6.1) implies

(6.1 m(XNZ)—m(XNT - Z) < d(X)
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for every X C V and every maximal stable set Z of H. Conversely, we claim that
(6.1) follows from (6.1'). Indeed, let Z be a maximal stable set of H including S.
Then m(S) <m(XNZ) <d(X)+m(XNT-2Z)<d(X)+m(XNT—5), and (6.1)
follows.

Equation (6.1') has the advantage that there are only a few maximal stable sets
in a two-covered graph (at most 2|T|). On the other hand, in the proof above it is
slightly easier to work with (6.1).
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