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TWO ARC-DISJOINT PATHS IN EULERIAN DIGRAPHS*

ANDRAS FRANK!, TOSHIHIDE IBARAKI!, AND HIROSHI NAGAMOCHI!

Abstract. Let G be an Eulerian digraph, and let {z1, 22}, {31, 32} be two pairs of vertices in G.
A directed path from a vertex s to a vertex t is called an si-path. An instance (G; {z1, 22}, {m1,¥2})
is called feasible if there is a choice of h, 4,4,k with {h,i} = {j,k} = {1,2} such that G has two
arc-disjoint zjx;- and y;yx-paths. In this paper, we characterize the structure of minimal infeasible
instances, based on which an O(m + nlogn) time algorithm is presented to decide whether a given
instance is feasible, where n and m are the number of vertices and arcs in the instance, respectively.
If the instance is feasible, the corresponding two arc-disjoint paths can be computed in O(m(m +
n logn)) time.
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1. Introduction. Finding a set of edge-disjoint paths connecting pairs of spec-
ified vertices (called terminals) in a graph or a digraph is one of the classical and
fundamental problems in graph theory (see [6] for a survey), which has a wide vari-
ety of applications. A path between terminals s and ¢ (or a directed path from s to
t) is called an st-path. If the graph is undirected, an important result by Robert-
son and Seymour [10] says that edge-disjoint paths for k pairs {s;,;} of terminals,
t=1,2,...,k, can be obtained in polynomial time for a fixed k. In the caseof k = 2, a
complete characterization of undirected graphs G that do not have edge-disjoint s1¢;-
and sgts-paths is available (Dinits and Karzanov [2, 3], Seymour [11}, and Thomassen
[12]). Such G can be reduced to a graph G’ that has a planar representation with the
following properties (see Fig. 1):

(i) the four terminals have degree 2, and all other vertices are of degree 3, and

(ii) the terminals are located on the outer face in the order of sy, s2, 11, ta.

Contrary to this, the characterization of arc-disjoint path problems in digraphs
seems much more difficult. For example, the weak 2-linking problem (i.e., to decide
whether there are arc-disjoint s;¢;- and ssto-paths) in a general digraph is shown by
Fortune, Hopcroft, and Wyllie {4] to be NP-complete. However, if the digraph under
consideration is Eulerian, the situation becomes slightly easier. For a given digraph
G = (V, E) with ordered terminal pairs (s;,%;), 7 = 1,2,...,k, call H = (V,{(¢;, s;) |
i =1,2,...,k}) its demand digraph. The weak 2-linking problem in an Eulerian
digraph G + H is known by Frank [5] to be polynomially solvable. Furthermore,
Ibaraki and Poljak [9] showed that the weak 3-linking problem for an Eulerian digraph
G+ H can also be solved in polynomial time. It is based on the observations that the
weak 3-linking problem is equivalent to finding arc-disjoint z1%2-, T2Z3-, and zaz:-
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F1G. 1. An infeasible instance for o two edge-disjoint path problem in an undirected graph G.
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F1G. 2. An infeasible instance for a weak 3-linking problem in an Fulerian digraph G + H.

paths in an Eulerian digraph with terminals z,, z2, z3 and that the resulting problem
is infeasible if and only if it is reducible to a 2-connected Eulerian digraph G', which
has a planar representation (see Fig. 2) such that

(i) all terminals have degree 2, and all other vertices have degree 4, and

(i) every face is a directed cycle, and all the terminals are located on the outer
face (which is also a directed cycle) in the order of z3, 3,21 (where the arcs in the
outer face are directed clockwise).

In this paper, we generalize the above result to the two arc-disjoint path prob-
lem in an Eulerian digraph G (but G + H is not Eulerian), which decides whether
there are arc-disjoint paths connecting two unordered terminal pairs {z1,2z3} and
{¥1, 92} (ie., z'z"- and y'y"- paths, where either z'z” = z1%2 or zoz; and either
¥'y"” = 1y or yayn). This problem includes the above weak 3-linking problem as a
special case: for a given instance (G; (s1,11), (s2,22), (83, %3)) of the 3-linking problem
(where G + H is Eulerian), add four new vertices x;,%3,y1, and ¥ together with
seven new arcs (t1,31), (1, 52), (2, ¥2), (2, %1), (21, 53), (t3, T2), (T2, 51) to obtain an
instance (G'; {1, z2}, {1, y2}) of the two arc-disjoint path problem (where &' is Eu-
lerian), which is clearly feasible if and only if the instance (G; (s1,%1), (s2, t2), (ss, ts))
is feasible. We show that the problem can be solved in O(m + nlog n) time, where m
and n are, respectively, the numbers of arcs and vertices in G, by deriving an analogue
of the above structural characterization of infeasible instances: an Eulerian digraph
G with four terminals z,,2,,y2 is infeasible if and only if it is reducible to an
Eulerian digraph G’ that has a planar representation (see Fig. 3(a),(b)) such that

(i) all terminals have degree 2, and all other vertices have degree 4,

(ii) there is at most one cut vertex, and g
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(a) An example of IPR (b) An example of IPR

(c) The minimal infeasible instance which has no IPR

F1G. 3. Ezamples of infeasible instances for two arc-disjoint path problems in an Eulerian
digraph G.

(iii) every face is a directed cycle, and all terminals are located on the outer face

in the order of x1, ¥y, 22,7, where {¢/,¥"} = {y1, 12}

The proof for this is, however, substantially different from that of [9]. For a
feasible instance, we also show that the corresponding two arc-disjoint paths can be
computed in O(m(m + nlogn)) time.

2. Preliminaries. Let G = (V, E) be a digraph which may have multiple arcs.
Denote by deg(v), indeg(v) and outdeg(v) the degree, indegree, and outdegree of a
vertex v in G, respectively, where the degree of a vertex is the sum of its out- and
indegrees. We call a digraph FEulerian if the outdegree and indegree of each vertex
are equal. Under a path or a cycle, we always understand a directed path or cycle.
Repetition of arcs is not allowed, but repetition of vertices is allowed. A cycle that
visits every arc exactly once is called Eulerian. A path from s to t is called an st-
path. If {P,, Ps,..., %} is a collection of arc-disjoint paths such that the last vertex
of P; coincides with the initial vertex of P;y, for each i = 1,2,...,k — 1, we denote
by P = (P, P»,---, P;) the concatenation of the paths. In the following discussion,
digraph G, path P, or cycle C' may sometimes be treated either as a vertex set or an
arc set, as far as its meaning is unambiguous from the context. If it is necessary to
specify, we use E(G) and V(G) to mean the arc set and the vertex set of a digraph
G, respectively. For a digraph G = (V, F) and an arc set E’ C E, we denote the
digraph (V, E — E') by G — E’. For a vertex set Z C V, the subdigraph induced by
Z is denoted by G{Z] = (Z, Ez), where Ez = {(u,v) € E | u,v € Z}, and G[V — Z]
may be denoted by G — Z.



560 A. FRANK, T. IBARAKI, AND H. NAGAMOCHI

For a subset Z of vertices, §*(Z) denotes the set of arcs from Z to V — Z, §~(2)
the set of arcs from V — Z to Z, and 6§(Z) = 6t(Z) U é~(Z). If G is Eulerian, then
|6%(Z)] = |6~ (Z)] holds for every Z, where |A| denotes the cardinality of a set A, and
therefore |6(2)| is always even. A set Z C V is called a k-cut if |§(Z)] is k. For two
disjoint 5, T C V, we say that a cut Z separates S and T S C Zand T C V —Z and
define 6(S,T) to be the set of arcs from S to T and arcs from T to §. Throughout
this paper, a singleton set {v} may also be denoted as v.

Two cuts Z; and Z; intersect each other if Zy N2y # 0, Z; — Z, # 0, and
Zy — Zy # 0, and they cross each other if, in addition, V — (Z; U Z3) # @ holds. For
two crossing cuts Z; and Z,, we easily see that

(2.1) 16(Z1)] +16(Z2)i 2 16(Z1 N Z2)| + [6(21 U Z5))

and
(2.2) 16(Z1)] +18(Z2)| = |6(Z1 — Z2)| + |86(Z2 — Z1)| + 218(Z1 N 22,V — (24 U Zy))]

hold.

Some further notions, such as planarity, edge connectivity, and vertex connectiv-
ity, we refer to the unoriented graph G obtained from G by ignoring arc orientation. A
digraph G is called connected if G is connected. For a connected digraph G = (V, E),
a vertex z is called a cut vertez if G — {2z} has more than one connected component.
We call an undirected path in G a chain. A chain with end vertices s and ¢ is called an
st-chain, and these s and ¢ are said to be connected (by the chain). A concatenation
of a collection of chains is also defined analogously to paths.

Consider an instance (G = (V,E); X,Y) with X = {z;,2,} C Vand ¥V =
{#1,¥2} € V. Throughout this paper, when we refer to an instance (G; X,Y), we
assume that G is Eulerian and is connected (hence strongly connected since G is
Eulerian). Each t € X UY is called a terminal. We say that an instance (G; X,Y)
is feasible if it has two arc-disjoint z’z"- and y'y”-paths such that {z',2"} = X and
{v/, ¥’} =Y; otherwise it is infeasible.

LEMMA 2.1. Let Px be an z'z"-path with {z',2"} = X in (G; X,Y). If y, and
Y2 are connected in G — E(Px), then (G; X,Y) is feasible.

Proof. Since G is Eulerian, G — E(Px) has an «”2’-path P} and each of the
connected components in G— E(Px)— E(P%) is Eulerian (possibly, a single vertex). If
%1 and y are contained in the same connected component in G— E(Px)— E(P%), then
the instance is feasible. Assume therefore that %; and y» are contained in two distinct
components H; and Ho, respectively. Since 4, and 3, are connected in G —E{(Px) but
are not connected in G — E(Px) — E(Py), H, and H, must contain vertices v; and
vz in V(P ), respectively. Without loss of generality, assume that P visits v, before
ve. Then, Hy has a yiv;-path, Py contains a v,ve-path, and Hp has a Uayo-path.
This implies that the instance is feasible. 1|

LEMMA 2.2. If an instance (G; X,Y) satisfies X N'Y # 0, then it is feasible.

Proof. Assume without loss of generality that z; = y; for X = {z1,22} and
Y = {y1,42}. Since G is connected, there is arc-disjoint zyzs-path Px and zoz:-
path Py. Consider the connected component containing y» in G ~ E(Px) — E(P%).
It contains a vertex in V(Px) or V(P%) (say, V(P%)) since G is connected. Then,
1 and ya are connected in G — E(Px). Lemma 2.1 then implies that (G; X,Y) is
feasible. 0 :

In the following, therefore, we assume X NY = @ for an instance (G; X, Y).
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DerFINITION 2.1. We say that an instance (G;X,Y) with X = {1,732} and
Y = {y1,y2} has an infeasible planar representation (IPR) if the following conditions
hold (see Fig. 3(a),(b)).

(i) G is planar and has at most one cut vertex.

(i) All the terminals have degree 2, and all other vertices have degree 4.

(i) G has a planar representation in which every face is o directed cycle (or
equivalently, the arcs incident to a vertex are alternately oriented out and
in), and all the terminals lie on the boundary of the outer face (which is also
a directed cycle) in the order of =1,y ,z2,y”, where Y = {¢/,y"}. O

We then have the next lemma.

LEMMA 2.3. Any (G; X,Y) which has an IPR is infeasible.

Proof. If an TPR has arc-disjoint «'z"- and y'y"-paths, where {z',2"} = X
and {v',y""} = Y, then these two paths must cross at some nonterminal vertex in
the planar representation (since every terminal has degree 2 and is located on the
boundary of the outer face). However, the two paths cannot cross at a nonterminal
vertex, because the arcs incident to a vertex are alternately oriented out and in. 1]

It is easy to see that a feasible instance (G; X,Y) never becomes infeasible by

contracting any arc. We say that an instance (G; X,Y) is minimal infeasible if it is
infeasible, but the instance (G'; X,Y) obtained by contracting any arc becomes fea-
sible. The main contribution of this paper is to show that the converse of Lemma 2.3
holds for such minimal infeasible instances. In the case of |V| = 6, however, there is
a minimal infeasible instance with V' = {z;, 22, ¥1, y2, v, w} and E = {{v, z4), (z1,w),
(v, z2), (z2,w), (w, 1), (11,7), (w,y2), (y2,v)} (see Fig. 3(c)), which is clearly infeasi-
ble but has no IPR. We shall see that this is the only exception.

3. Irreducible instances. Let us consider the following three types of reduc-
tions:
(1) Let Z be a 2-cut and ZN(XUY) = (. Let u be the tail of the arc from V - Z
to Z and v the head of the arc from Z to V — Z. Delete Z, and if » # v then
add the arc (u,v) to G[V — Z]. See Fig. 4(1).
(2) Let Z be a 2-cut, |Z] > 2, and [ZN (X UY)| = 1. Then contract Z to the
terminal ¢t € Z, deleting any resulting loops. (The resultmg terminal ¢ has
degree 2.) -See Fig. 4(2).
(3) Let Z be a 4-cut such that G[Z] is connected, |Z] > 2,and ZN(XVY) =
Then contract Z into a single vertex. See Fig. 4(3).
The next lemma is immediate from the definition of reductions.
LEMMA 3.1. An instance (G;X,Y) is feasible if and only if it is feasible after
performing any of the reductions (1), (2), or (3). 0O
We say that an instance (G;X,Y) is reducible if one of the above reductions
(1)~(3) can be applied (in this case, we also call such 2-cuts or 4-cuts reducible);
otherwise they are irreducible. An irreducible instance cannot have a 4-cut W with
WN(XUY) =0 even if W does not induce a connected subdigraph, because in such
a case thereis a 2-cut Z C W with ZN(XUY) = 0 (i.e, it is reducible). As will
be shown in section 9, an irreducible instance of a given instance (G; X,Y) can be
obtained in polynomial time. In this section, we present some properties of infeasible
irreducible instances.
LEMMA 3.2. Any minimal infeasible instance is irreducible.
Proof. The proof is obvious because any of the reductions (1), (2), and (3) can be
performed by an adequate sequence of arc contractions, during which any infeasible
instance never becomes feasible by Lemma 3.1. 1]
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3
F1G. 4. Three types of reductions of irreducible cuts Z.

LEMMA 3.3. Let (G = (V,E); X,Y) be an infeasible irreducible instance. Then
the following hold.

(i) There is no 2-cut Z that separates X and Y.

(ii) Fach terminal has degree 2.

(i) Each nonterminal vertez has degree 4.

(iv) For any pair of vertices u,v € V, there is at most one arc connecting them

(i.e., at most one of (u,v) and (v,u) ezists in E).

Proof. (i) Assume that a 2-cut Z separates X and Y, where §(Z) = {e;, es}.
Since G is connected and Eulerian, there are arc-disjoint z1zs-path Px and zo2;-
path Pj. Clearly, one of them (say, Px) contains no arcs from {e;, es}. Similarly G
has a y'y"-path Py, where {y/,y"} =Y, such that E(B) N {e1,e2} = #. These Px
and Py are arc-disjoint in G, and hence (G; X,Y} is feasible.

(ii) Assume deg(z1) > 4 for a terminal z; € X without loss of generality. If G
has arc-disjoint z13-path P, and ziys-path P,, then G — E(P,) — E(P2) has arc-
disjoint y,z;-path P3 and yox,-path Py, since G is Eulerian. Let H be the connected
component in G — E(P,) — E(P») — E(P3) — E(P,) that contains z;. Since G is
connected, H must contain a vertex z in V(P;) for some i. Assume z € V(P)UV(R,)
(the case of z € V(P3)UV(P,) can be treated similarly). Then E(P;)U E(P;) UE(H)
contains a path Px from z; to 2 via 2. However, y; and y; are connected in G —
E(P,) — E(P;) — E(H), since Qy = (P, Py) is a y1y2-chain, and the instance would
be feasible by Lemma 2.1, contradicting the assumption. Therefore, at least one of
the above P; and P does not exist; i.e., by Menger’s theorem, there must be a 2-cut
W such that z; € W and Y C V — W. Since deg(z1) > 4, we have |[W| > 2. From
(i) of this lemma, £z € V — W holds. This, however, implies that there is a reducible
2-cut W, which is a contradiction.

(iii) Assume deg(u) > 6 for a nonterminal vertex u. Let W be a cut that minimizes
|6(W)| among cuts W such that w € W and {z1,31,¥2} € V —W. By the minimality
of |§(W)|, G[W] is connected. By deg(u) > 6, |6(W)| = 2 would imply |W| > 2,
and W is reducible. Hence |§(W)| > 4. From this, either (a) |§(W)] > 6 or (b)
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|6(W)| = 4 and 22 € W must hold (otherwise, W would be reducible). In the case
of (a), by Menger's theorem GG has three arc-disjoint paths P;, P, and P3 from
to some vertices wy,wq, w3 € {Z1,Yy1,y2}. By (ii) of this lemma, every terminal has
degree 2, and then we can assume that these paths P, P, and P; are uzx;-, uy;-, and
uye-paths, respectively. Since G is Eulerian, G — E(P) — E(P,;) — E(P;3) has three
arc-disjoint z u-path Py, yyu-path Ps, and you-path FPs. Let H be the connected
component in G — | J;_, ¢ E(F;) that contains 5. Since G is connected, H must
contain a vertex z in V(P;) for some i. Assume z € V(P}) UV (Py) UV (P) UV (BR)
(the case of 2 € V(P) UV (FPy) UV (B5) U V(Ps) can be treated analogously). Then
E(P1)U E(P;) U E(P2) U E(Ps) U E(H) contains a path Px from x; to za via 2.
However, 1 and yq are connected in G — E(P;) — E(Py) — E(P2) — E(P;) — E(H),
since Qy = {Ps, Ps) is a ¥ y2-chain, and the instance would be feasible by Lemma 2.1,
contradicting the assumption.

Therefore, we assume (b); i.e., there is a 4-cut W separating {u, z2} and {z1, 1, y2}.
In this case, applying the above argument to v and {z2, 11, ¥2}, we can conclude that
there is also a 4-cut W’ such that {u,z1} C W’ and {z2,y1,y2} © V — W’. These
two cuts W and W’ cross each other, and from (2.1) we have

|6W)] + [6(W)] 2 |6(W N W')| +16(W U W)).

Here |§(W)} = |6(W')| = 4 and |§(WUW’)| > 4 by (i). This implies |6(W NW'}| < 4;
i.e.,, WNW' with (WNW)N(XUY) = 0 is a reducible 4-cut (or contains a reducible
2-cut W" C W N W'), which is a contradiction.

(iv) If there are multiple arcs (u,v) and (u,v) in E, then u and v are nonterminal
vertices by (iii) and deg(u) = deg(v) = 4 holds. This means that Z = {u,v} is a
reducible 2- or 4-cut, which is a contradiction. Similarly if there are two arcs (u,v)
and (v,u), it is also easy to show that there is a reducible 2- or 4-cut Z = {u,v},
which is a contradiction. |

LEMMA 3.4. Let (G;X,Y) be an irreducible infeasible instance. Then G has at
most two 2-cuts that separate {z1,y'} and {z2,y"}, where Y = {y',y"'}. If there are
two such 2-cuts Z and Z', then G has a cut vertex z such that Z = Z' U {z} or
Z =(V —-Z")U{z}. Conversely, any cut vertex is obtained in this manner.

Proof. Let Z and Z' be the two 2-cuts that separate {z1,%'} and {z3,y"}, where
we assume ZN(XUY) =Z'N(XUY) = {z,y'} without loss of generality. Choose
Z (resp., Z') as the cut minimizing |Z} (resp., maximizing |Z’|) among such 2-cuts.
We first show that any other 2-cut Z” that separates {x;,y'} and {x2,y"} satisfies

(3.1) Z c Z" C Z' (and hence Z C Z').

If Z" crosses Z, we have [6(Z N Z")| > 4 from the choice of Z and |§(Z U Z")| > 2 as
Z U Z" separates {z1,¥'} and {z2,y"}. This means

16(2)] +[6(2")| =4 <6 < |6(Z N Z")| +|6(Z L Z27)],

which is a contradiction to (2.1). Similarly, we see that Z” also cannot-cross Z’,
and hence (3.1) holds. Since [§(Z' — 2)| < |6(2)| +16(Z")| (=4), Z' — Z isa 2- or
4-cut satisfying (Z' — Z)N (X UY) = §. Then, by irreducibility, Z’ — Z must be a
4-cut consisting of a single vertex (say, z). This implies that z is a cut vertex. From
|Z' ~ Z| = 1 and (3.1), (G;X,Y) has at most two 2-cuts that separate {z;,3'} and
{z2,¥"}.

Conversely, let z be a cut vertex in G. Since G is Eulerian, z cannot have degree 2.
By Lemma 3.3(ii), (iii}, and (iv), 2 is a nonterminal vertex and there are four distinct
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vertices, say, u1,uz,v1,v2, adjacent to z. Again since G is Eulerian, G — {2} has
exactly two components. Let Wi, W2 C V be the vertex sets of these components, and
assume without loss of generality that (uy, 2), (uz, 2), (2,11), (z,12) € E, u3,v; € W}
and uz,v2 € Ws since G is Eulerian and at least one arc is going out (resp., going
in) of each Wy and Wa. Clearly Wy and Wp = V — (W U {z}) are both 2-cuts. By
irreducibility and Lemma 3.3(i), these satisfy |[WinX| = |[W1NY]| = |(Wiu{z})nX| =
(W1 U {z})NY]| = 1. This implies that a cut vertex z is obtained in the manner of
the lemma statement. 0

LEMMA 3.5. Let (G = (V,E); X,Y) be an irreducible infeasible instance which
has an IPR, and let B be the cycle of the outer face in the IPR. If |V| > 5 and there
is no 2-cut Z such that |ZNX| = |ZNY| = 1 and min{|Z|,|V — Z|} > 3, then
V — (X UY) induces a connected digraph in G — E(B).

Proof. By |[V]| 25, V- (XUY) # 0. By Lemma 3.3(ii) and the definition
of IPR, each termiral in X UY is an isolated vertex in G — E(B). Assume that
V — (X UY) induces two connected components Hy and Hj in G — E(B). By the
planarity of the IPR, any vertices uy,v1 € V(H;) N V(B) and any vertices 4y, vz €
V(H;)NV(B) cannot appear alternately (in the order of u;, ug, 1, v2) along cycle B.
This means that there are two arcs (u, v), (v/,v") € F(B) such that V(H;) and V(H>)
are contained in two distinct connected components Hi and Hj in G—{(u, ), (v/,v")},
respectively. Hence Z = V(H]j) is a 2-cut, and by the irreducibility, both V(H}) and
V{H3) must contain two terminals, one from X and the other from Y by Lemma 3.3(i).
Clearly, each of V(Hj) and V(H}) contains a nonterminal, and has at least three
vertices; i.e., min{|Z|,|V — Z|} > 3. 0

The next lemma can be shown by inspecting all possible irreducible and infeasible
instances with |V] < 7, based on Lemma 3.3.

LEMMA 3.6. Let (G;X,Y) be an irreducible infeasible instance with |V| < 7. If
V] € {4,5,7}, then (G; X,Y) has an IPR. If [V| =6, (G; X,Y) is the instance shoun
in Fig. 3(c} (in this case there is no irreducible infeasible instance with |V| = 6 in
which some two terminals are adjacent to each other). 0O

In this paper, we prove the next result.

THEOREM 3.7. Let (G;X,Y) be a minimal infeasible instance, and let it satisfy
|V| # 6. Then (G;X,Y) has an IPR. O

We shall need sections 4-8 to prove Theorem 3.7 for general |V| > 8.

4. Outline of the proof. This section describes an outline of how to prove
Theorem 3.7 in sections 5-8. We first assume that there is a smallest counterexample
(G*; X,Y) to Theorem 3.7; i.e.,

(G*;X.,Y) is a minimal infeasible instance with n#6 vertices, but has no IPR,
(4.1)
where G* minimizes the number n* of vertices among such instances. By Lemma 3.6,
n* > 8 is assumed. In sections 5 and 6, we characterize cut vertices, 2-cuts, and 6-cuts
in G*. Then in sections 7 and 8, as outlined below, we derive a contradiction from
the existence of such G*, which proves Theorem 3.7.

For the subsequent discussion, we introduce two operations. Let w be a nontermi-
nal vertex with four incident arcs (so, w), (51, w), (w, s2), (w, 83), where sg, s1, 82, and
s3 are all distinct. We say that arcs (sg,w) and (w, s2) are split off at w when four
ares (sp, w), (81, w), (w, 82), (w, 83) are replaced with two new arcs (s, s2) and (s1, s3)
after eliminating w. Conversely, we say that two arcs e = (u,v) and &’ = (u/,?') are
hooked up (with a new vertex w) when we replace these two arcs with the new arcs
(v, w), (w,v), (v',w), and (w,v') after introducing a new vertex w. -
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Now we choose a nonterminal vertex w adjacent to a terminal (say, z2) by arc
(z2,w) in G* and split off two arcs at w (recall that deg(w) = 4). If the resulting
instance

(Gt; X,Y) remains connected and irreducible,

then we call such splitting (or two arcs) admissible. Based on the properties obtained
in sections 5 and 6, we show in section 7 that G* always has an admissible splitting.
Clearly

(G3; X,Y) is infeasible
since (G*; X,Y) is infeasible. Also if (G},; X,Y) is irreducible, then
(G:;X,Y) has an IPR

by the assumption on G*.

However, we shall show in section 8 that, for the arc e = (z2,v) and any other
arc € in an irreducible infeasible instance (G; X,Y) that has an IPR, the instance
(Ge,er; X, Y) obtained by hooking up e and ¢’ satisfies one of the following properties:

(1) (Ge,er; X,Y) is reducible,

(ii) (Ge,er; X,Y) has an IPR,

(iii) (Ge,er; X,Y) is feasible.

Notice that G* is obtained from G, by hooking up two arcs in an IPR of G},. However,
this leads to a contradiction because G* = (G}, ). satisfies none of (i)-(iii). Hence
no such counterexample (G*; X,Y) exists.

5. Cut vertex and 2-cuts in G*.

LEMMA 5.1. The minimum counterezample (G*; X,Y) in (4.1) has the following
properties:

(i) There is no cut vertex.

(ii) There is no 2-cut Z such that |ZNX| = |ZNY| =1 and min{|Z|,|V-Z|} > 3.

Proof. (i) Assume that G* = (V, E) has a cut vertex z, since no vertex with
degree 2 is a cut vertex in a connected Eulerian digraph and z is nonterminal and has
degree 4 by Lemma 3.3(ii), (iii).

Let Z' and Z” be the vertex sets of the two components in G* — {z}. By
Lemma 34, |Z’NX| = |Z’NY| = 1 holds and each of Z’' U {2} and Z" U {z}
is a 2-cut in G*. Let (v/,2),(v",2),(2,v),(2,v") € E be the four arcs incident
to z. Without loss of generality we can assume that u/,v' € Z’ and uw”,v" ¢ Z”,
Z'N(XUY) = {z1,y2}, and G* has an Eulerian cycle which visits terminals in the
order of ¥y, 1, y1,Z2 (if there is an Eulerian cycle in the order of s, 1, 2,4, then
the instance is feasible). We decompose (G*; X,Y) into (G'; X’,Y”) and (G"; X", Y")
as follows. Let G*[Z'] (resp., G*[Z"]) denote the subdigraph of G* induced by Z’
(resp., Z”), and let G’ (resp., G”) be the Eulerian digraph obtained by adding new
vertices y,z5 and new arcs (v, ), (¥],25), (25, V") (resp., new vertices y§,z{ and
new arcs (v, %), (15, z7), (=], v")) to G*[Z'] (resp., G*|Z"]). Regard X' = {z1,z}},
Y' = {¢],92}, X" = {of,22}, and Y” = {31,794} as the sets of new terminals.
We show that (G'; X’,Y”) is irreducible. If (G';X’,Y’) has a reducible cut W,
then W must separate y| and x5 (otherwise W would be reducible in {G*; X,Y)).
Then W is a 2-cut such that |W| > 2 and W N (X' UY’) = {y}} or {z5}. Since
deg(y)) = deg(zh) = 2, W — {y1} (or W — {z}}) is a 2-cut, which is reducible in
(G*; X,Y}, which is a contradiction. Note that (G*; X,Y") is infeasible only when both
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new instances (G'; X',Y’) and (G”; X”,Y") are infeasible. Therefore, (G'; X',Y")
must be irreducible and infeasible. Clearly, instance (G’; X’,Y”) is smaller than G*
(since Z"” U {z} is replaced with two vertices in the new instance), and hence has an
IPR by definition of G* (note that |V(G’)| # 6 by Lemma 3.6 since (G’; X',Y”) has
two adjacent terminals). Analogously, we can show that (G”; X”,Y") also has an
IPR. However, it is easy to see that G* has an IPR if both instances (G’; X',Y”) and
(G"; X", Y") have IPRs, which is a contradiction.

(ii) Let Z be such a 2-cut in (G*; X,Y), where §(Z) = {(v',v"), (u",v')} and
v, v € Z and w',v" € V — Z. Clearly, Z = V — Z is also such a 2-cut. Note that u’
and v’ (resp., v and v") are distinct (otherwise it would be a cut vertex, contradict-
ing the above (i)). Without loss of generality assume that ZN(XUY) = {z3,y»} and
G* has an Eulerian cycle that visits terminals in the order of yg, 71,71, 22. We de-
compose instance (G*; X,Y) into the two instances (G'; X',Y”) and (G"; X",Y")
as follows. Let G’ (resp., G”) be the digraph obtained by adding new vertices
1, T3 and new arcs (v, ]), (¥, %), (x5,v") (resp., new vertices ¢4,z and new arcs
(", 43), (45, 27), (21,v")) to G*[Z] (resp., G*[Z]). Regard X' = {z;,25}, Y’ =
{41, y2}, X" = {27, 22}, and Y” = {51, } as the sets of new terminals. Analogously
to (i), we see that each of the new instances is an irreducible infeasible instance. From
the assumption of min{|Z|, |V — Z|} > 3, each of the new instances is smaller than
G* and has an IPR by definition of G* or by Lemma 3.6. However, it is again clear
that G* has an IPR if these new instances have IPRs, which is a contradiction. B

6. 6-cuts. We first observe a property of a 6-cut Z.

LEMMA 6.1. Let (G = (V,E); X,Y) be an infeasible instance. If there erists
a 6-cut Z with ZN(X UY) = O satisfying the following (i)—(iv), then (G;X,Y) is
irreducible.

() 1212 3.

(i) Any cut W with W C Z is irreducible.

(iii) Any cut W with W O Z or W N Z = 0 is irreducible.

(iv) 8(Z) contains no multiple arcs.

Proof. Let Z be such a 6-cut. From (ii} and (iii), it suffices to show that any
cut W which intersects Z is irreducible; i.e., |§(W)| = 2 or 4. Assume that a cut
W intersecting Z is reducible. Since W contains at most one terminal, V — (W U 2)
contains a terminal, and hence cuts W and Z cross each other. By (2.1),

(6.1) [6(W)] +16(2)] = [6(W 1 2)| + |6(W U Z)],
and by (2.2),
(6.2) [6(W)|+18(2)] = |6(W — Z)| + [6(Z — W)| + 216(W N Z,V — (W U Z))|.

Since Z contains no reducible cut by (ii), we have |§(W N Z)| > 4. Also by (iii), we
see that |6(W U Z)| > |6(W)|+2 holds (otherwise if |6(W U Z)| < |§(W)|, then WU Z
would be reducible by (WU Z)N(XUY) =W N (X UY)). Therefore, |§(Z)| = 6,
|6(WNZ)| > 4, and |6(WU Z)| > |§(W)|+2 imply that (6.1) holds by equality. Hence
|6(W N Z)| = 4 holds, and this means |W N Z| = 1 since Z contains no reducible cut.
Then |Z —~ W| > 2 by (i), and again by (ii), |§(Z — W)| > 6. By (iii), we have
|6(W — Z)] > |6(W)| (otherwise, if |§(W — Z)| < |6(W)| — 2, then W — Z would be
reducible). By |6(Z — W)| > 6, |6(Z)| = 6, and |6(W — Z)| > |§(W)|, (6.2) implies
that |6(Z — W)| = 16(Z)| = 6, |6(W — Z)| = |6(W)|, and |§(WNZ,V -~ (WU Z))| = 0.
By (iii), |W — Z| = 1 must hold, since [W — Z] > 2 and |§(W — Z)| = |6(W)| mean
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F16. 5. A 6-cut Z.

that W — Z is reducible. Now the vertex v € W N Z has degree 4 and has no adjacent
vertex in V—(WUZ) by |6(WNZ,V—-(WUZ))| =0. From |6(Z —W)| = |§(Z)| and
|6(W — Z)| = |6(W)|, we then have |6({v}, W —~ Z)| = |6{({v}, Z — W)| = 2. However,
by |W — Z| = 1, the two arcs in §({v}, Z — W) are multiple, contradicting (iv). O

6.1. Interchangeability. Let Z be a 6-cut in (G; X,Y") such that
ZNn(XUY) =0,

(6°3) 6_(2) = {el-}e;’eg}! 6+(Z) {el 562 ' }

where z;” (resp., z;') denote the head vertices of arcs e; (resp., the tail vertices of arcs
et) fori=1,2,3 (see Fig. 5). Note that these vertices z;” and z; may not be distinct.
We say that Z is (e, €5, €5; e;'l, 1 €5 ) mtemhangeable where {31,32,33} {1,2,3},
if the subdigraph G[Z] of G induced by Z has three arc-disjoint z; -paths P (i=
1,2,3). Z is called fully interchangeable if it is (e} ,e5 ,e3'; e;;, e;;, €] ) interchangeable
for any choice 0fj11j2!j3 with {j11j21j3} = {1:2a3}

LEMMA 6.2. An irreducible infeasible instance (G; X,Y) has no fully interchange-
able 6-cut Z with ZN{(XUY) =

Proof. Assume that there is such a 6-cut Z, and let Gz be the digraph obtained
by contracting Z into a nonterminal vertex z. It is easy to see the following:

(i) (G;X,Y) is feasible if and only if (Gz; X,Y) is feasible, and

(i) (Gz;X,Y) is irreducible.
Therefore, (Gz; X,Y) is also an irreducible infeasible msta.nce, but deg(z) = 6 con-
tradicts Lemma 3.3(iii). 0

A directed cycle of length 3 is called a triangle.

LEMMA 6.3. Let (G; X,Y) be an irreducible infeasible instance. Then the follow-
ing hold.

(i) If Z is a 6-cut such that ZN(XUY) =0, |Z| = 3, and the induced subdigraph

G[Z] is connected, then G[Z] is a triangle.
(ii) If1Z]| =3 and the three vertices in Z are mutually adjacent, then the induced
subdigraph G(Z] is a triangle.

Proof. (i) From Lemma 3.3(iv) and |§(Z)| = 6, it is easy to see that the connected

subdigraph G|[Z] contains exactly three arcs and these three arcs form an undirected
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cycle C of length 3 if the orientation is neglected. This C' must be a directed cycle in
G, because otherwise it is not difficult to see, by checking all possibilities, that Z is
fully interchangeable, contradicting Lemma 6.2.

(ii) If all vertices in Z are nonterminal, (ii) follows from (i). Therefore, assume that
Z contains a terminal. Z = {v1,v2,vs} can contain at most two terminals since any
terminal has degree 2 from Lemma 3.3(ii). If Z contains two terminals, then clearly
G|[Z] forms a triangle. Then assume that Z contains exactly one terminal, say, Z N(Xu
Y) = {v2}. £ G[Z] is not a triangle, then we can assume without loss of generality that
G([Z] has arcs (vy,v2), (v2,v3), (v1,v3). Let G, be the digraph obtained from G by
contracting Z into terminal vs. It is easy to see that (G,,; X, Y) is also an irreducible
infeasible instance. But v, has degree 4 and contradicts Lemma 3.3(ii). O

Let §(Z; G) denote §(Z) in a digraph G.

LEMMA 6.4. Let (G;X,Y) be an irreducible infeasible instance, and let Z be a 6-
cut in(G; X,Y) as defined in (6.3). If Z is not (7, 5, €3 ; €5, €5, el )-interchangeable
then properties {(i)—(iv) hold.

(i) The induced subdigraph G[Z] is connected.

(i) If G{Z] has no z; z} -path for some i € {1,2,3}, then Z = {2, 2]}.

(iii) 2; # 2z for alli € {1,2,3}. '

(iv) If |Z]| = 3, then z; # z; and 2 # 2} for1<i<i' <3.

Proof. Note that [6~({u}; G[Z])| = [6*({u}; GIZ])| forall u € Z — {2, 2} | i =
1,2,3}. Hence if G[Z] has a 2] z}-path P, then G[Z] — E(P) has arc-disjoint z; z}-
and z‘.‘.,z;;,-paths for some #',4", ', 5" with {¢,i"} = {1,2,3} — {i} and {§/,5"} =
{11 2, 3} - {J}

(i) If the subdigraph G|Z] of G consists of more than one connected component,
then there would be a reducible 2-cut Z’ with Z’ C Z.

(ii) Assume without loss of generality that G[Z] has no z; 2] -path. Then, by
Menger’s theorem, G[Z] has a cut W C Z such that 27 € W, z} € Z - W, and
|67 (W;G[2])| = 0. Here |6~ (W;G[Z])| > 1 since G|Z] is connected by (i). Let
H denote the Eulerian digraph obtained by adding three new arcs ¢! = (2. 27)
(¢ = 1,2,3) to G[Z]. Now e} € § (W;H) and |§~(W;H)| > 2 hold, and hence
|67 (W; H)| > 2 since H is Eulerian. Since |§+(W;G[Z])| = 0, we see that e},e €
§+(W; H). Therefore, by |6t(W; H)| = 2 = |6~ (W; H)|, we have |6~ (W; G[Z])| = 1.
This implies that z7,27,25 € W and 27,275,237 € Z — W and that |§(W;G)| =
|6(Z — W;G)| = 4 holds. Hence the 4-cut W (resp., Z — W) in G consists of a single
vertex z; (resp., 27 ), respectively, from the irreducibility of G.

(iii) If 277 = 27, then G[Z] has a z] 2] -path of null length. Since G is Eulerian,
G|Z] has two arc-disjoint 23 z3 - and 23 2§ -paths, because even if G[Z] has arc-disjoint
%3 23 - and z3 z3-paths, the connectivity of G{Z] (which follows from (i)) implies
that these paths have a common vertex v from which 23 23 - and 23 2 -paths can be
constructed. This contradicts that Z is not (e7,e5,e3; €T, ef, ed )-interchangeable.

(iv) From (i), | Z| > 3 means that G[Z] has paths from z;” to z} for all i = 1,2,3
(but they may not be arc-disjoint). Assume z; = 2, since other cases are analogous,
and choose a z3 z5 -path Ps in G[Z]. Note that G[Z]— E(Ps) together with additional
arcs (z{,27) and (27, 2; ) becomes Eulerian. This means that G[Z) — E(Ps) has arc-
disjoint 2y 2 - and z; 2§ -paths, where 27 = z;. This contradicts that Z is not
(e1,€5,€3; €1 ,eF , el )-interchangeable. |

2

6.2. Proper 6-cuts in G*. We call a 6-cut Z proper if
(a) 1Z] 23,
(b) ZN(XULY) =40,
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(3) Case-3 (4) Case-4

F1G. 6. Four possible cases for a proper 6-cut Z in (G*; X,Y).

(¢) Z contains a vertex z such that (u,2) € §7(2) and (z,v) € §7(2).

In this subsection, we prove that any proper 6-cut Z induces a triangle in the
minimum counterexample (G*; X,Y).

Let Z be a proper 6-cut in the minimum counterexample (G*; X,Y) for which
et e, 2}, 27 (i =1,2,3) are defined by (6.3). As Z is not fully interchangeable by
Lemma 6.2, assume that Z is not (e], €3, e3; €7, 5 , €3 )-interchangeable without loss
of generality. From condition (c) and Lemma 6.4(iii), z; = z;-* holds for some ¢ # j.
Here we assume without loss of generality that 2z = 23 (if necessary, exchange the
indices ¢ = 2,3). By Lemma 6.4(iii) and (iv), we have the following four possible
cases.

Case 1. 23,25, 28,23 are all distinct (see Fig. 6(1)).

Case 2. z7 = z; and z; # 2 (or symmetrically, z; = 2z and 23 # 2;) (see
Fig. 6(2)).

Case 3. z} = z; and z; # 25 (see Fig. 6(3)).

Case 4. z§ = z; and z; = z{ (see Fig. 6(4)).

Now let H} be the Eulerian digraph obtained from G*|Z] as follows (see Fig. 7):
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(3) Case-3

Fic. 7. The instance (Hy; X,Y) transformed from G*[Z].

L. For i = 1,2, if 2§ and 2}, are distinct, add a new vertex t;,; together with
new arcs (z;",t,;ﬂ) and (£i41,2;,,); if PANES i+10 then let ¢4y = 23 (= z‘+)
2. Let t1 = 27 (= z;;,")
3. Replace the arc (t1,v) with two arcs (t1,¢,) and (t;,v), inserting a new vertex
t; between t; and v.
Define sets of terminals X = {,t3} and ¥ = {#/,5}. Obviously, instance (Hy X,Y)
is feasible if and only if Z is (], €5, €5 ; €f, €7 , €3 )-interchangeable. Thus, (H:: X, 7)
must be infeasible. Note that Hy contains at most |Z] + 3 (< |Z| + | X UY]| < n*)
vertices, where n* is the number of vertices in G*. The next lemma summarizes the
properties of H.

LEMMA 6.5. Let (G*;X,Y) be the minimum counterexample, and let Z be a
proper 6-cut in (G*; X,Y), which is not (], e5,e3; €], es, el )-interchangeable, and
(H%; X,Y) be the instance defined in the above. Then the Jollowing properties (i)—(iv)
hold in all the above cases.

(i) (Hy;X,Y) is infeasible.

(i) (Hz; X,Y) is connected and irreducible and has no 2-cut W such that |W N

X|=|Wn¥Y|=1 and min{|W|,|V(H}) — W[} > 3.

(iii) (H%;X,Y) has an IPR.
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(iv) Z is (e7,e3,€3; j‘l,ej ) interchangeable for any choice of j1,j2, 73 from
{1,2,3} except (31,_72,_73) (1,2,3).

Proof. In what follows, we consider all four cases simultaneously.

(i) Already proved.

(i) Since G*[Z] is connected by Lemma 6.4(i), H is connected. Assume that
(H%; X,Y) has a reducible cut W. ¥ W N (X UY) = @, then W would also be a
reducible cut in (G*; X,Y’), which is a contradiction. Therefore, W must be a 2-
cut in (H%;X,Y) such that {W| > 2 and (W N (X UY)| = 1. Since no such W
with |W| = 2 attains |6(W; H3)| = 2 as easily checked, we further assume |W| > 3.
Let {t*} = Wn (X UY). Clearly, |6(W;H})| = 2 implies that |§(W';G*)| < 4
holds for W/ = W — {t*} C V. This and |{W'| = |[W| -1 > 2 mean that W’ is a
reducible 2- or 4-cut in (G*; X,Y’), which is a contradiction. Therefore, (H}; X,Y)
is irreducible. Assume that (H%; X,Y) has a 2-cut W with [WNnX|=|WnY|=1
and min{|W|,|V(Hz) — W|} > 3, and let t; € W without loss of generality. Then
|[W] > 3 implies that (W — (X UY)) U {2} is a reducible 4-cut in G*, contradicting
irreducibility of (G*; X,Y).

_ (iii) The instance (H};f( ,Y) is infeasible by (i) and is connected and irreducible
by (ii). Since H} contains at most [Z] + 3 < n* vertices, the instance (H}; X,Y) has
an IPR by the minimality assumption on G* and by Lemma 3.6 (note that terminals
t1 € X and t] €Y are adjacent).

(iv) Let B be the directed cycle of the outer face in an IPR of (H%; X,Y), where B
visits ¢1,t], t3, t2 in this order, and let B(u,v) denote the uv-path on B, where B{u, u)
means a path of null length. Note that (j1, j2,ja) # (1,2,3) implies (a) j1 = 3, (b)
J1=2,0r {(c) 1 =1 and jp = 3. If |V (H})| =4, then only Case 4 can occur and the
IPR is a cycle of length 4 visiting t;,%}, 3,2 in this order. In this case, we can easily
check by inspection that (iv) holds. We then assume |V{(H7)| > 5. Since (H Z,X Y)
has no 2-cut W stated in the above (ii) and |V(H3)| > 5 holds, V(H3) — (X UY)
induces a connected component in H} — E(B) by Lemma 3.5.

(a) j1 = 3. We first take a 2] 2§ -path P4 of null length in H}. We then consider
path B(zF,z5), which contains a z; z]-path Pz = B(z5 z;), and remove the arcs
of E(B(z5,25)) from Hj. Now indeg(u) = outdeg(u) holds for all u € V(H}) ~
{z+,25'}. Then, the set E(H})—E(B(2],27)) of remaining arcs can be regarded as a
23 z3 -path Pg. Therefore, Z is (e7 €5 ,€3 ;€3 €3, €7 )-interchangeable. To show the
(e1,€5,e3;€t, ef , ed )-interchangeability, it suffices to prove that the above z 2 -
path Pg = B(z3z) and z; zJ-path Po have a common vertex by which we can
reconstruct arc-disjoint 23 z3 -path and z; z-path. Now since V(H3) — (X UY)
induces a connected component in H; — E(B), we obtain V{Pg) N V(P¢) # 0.

(b) j1 =2 Ttis easy to see that 27 z3 —pa.th Py = B(zy, z} ) and path B(zJ,27)
(which contains a z3 2{-path Pg = B(z32{)) and 2z 2] -path Pc = E(H}) —
E(B(z7 , 23 )) are arc-disjoint. Therefore, Z is (e7, €5, €3; e, et ,et)-interchangeable.
By the connectedness of V{H}) — (X UY) in H} — E(B), V(Ps) NV (Pc) # @ holds
and arc-disjoint z3 z:f," -path and z; z; -path can be reconstructed from Pg and FPg,
implying (e],e5,e3; €4, ef, et )-interchangeability.

(c) 71 =1 and j2 = 3. Consider a 2 zg” -path P4 = B(z{ ,2z3) path B(z3,z23)
(Whlch contains a z; zy-path Pg = B(z3 2)), and z{zi-path Pc = E(H})—
E(B(z},z7)). These three paths are arc-disjoint. By the connectedness of V(H}) —
(XUY) in Hy — E(B), V(Pg) N V(Pc) # § holds and arc-disjoint 23 23 -path and
2z z-path can be reconstructed from Pg and Pg, implying (eT,e5,e3 ,e'l", €3 ,€5 -
interchangeability. a
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FiG. 8. The smallest IPRs of H}.

Figure 8 shows the smallest IPR of H} in Cases 1-4. Let H4[Z U {t'}] be the
subdigraph induced by Z U {t'} from the smallest IPR of H} in Fig. 8, and let H}
be the digraph obtained from H7[Z U {t'}] by deleting the vertex ¢} (merging the two
arcs (z3,t}),(t},v) into an arc (zf,v)). Let us consider the digraph Gﬁz obtained
from the minimum counterexample G* by replacing G*[Z] by Hf, as shown in Fig. 9.
Let Zo = V(HE). Let Z} be the set of vertices u € Zy with [6({u}; HE)| = 2 and
29 € Zg be the vertex with |f5({u},H§’E)| = 4 in Cases 1 and 2. Note that each vertex
in Zj is either z;' or z; for some 3.

LEMMA 6.6. For a proper 6-cut Z in the minimum counterezample (G*; X,Y),
which is not (e, €5, e3; €] , e, ed)-interchangeable, let Gﬁ be defined as above. Then
the following properties (i)~(iv) hold in all Cases 1-4 (defined in the beginning of this
subsection).

(i) (G%;X,Y) is infeasible.

(i) (G%;X,Y) is connected and irreducible.

(iii) (G*;X,Y) has an IPR if (G%; X,Y) has an IPR.
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(3) Case-3 (4) Case-4

FIG. 9. The instance G obtained from G* by replacing G*[2| with HY .

(iv) G*[2) = HE holds.

Proof. (i) By Lemma 6.5(iv), the 6-cut Z in G* is (e],e5,e5;¢ef e 2,e -
interchangeable for any choice of j1, j2, j3 from {1,2,3}, except (j1,72,73) = (1,2 ,3)
Then it is easy to see that the corresponding 6-cut Zy = V(Hg) also has the same
interchangeability in G"z#, implying that (G#; X,Y) is feasible if and only if (G*; X,Y")
is feasible. Since (G*; X,Y) is infeasible, (G%; X,Y) is also infeasible.

(i) Clearly, (G%; X,Y) is connected since (G*; X,Y) is. We apply Lemma 6.1 to
(G%;X,Y) and 6-cut Zy = V(HE). Clearly, ZoN (X UY) = 0 and |Z| > 3, and
8(Zy) contains no multiple arcs, satisfying conditions (i) and (iv) of Lemma 6.1. We
see by inspection that there is no reducible cut W C Z; and from the irreducibility
of (G*; X,Y) that there is no reducible cut W with W 2 Z, or W N Z; = @, satis-
fying conditions (ii) and (iii) of Lemma 6.1. Therefore, (Gﬁ;X, Y) is irreducible by
Lemma 6.1.

(iii) Consider Case 1 (other cases can be treated analogously). Assume that
(G*’Z’E;X ,Y) has an IPR in which we assume without loss of generality that arcs
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e3,e7,ed,e3, ef ,e5 appear in this order along the cycle {z] = 27,2, 23,27, 25}
(recall that, in an IPR, the arcs incident to each vertex are alternately oriented out
and in). By Lemma 6.5(iii), (H%; X,Y) has an IPR. in which we can assume without
loss of generality that all terminals ¢;,],%3, {2 appear in this order along the cycle of
the outer face, and hence the arcs €3, e7, €3, €5, el e; appear in the same way as in
the IPR of (G¥; X, Y). This implies that H¥ in G¥ can be replaced with H} so that
the resulting digraph G* also has an IPR.
(iv) From (i)-(iii) and the assumption on G*, (G%; X,Y) is an irreducible infea-
sible instance, but has no IPR. Clearly, by [V(G#)| > |Zy| +|X UY| > 7, (G%; X,Y)
is also a counterexample to Theorem 3.7. Then by the minimality of G*, |Zy| = |Z].
By inspection, we see that Z with |Z| = |Zy| can induce no other subdigraph than
G*[Z) = HY of Fig. 9 in all Cases 1-4. [0
In what follows, we strengthen Lemma 6.6(iv) and show that any proper 6-cut
Z in G* induces a triangle, i.e., none of Cases 1, 2 or 3 occurs. A proper 6-cut Z in
(G*; X,Y) is called mazimal if there is no proper 6-cut Z’ with Z c Z'.
LEMMA 6.7. Let Z be a mazimal proper 6-cut in the minimum counterexample
(G*; X,Y), defined by (6.3). If Z satisfies one of Case 1, Case 2, or Case 3 (i.e.,
G*[Z] = H} of Fig, 9(1), (2), and (3), respectively), then the following properties
(i)~(v) hold.
(i) In Case 1, there is no pair of terminals t,t' € X UY such that (t,25),
(2, 8),(t' 23 ), (2F,¥') € 8(Z). In Case 2, there is no pair of terminals t,t' €
X UY such that (t, 23 ), (2, 1), (t',23), (25 ,¥) € 6(Z). In Case 3, there is no
pair of terminals t,t' € XUY such that (t,25), (23 ,1), (', 23), (23, ') € 6(2).

(if) In Case 1, assume that there is no terminal t with (t,2;),(zf,t) € §(2)
(without loss of generality by (i)). Then the instance (G';X,Y) obtained
from (G*; X,Y) by splitting off arcs e5 and (25 ,2]) at z; 1is infeasible and
irreducible.

(iii) In Case 2, assume that there is no terminal t with (¢,23),(23,t) € 6(2)
(without loss of generality by (i)). Then the instance (G'; X,Y) obtained from
(G*; X,Y) by splitting off arcs (25,25 ) and e at z3 (= 27’) is infeasible and
irreducible.

(iv) In Case 3, assume that there is no terminal t with (¢, 23), (25 ,t) € 8(Z) or
(t,27), (25, t) € 6(Z) (without loss of generality by (i)). Then the instance
(G'; X,Y) obtained from (G*; X,Y) by splitting off arcs (27,25) and e} at
z§ (= z7) is infeasible and irreducible.

(v) Let (G'; X,Y) be the instance of (i) of Case 1 (resp., (iii) of Case 2 and (iv)

of Case 3). Then (G*;X,Y) has an IPR if (G’; X,Y) has an IPR.

Proof. (i) Assume that there are such terminals ¢ and ¢’ in Cases 1, 2, and 3. By
Lemma 3.3(ii), terminals ¢ and ¢’ have degree 2 and Z U {t,'} is a 2-cut. In Case 1,
G* would have a cut vertex z; = z7 (see Fig. 9(1)), which contradicts Lemma, 5.1(i).
Then consider Cases 2 and 3. By Lemma 3.3(i), |[{t,¢'}n X| = [{t,'}nY] =1
holds, and assume ¢ = z; and ¢ = y; without loss of generality. Furthermore, by
Lemma 5.1(ii), we obtain V ~ (ZU {#,#'}) = {z2,y2}. Now G* has |Z|+4 = 9 vertices
in Case 2 and |Z| + 4 = 8 vertices in Case 3. By inspection, we see that {G*; X,Y)
in Case 2 is feasible or has an IPR and (G*; X,Y) in Case 3 is feasible, which is a
contradiction.

(ii) Obviously (G'; X,Y) is infeasible. We show that (G’; X,Y) has no multiple
arcs. If there are such multiple arcs, then they must be (u, z), (2, u) for some vertex
u € V — Z, since G* has no multiple arcs by Lemma 3.3(iv). This means that  is
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adjacent to both z; and 2z in G*. By the assumption that there is no terminal ¢
with (t,25), (2},t) € 6(Z), w is not a terminal. Then Z U {u} is a proper 6-cut,
contradicting the maximality of |Z|. Now we apply Lemma 6.1 to (G'; X,Y) and
Z' = Z —{z3'}. Cleartly, 6-cut Z' satisfies Z'N(XUY’) = @ and conditions (i) and (iv)
of Lemma 6.1. From the irreducibility of G*, condition (iii} of Lemma 6.1 holds for
Z'. By inspection, we see that Z' satisfies condition of (ii) of Lemma 6.1. Therefore,
(G"; X,Y) is irreducible by Lemma 6.1.

(iii) This proof is analogous to (ii).

(iv) The assumption that there is no terminal ¢ with (¢, 25),(2f,t) € 8§(Z) or
(t,z7), (23 ,t} € 8(Z) in Case 3 does not lose generality, because if a termmal tis
adjacent to both z; and z7, then no terminal is adjacent to both 23 and z7 by
(i) and two vertices z; ,z; cannot be adjacent to another terminal. This assumption
ensures that (G'; X,Y) has no multiple arcs. The rest of the proof is analogous to (ii).

(v) It should be noted that if an instance has an IPR, then any triangle (if any)
in the instance gives rise to a face in its IPR. Let Z’ = Z — {23’} in Case 1 and
Z' = Z — {27} in Cases 2 and 3. It is easy to see that (G'; X,Y) still contains a
triangle in G’[Z’] in each of Cases 1, 2, and 3, and the vertices on these triangles are
uniquely embedded in an IPR. Based on this, we can observe that if (G'; X,Y") has
an IPR, then (G*; X,Y) has an IPR. a

From this lemma, we can conclude that none of Cases 1, 2, or 3 can happen
in (G*;X,Y) as follows. If situations (ji), (iii), or (iv) occurs, then the instance
(G"; X,Y) is irreducible and infeasible, as shown in the lemma. Since the instance
(G'; X,Y) is smaller than (G*; X,Y) and |V(G')| = |V(G*)| — 1 > 7, it has an IPR
by the assumption on G* and Lemma 3.6. Then, (G*; X,Y) also has an IPR by
Lemma 6.7(v). This is a contradiction. Therefore, only Case 4 is possible for a
maximal proper 6-cut Z (note that Lemma 6.7(iv) no longer holds for Case 4, since
G*|Z] has no triangle after splitting off arcs, say, (25,23 ) and eF at zJ). This implies
that any maximal proper 6-cut (and hence any proper 6-cut, which is not necessarily
maximal) always induces a triangle.

LEMMA 6.8. Any proper 6-cut in (G*; X,Y) induces a triangle. g

7. Admissible splitting. In this section, we derive a condition for splitting two
arcs at a nonterminal vertex to be admissible (defined in section 4) and then show
that (G*; X,Y") always has an admissible splitting.

LEMMA 7.1. Let (G*; X,Y) be the minimum counterezample, and let w be a
nonterminal vertez in G*, where (sg, w), (s1,w), (w, 82), (w, 83) are the four arcs in-
cident with w. If so and 32 are not adjacent, and s, and s3 are not adjacent, then
the instance (GY,; X,Y) obtained by splitting off (so,w) end (w, s2) af w is connected
and irreducible (i.e., this splitting is admissible).

Proof. By Lemma 5.1(i), w is not a cut vertex in G*, and hence (G;,; X,Y)
is connected. Assume that (G%;X,Y) has a reducible cut W C V — {w}. Since
S0, 1, 82, 83 are distinct by Lemma 3.3(iv), let S = {so, 51, 52, 53}. We see that W N
S = {s0,82} or WNS = {31, 83} holds (otherwise W would be reducible in (G*; X, Y")).
Without loss of generality, assume W NS = {sg,s2} (see Fig. 10). We consider three
cases: (a) |6(W;G:)| =2and WN(XUY) =0; (b) |6(W;GL)| =4, Wn(XUY) =
and |W] > 2; and (c) [6(W;G})| =2, WN(XUY)| =1, and [W| > 2.

(a) In this case, W' = W U {w} satisfies |§(W';G*)| = |6(W;G)| +2 =4 and
|W’| > 2, implying that W’ was reducible in {G*; X,Y’), which is a contradiction.

(b) W' = WU {w} satisfies |6(W'; G*)| = |6(W; G},)|+2 = 6, and |W’| > 3. Since
arcs (sy,w), (w, s3) are adjacent to w, W' is a proper 6-cut in G*, and by Lemma 6.8
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t

Fi1G. 11. IHustration for Lemma 7.2.

it induces a triangle. However, this contradicts that so and s5 are not adjacent.

(c) Let {t} = WN(XUY). We see that £ # s, 53, because otherwise if ¢ = 59 or
t = s, then W — {t} is a 4-cut in G* and |W — {¢}| = 1 must hold by irreducibility of
G*, contradicting that sy and s are not adjacent. Then |W/| > 3. This means that
W' = (W —{t})U{w} is a proper 6-cut in G*, which induces a triangle by Lemma 6.8.
However, this again contradicts that so and s; are not adjacent. O

LEMMA 7.2. Let w be a nonterminal vertex adjacent to a terminal t by arc (t,w)
in the minimum counterezample (G*; X,Y), and let (81, w),(w, 32), (w, s3) be three
other arcs incident with w. Then the following property (i) or (ii) holds.

(i) t and s3 are not adjacent, and 31 and 32 are not adjacent (i.e., splitting (¢, w)

and (w, $3) at w is admissible by Lemma 7.1).
(ii) t and s2 are not adjacent, and s; and s3 are not adjacent (i.e., splitting (¢, w)
- and (w, 82) ot w is admissible by Lemma 7.1).

Proof. (a) Consider the case in which ¢ is adjacent to sz (i.e., G* has arc (sg,t)).
Clearly, t cannot be adjacent to s3. Assume that sy and s, are adjacent (i.e., G* has
arc (s2,81) by Lemma 6.3(ii)). Let u,v be two other vertices adjacent to s;, where
(v 81),(31,v) € E (see Fig. 11). We will show that w (resp., s2) is not adjacent to u
(resp., v). Assume first that w and v are adjacent (i.e., (w,u) € E by Lemma 6.3(ii),
and hence u = s3). If u is a terminal, W = {t,u = s3,w,s1,82} is a 2-cut with
iWN(XUY)| =2 By Lemma 3.3(1), |(WnNX|=|WnY]| =1, and by Lemma 5.1(ii),
|V — W| = 2, implying [V — W|+ |W| = 7 < n*, which is a contradietion. (Recall
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Fig. 12. Nlustration for Lemma 7.3.

that n* > 8 holds by Lemma 3.6, as noted after (4.1).) Then u must be nonterminal.
However, in this case Z = {u = s3,w, 51,52} would be a proper 6-cut with four
vertices, contradicting Lemma 6.8. Therefore, u is not adjacent to w. Similarly, we
see that v is not adjacent to sg. In other words, splitting off (u, s1),(s1,w) at s
is admissible by Lemma 7.1 (i.e., the resulting instance (G;,; X,Y’) is irreducible by
Lemma 7.1). (G},; X,Y’) (containing n* —1 > 7) has an IPR by the assumption on G*
and Lemma 3.6. Since the arcs incident to any terminal lie on the outer face in such
IPR, arcs (s3,t), (¢, w),(w, s3) form part of the boundary of the outer face. Hence,
arcs (u,w), (w, sz), (s2,v) belong to the boundary of a face in the IPR. This implies
that (G*; X,Y) also has an IPR, which can be obtained by hooking up (u,w) and
(82,v). This is a contradiction, implying that s; and s are not adjacent. Therefore,
in this case, we have (i).

(b) If ¢ is adjacent to s3, we can show that (ii) holds by an analogous argument.

(c) Finally, consider the case in which ¢ is adjacent to neither s, or s3. Assume
that sy and s3 are adjacent. We only have to show that s; and s are not adjacent.
However, if these are adjacent, Z = {w, 81, 82, 83} would be a proper 6-cut with four
vertices, contradicting Lemma 6.8. 0

This lemma says that (G*; X,Y’) always has an admissible splitting at vertex w,
which is adjacent to a terminal. We further characterize the digraph obtained by such
splitting.

LEMMA 7.3. Lett be a terminal which is not adjacent to any other terminal, w
be a nonterminal vertex adjacent to t by arc (t,w) in the minimum counterezample
(G*; X,Y), and (s1,w), (w, s2), (w,s3} be three other arcs incident with w. Let Gj,
(resp., G},) denote the instance obtained from G* by splitting arcs (¢, w), (w, s3) (resp.,
(t,w), (w, 83)) at w. Then one of these instances is connected and irreducible and has
no cut vertez.

Proof. By Lemma 7.2, one of the instances G, and G35, is connected and irre-
ducible. Assume without loss of generality that G}, is connected and irreducible, i.e.,
Lemma 7.2(ii) holds. Then s, and s3 are not adjacent and ¢ and s, are not adjacent
in G*. If G}, does not have a cut vertex, then the lemma is shown. Therefore, assume
that G, has a cut vertex z (see Fig. 12).

We first show that w and z are not adjacent in G* by contradiction. By Lemma
5.1(i), 2 is not a cut vertex in G*. Let Z and Z’ =V — {w, z} — Z be the vertex sets
of the two connected components in G}, — {2}, where t € Z is assumed. Consider the
three possible cases, in which z = sy, z = 39, and z = s3.

First consider the case of 2 = s;. Then Z' is a 2-cut in G* and |Z’| > 2 holds since
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Fic. 13. The proof of Lemma 7.3.

31 and s3 are not adjacent. Then [ZN(XUY)| =|Z'n{XUY)| = 2 (otherwise Z’ or
V—Z’ would be a reducible 2-cut in G},). Then, by Lemma 3.3(i), |Z'nX| = |Z'nNY| =
1. If Z = {t,s2} C X UY, then |§(¢;G*)| = |6(s2; G*)| = 2 holds by Lemma 3.3(ii),
and in this case we see that (G*; X,Y) is feasible, which is a contradiction. Then
Z — (X UY) # 0. By this and Lemma 5.1(ii), we have Z' — (X UY) =0 and |Z'| = 2.
Let ¢’ be the terminal in Z — {¢}. We see that W = (Z U {w, 2}) — {t,#'} is a 6-cut in
G* (if W is a 2- or 4-cut, then it would be reducible). By assumption of n* > 8, we
have |[W| = n* —4 > 4, and hence W is a proper 6-cut. However, |W| = 3 must hold
by Lemma 6.8, which is a contradiction.

Next, consider the case of z = s3. In this case, we can observe |Z’'| = 2 and
1Z'NX|=|Z'"NnY|{ =1 in a similar manner as in the case of z = s5,. Let t’ be the
terminal in Z — {t} and Z’ = {t",t"'}. We see that W = (ZU {z}) — {¢,¢'} is a 6-cut
in G* (if W is a 2- or 4~cut, then it would be reducible). By n* > 8, |[W|=n*-52>3
and W is a proper 6-cut. By Lemma 6.8, W induces a triangle. By considering that ¢
and s9 are not adjacent and G* has no multiple arc, G* is given as the instance shown
in Fig. 13, where the triangle W = {z, 35, v} has two possible orientations. For any
choice of terminals {¢,¢',¢”,t"} from X UY and orientation of the triangle, we can
check that the instance is always feasible, which is a contradiction.

Finally, consider the case of 2 = s2. In this case, we can obtain [§(Z)| = 2,
|1Z] =2,and |ZNX|=]ZNY|=1 in a similar manner as in the above cases. This
implies that ¢ is adjacent to a terminal {t'} = Z — {t}, contradicting the assumption
on t of this lemma.

Therefore, w and z are not adjacent in G*.

Then, {s1,33} and {t, sz} are contained in distinct components in G;, —{z} since
z is a cut vertex in G, but not in G*. That is, 5; and s; (resp., t and s3) are not
adjacent, and hence Gj, is connected and irreducible by Lemma 7.2.

We show that G}, has no cut vertex. Let G}, [Z] (resp., G3,[Z’]) denote the
subdigraph of G;, induced by Z (resp., Z’). Note that G},[Z] = G*[Z] and G}, [Z2'] =
G*[Z']. Clearly, all vertices in Z (resp., all vertices in Z’) are connected in G3,[Z]
(resp., G}, [Z']) since otherwise G* would be reducible. This implies that z is no longer
a cut vertex in G;,. Assume that G;, has another cut vertex 2’ (# z). By a similar
argument as above, 2’ is not equal to any of sq, 89,53 and {s1,s2} and {¢,s3} are
contained in distinct components in G}, — {2'}. However, this is impossible because
if 2/ € Z’, then t and s3 are connected in G*[Z}(= G, [Z]) (without using 2’), and
otherwise if 2’ € Z, then s; and s3 are connected in G*[Z'](= G, [Z']) (without using
Z'). a .
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(1)

F1c. 14. Case 1 in the proof of Lemma 8.1 (the shaded area indicates R'; i.e., B’ and its
interior).

8. Hooking up arcs in IPR. To complete the proof of Theorem 3.7, this section
shows that, given an irreducible infeasible instance G that has an IPR, hooking up
any two arcs in G cannot yield G*. More precisely, hooking up two arcs in ¢ makes
( satisfy at least one of the conditions in the following lemma, none of which G* can
satisfy.

LeEMMA 8.1. Let (G = (V,E); X,Y) (where |V| > 7) be an irreducible instance
which has an IPR and has no cut vertez. For arc e = (z2,u) € E with 2 € X and
any arc e’ = (v,v') € E, let (Ge,e; X,Y) be the resulting instance obtained by hooking
up e and e with a new vertez w. Then G.. is connected and one of the following
properties (i)—(v) holds.

(1) Ge,e has a cut vertez.
(li) (Gee; X,Y) hasa2-cut Z such that ZCV, |ZNX|=]ZNY| =1, |Z| =23,
and |(V U {w}) - Z| > 3.
(iii) (Ge,er; X,Y) is reducible.

(iv) (Gee; X,Y) has an IPR.

(V) (Ge,e; X,Y) is feasible.

Proof. Assuming that (Ge.e; X,Y) satisfy neither (i) nor (ii), we show that
(Ge,er; X,Y) satisfies one of (iii)«(v). Since G has no cut vertex, we only have to
consider IPRs as illustrated in Figs. 14, 15, and 16, which correspond respectively to
the following three cases.

Case 1. (G; X,Y) has no 2-cut W such that |[WNX|=|WnY|=1.

Case 2. (G; X,Y) has a 2-cut Z such that |ZNX|=|ZnY|=1,Z-(XUY) #0,
and (V —Z)— (X UY) # 0, where 5 € Z.

Case 3. (G; X,Y) has a 2-cut Z such that |ZNX|=|ZNnY|=1,ZC XUY,or
V-ZCXUY, where 2, € Z.

Let R be the IPR of (G; X,Y), and let B denote the cycle of the outer face of
R, which is a simple cycle since G has no cut vertex. Let v1,vq,...,v, (p =|V(B)|)
be the vertices that appear along B clockwise, where vy = z1,v, = ¥, = 72, and
vo =9y (1 <a<b<c)and {y,y"} =Y are assumed without loss of generality.
Let B(u,v) denote the subpath of B from u to v, where B(u,u) means a path of
null length. Let R’ denote the planar representation obtained from the IPR of G by
eliminating the arcs in E(B) together with X UY. We denote components of R’ by
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F1G. 16. Hlustration of greph G used in the proof of Lemma 8.1.

G',G”,... and the directed cycles representing their outer faces by B’, B",.... For
these cycles, say, B/, we denote by B'(u, v) the subpath of B’ from u to v. The proof
will be given separately for the above three cases.

Case 1 (Fig. 14). In this case, R’ consists of a single component G’ by Lemma 3.5.
Also, no two terminals in R are adjacent on B. Note that the directed cycle B’ (which
may not be simple) visits all vertices in V(B) — X —Y in the order reverse to B (i.e.,
counterclockwise). Choose e = (22, vp+1), and partition the arc set E — e into the
three subsets

E; = {"|e" is adjacent to e},
E2 = E(B(vp41,4")) U E(B'(vpy1,v5-1)) — Ex,
E3 =FE —e— E; — E; (see Fig. 15).

It is easy to see that (Ge,; X, Y) satisfies (iii) (resp., (iv)) for any ¢’ € E4 (resp.,
¢’ € Ep). We then show that (v) holds for all ¢’ € Ej. Since no two terminals in R

are adjacent on B and R has no cut vertex, G’ has at least four nonterminal vertices
in V(B").
Case la. € = (Vy—1,¥') € E3. Then G, . has a y'y"-path,

Py = (B(y’a Va+1), B’('Ua+la Va—1), (Va—1, W), (W, Vp41), B(vp+1,9"))-

Clearly G, — E(Py) has an z1x2-path, where e and ¢’ are hooked up with vertex w.
Px = ((z1,v2), B'(v2,v5_1), (vp—-1, Z2)), which implies that (Geer; X,Y) is feasible.
Case 1b. €' = (v, Vp41) € E(B(y',vp—1)) C E;. Then G, o has a y'y"-path

Py = (B(y’, 'Uk),('Uk, w)s (w? 'Ub+l)’B('Ub+l1y”))'

It is also easy to see that z; and z are still connected in G, — E(Py), implying
that (G ¢; X,Y) is feasible by Lemma 2.1.

Case 1c. ¢ € B3 — {(vs—1,¥)} — E(B(y/,vp-1)). In this case, consider the
following 4'y/’-chain in G:

QY = (B(y’aUb—l):B’(UHI:vb—l):B(Ub-l-lay”))' ”
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Fi1G. 16. Hlustration for the proof of Case 1c in Lemma 8.1.

Clearly, ¢ € E(Qy) holds, and G, ¢ still has y'y"-chain Qy.

Let H be the IPR resulting from R by removing the arcs in E(B(va—1,Vc+1)) U
E(B'(vet1,vp-1)) (see Fig. 16). We now claim that z; is reachable in H from any
vertex which is located on the boundary B’ or in the area surrounded by B’. By
E(H)NE(Qy) = 0, the claim will mean that, for any ¢’ = (v,v') € E3—{(va-1,¥)}—
E(B(y',v-1)), Ge,er — E(Qy) has a v'z;-path (hence, it has an z,z;-path). Then,
by Lemma 2.1, this will complete the proof that (Ge,e/; X,Y) is feasible. To prove the
claim, it is sufficient to show that x; is reachable from any vertex on B’, since any
vertex inside B’ is clearly reachable to a vertex on B'.

Partition set V(B') into two subsets V; = V(B'(vp—1,vc41)) and Vo = V(B') - V1.
Since two paths B'(vp—1,vc41) and B(vet1,ve—1) Temain in H, z; is clearly reachable
in H from any vertex v € V3. We then show that x; is reachable from any vertex
v € V2 in H. Let us denote the vertex set V(B'(vet1,v6-1)) (= Vo' U {vct1,v5-1})
by {ug,v1,u2,...,Uq, Ug+1}, where B’ visits these vertices ug, ..., %,+1 in this order.
Assume that there is a vertex u; € V2 which cannot reach any vertex in V3 and that
#4 has the smallest index among such vertices in V;. We follow the leftmost path P*
from u in H until the path returns to u; {note that P* must come back to u since
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1eG. 17. Case 2 in the proof of Lemma 8.1.

indeg(v) = outdeg(v) for all v € V — V4 in H). Clearly, [V(P*)| > 2. Let up be the
first vertex in V5 that P* visits. Note that P* visits no vertex u; € V5 with i > h.
Consider the set V* of vertices in V —V(P*) that are adjacent to a vertex of V(P*) in
H. Since the arcs incident to a nonterminal vertex are alternately oriented in and out
from the definition of IPR, all vertices in V* are located in the inside area surrounded
by P*. In other words, V; and V(P*) U V™ are disconnected in H. Thus, removal of
the four arcs {(uk—l,uk)s €k (uh) uh-l-l)’ eh} from G disconnects V; and V(P*) uv,
where ey, (resp., en) is the arc in B(z3,y") such that e; and (ug_1,ux) (resp., es and
(#h,uny1)) belong to the same face in R. This contradicts that (G; X,Y) has no
reducible 4-cut. Therefore, z; is reachable from any vertex in V; U V5.

Case 2 (Fig. 17). In this case, R’ consists of two components &' and G”, where
G’ (resp., G”) is induced by V' = Z — (X UY) (resp., V' = (V — Z) — (X UY)).
There are two cases. Case 2a: ', x2 € Z and y”,21 € V — Z (see Fig. 17(2a)), and
Case 2b: x2,y"” € Z and 1,y € V — Z (see Fig. 17(2b)). In both Cases 2a and 2b,
¢’ must be chosen from E(G[V —~ Z]) to avoid the case (ii) in the lemma statement.

Case 2a(i). ¢’ € E(B(z2,7")) N E(G[V — Z]). It is easy to see that (Geer; X,Y)
has an IPR.

Case 2a(ii). ¢’ € E(G|V ~Z])-E(B(z2,y")). Let vy, be the vertex in B(y',y")NZ
with the largest index, where b < h < ¢ must hold (otherwise V’ would be a reducible
cut or a cut vertex). Then G, ./ has a y'y"-path

Py = ((y” va+1): B,(va-]-l? vh)v B('Uhv y”))'

Furthermore, it is also easy to see that x; and x; are connected in G — E(Py).
Therefore, (G, .r; X,Y) is feasible by Lemma 2.1.

Case 2b(i). € = (vg,vx+1) € E(B(y',22)) N E(G[V — Z]). Then Ge e has a y/y"-
path Py = (B(y', ), (vk, W), (w,vp41), B(vp41,y”)). Obviously, ; and x5 remain
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A

V3=Va-1

‘---—-...-..'

{O: vertices in V;

: vertices in V,
Fig. 18. Case 3 in the proof of Lemmma 8.1.

connected in G, — E(Py), implying by Lemma 2.1 that (G ; X,Y) is feasible.

Case 2b(ii). € € E(G[V-Z])-E(B(v/,z2)). Let vy, be the vertex in B(y',y")NZ
with the smallest index, where a < h < b must hold. Then G, has a y'y"”-path
Py = (B(y/,v), B'(vn,ve—1), (ve—1,y")). Since it is obvious that z, and z, are
connected in G o — E(Py), (Gee; X,Y) is feasible by Lemma 2.1.

Case 3 (Fig. 18). In this case, there are two terminals z* € X and y* € Y which
are adjacent on B, and R’ has a single component G'.

Case 3a. Z = {y,z2} (ie, (¥,x2) € E(B)) (see Fig. 18(3a)). This case can be
treated in the same manner as in Case 1, where the corresponding partition of £ —e
is defined by E; = {e"|e” is adjacent to e}, Ez = {(va—1,¥")} U E(B'(vp41,%a-1)) U
E(B(vp11,y")) — Er, and E3 = E — e — E; — E> and y'y"-chain Qy in Case 1c is
chosen as QY = (('Ua—lr y')1 B’(vb-}-lr ’Ua.—l): B(Ub+11 y”)>'

Case 3b. V — Z = {y/', 21} (i.e,, (¥",x1) € E(B)) (see Fig. 18(3b)). This case
can be treated in the same manner as in Case 2a.

Case 3c. V - Z = {z1,¢'} (i.e, (z1,y") € E(B)) (see Fig. 18(3c)). This case can
be treated in the same manner as in Case 2b.

Case 3d. Z = {x9,y"} (ie., (z9,4") € E(B)) (see Fig. 18(3d)). This case
can be treated in the same manner as in Case 1, where the corresponding parti-
tion of E — e is defined by E; = {e"|¢" is adjacent to e}, Ey = E(B'(vet1,V-1)),
and E3 = F — e — E; — E; and #'y-chain Qy in Case lc is chosen as Qy =
(B(y’: Ub—l), B,(’Uci-ls Ub—l): B(yh, 'Uc+1))-

Now we are ready to prove Theorem 3.7 by deriving a contradiction from the
assumption that a minimum counterexample (G*; X,Y) exists. * must have a non-
terminal vertex adjacent to a terminal (otherwise, G* consists of only terminals, con-
tradicting n* > 8). We can assume without loss of generality that (G*;X,Y) has a
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terminal zo which is not adjacent to any other terminal (because if any terminal is ad-
jacent to some other terminal, then |§(V — (X UY))| < 4, and hence |V —(XUY)| <1
would hold by irreducibility of G*). Then by Lemma 7.3, two arcs (72, w) and (w, s2)
in (G*; X,Y) can be split off at w so that the resulting instance (G}; X,Y) is still
connected and irreducible, and has no cut vertex, where (s1,w) and (w, s3) are the
other arcs incident to w. In other words, G* can be obtained from G}, by hooking up
two arcs e = (2, s2) and ¢’ = (s1, 33} after introducing w. We then apply Lemma 8.1
to G = G}, and G, = G*. By Lemma 5.1, neither (i) nor (ii) of Lemma 8.1 holds
for G*. Furthermore, none of the remaining (iii}—(v) of Lemma 8.1 is possible by the
definition of G*. This is a contradiction and proves the next lemma.

LEMMA 8.2. Let (G;X,Y) be an infeasible irreducible instance that satisfies
V| #6. Then (G; X,Y) hasan IPR. O

Finally, this proves Theorem 3.7, since, by Lemma, 3.2, this is a stronger statement
than Theorem 3.7.

9. Complexity results. Based on Theorem 3.7 (or Lemma 8.2 to be more
precise), we can test if a given instance (G;X,Y) is feasible or not in polynomial
time.

LEMMA 9.1. Given an instance (G; X,Y), one of its irreducible instances (G'; X,Y’)
can be found in O(m + nlogn) time, where n and m denote the numbers of vertices
and arcs in GG, respectively. a

Before describing the algorithm for computing an irreducible instance, let us
review a cactus representation [1], a compact representation of all minimum cuts in an
undirected graph. A connected undirected graph is called a cactus if, for each edge,
there is exactly one simple cycle that contains it, where the cycle may be of length 2.
Then, in a cactus, two cycles (if any) have at most one common vertex, which is a cut
vertex. A vertex with degree 2 in a cactus is called a leaf vertez. Given an undirected
graph G = (V, E), we map it to a cactus I' = (W, F) by a mapping ¢ : V — W, where
 may not be an onto-mapping. The size of a minimum cut in G (resp., in I') is defined
by MG) = min{|§(Z;G)| | @ # Z C V} (resp., A(T') = min{|§(S;T)| | @ # S C W}),
where 6(Z;G) denotes the set of edges between Z and V — Z in G (similarly for
6(8;T)). Clearly, in a cactus I' = (W, F) with |W| > 2, A(T') = 2 holds.

Let C(G) ={Z |0 #Z CV,J§(Z;G) = AG)}and C(T) = {S | D # S C
W,16(S;T)| = M)} denote the sets of all minimum cuts of G and T, respectively.
Note that S belongs to C(T') if and only if two arcs in §(S;I') belong to the same
cycle. In the following description, we use the term “vertex” to denote an element in
V and the term “node” to denote an element in W. There may be a node x €¢ W
with ¢~*(z) = @, which is called an empty node. Define

p(Z)={p(v)eWlveZ} for ZCV and
e ={veV|pv)e8} for SCW.

A pair (T, ¢) of a cactus and a mapping ¢ is called a cactus representation for C(G)
if it satisfies (i) and (ii) below.

() For any cut Z € C(G), there exists a cut S € C(I') such that Z = ¢~(S5) and

V-Z=¢p Y {W-29).

(ii) Conversely, for any 2-cut S € C(T'), Z = ¢~1(S) satisfies Z € C(G).

It is known [1] that G = (V, E) always has such a cactus representation (' =
(W, F),p) with [W| = O(|F|) = O(|V]), which can be constructed in O([E| +
A(G)?|V|log|V]) time [7]. We say that a cut Z € C(G) and a cut S € C(I') cor-
respond to each other if Z = ¢~1(S) and V — Z = ¢~ (W —S). Note that if I has an
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empty node, a minimum cut in C(G) may correspond to more than one minimum cut
in C(I"), while any minimum cut in C(I") always corresponds to exactly one minimum
cut in C(G). Obviously, any leaf node w € W corresponds to a minimum cut in C(G),
and there are at least two leaf nodes in I'.

LEMMA 9.2. For an undirected graph G = (V, E) and a designated vertest* € V,
let Z=1{2,,23,...,2,} be the set of all cuts Z; such that

(i) Z; € C(G) and Z; CV —~ {t*},

(ii) |Z;| is mazimal subject to (i) (i.e., no cut Z' € C(G) with Z; C Z' C V—{t*}).
Then any two cuts Z;, Z; € Z are mutually disjoint, and the set Z can be computed
in O(|E| + MG)?|V]log |V]) time.

Proof. Consider a cactus representation (I' = (W, F),¢) for C(G). Let w* =
@(t*) € W, and let I have p cycles passing through w*. In other words, removal of
w* from T creates p connected components with node sets W;, ¢ = 1,2,...,p. Let
Z; = ¢ Y(W;), i = 1,...,p. Since each W; is a 2-cut in I, we have W; € C(T') and
hence Z; € C(G) by definition of a cactus representation. Hence, each Z; satisfies
condition (i). If there is a cut Z’ € C(G) such that Z; C Z' CV — {t*}, then there is
a cut W’ € C(') such that Z’ = ¢~ }(W’), W; ¢ W', and w* € W — W’'. However,
I’ cannot have any such 2-cut W’ separating w* and W; by the definition of W".
Therefore, each Z; satisfies condition (ii). Obviously, Z;, ..., Z, are mutually disjoint
by disjointness of W1, ..., W). The stated time complexity follows from the fact that
a cactus representation (I' = (W, F), ) with |W|+ |F| = O(|V|) can be obtained in
O(|E| + A(G)?*|V|log|V]) time [7], and computing connected components in I' — w*
can be done in O(|W| + |F|) = O{|V]) time. 0

Proof of Lemma 9.1. Given an instance (G; X,Y), where n = |V| and m = |E|,
the following algorithm applies all reductions of type (1), (2), and (3), defined in the
beginning of section 3.

1. Type (1) reductions (ie., 2-cuts Z such that |Z| > 1and ZN(X UY) =@):
We contract four terminals z1,Z2,¥;,¥y2 into a single vertex ¢* and ignore
arc orientation in G. Let G denote the resulting undirected graph. Clearly,
MG) > 2, since G is connected and Eulerian. It is easy to see that a cut
Z CV —{x1,z2,1,y2} is 2-cut in G if and only if MG) =2, Z € C(G),
and Z C V(@) — {t*}. We can check if A(G) > 2 in O(m + nlogn) time {7].
If A\(G) > 2, then there is no cut of type (1), and we go to 2. If A(G) = 2,
then by Lemma 9.2 the set {Z1,...,Z,} of these cuts Z with maximal |{Z] is
uniquely determined and obtained in O(m + nlogn) time. Apply reduction
(1) to all cuts Z; in (G;X,Y). This can be done in O(m + n) time (since
ZinZ;=%for1 <i<j<pifp>2). Goto 2 after letting (G; X,Y) be the
resulting instance.

2. Type (2) reductions (i.e., 2-cuts Z such that |Z| > 2 and |[ZN(X UY)| = 1):
For each terminal t € XUY’, let G; denote the undirected graph obtained from
G by contracting the other three terminals X UY — {t} into a single vertex
and ignoring arc orientations. We easily see that if G has a 2-cut Z with Zn
(X UY) = {t} and |Z| > 2, then M(G:) =2, Z € C(Gy), and Z C V(G) - {t}
hold. Then such Z contains ¢ (otherwise, Z would be a cut of type (1), which
has been eliminated in the above 1) and is unique if it is maximal (since at
most one cut can contain ¢). Furthermore, such Z can be obtained in O(m +
nlogn) time; see Lemma 9.2. We apply reduction (2) to the cut Z in (G; X, Y)
in O(m + n) time. This procedure for all four terminals can be done in
O(m+nlogn) time. Go to 3 after letting (G; X, Y’) be the resulting instance.
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3. Type (3) reductions (i.e., 4-cuts Z such that G[Z] is connected, |Z| > 2, and
ZN(X UY) = ®): Since the current (G;X,Y) has no cut of type (1), any
4-cut Z C V — (X UY) induces a connected subdigraph G[Z]. Let G be
the undirected graph obtained from (G; X,Y) by contracting four terminals
T1,%2,%1, Y2 into a single vertex ¢* and ignoring arc orientations. Clearly,
MG) > 4 (otherwise, (G;X,Y) would have a reducible 2-cut). We easily
see that a cut Z C V — (X UY) is 4-cut in G if and only if A(G) = 4,
Z € C(G), and Z C V(G) — {t*}. We can check if A\(G) > 4 in O(m+nlogn)
time. If A(G) > 4, then there is no cut of type (3) and the current instance
(G; X,Y) is irreducible. If M(G) = 4, then by Lemma 9.2 the set {Zy,..., Zp}
of these cuts Z with maximal |Z| is uniquely determined and is obtained in
O(m + nlogn) time. Apply reduction (3) to all these cuts Z; in (G; X,Y) to
obtain an irreducible instance. This can be done in O(m + n) time. O

Given an irreducible instance (G'; X,Y’), we can check if it is feasible or not in
linear time as follows. If G’ has less than 7 vertices, its feasibility can be easily checked
in O(1) time (since any irreducible infeasible digraph G’ with [V| < 7 has O(1) arcs).
Otherwise, test if the resulting irreducible instance (G’; X,Y) has an IPR, which can
be done in O(m + n) time by using a fast planar drawing algorithm [8]. If it has an
IPR, then it is infeasible; otherwise it is feasible. Therefore, we have established the
next theorem.

THEOREM 9.3. Given an instance (G; X,Y), where n and m are the numbers of
vertices and arcs, respectively, testing if it is feasible or not can be done in O(m +
nlogn) time. a

We now show that, if a given instance (G; X,Y) is feasible, a solution (i.e., a pair
of arc-disjoint 2’2"~ and y'y-paths in G, where {z’,z"} = X and {¢/,7"} = Y) can
be found in O(m(m + nlogn)) time.

Let (G = (V, E); X,Y) be an irreducible feasible instance. If V consists of only
four terminals, then a solution is easily found in O(1) time. Otherwise, one of the
following four cases A-D occurs, and we can find a pair of arcs such that the instance
remains feasible after splitting them off.

A. There is a nonterminal vertex v with deg(v) < 6 or a terminal v with deg(v) =

4 in instance (G; X,Y’): Choose such a vertex v, and find two arcs (v, v) €
§~(v) and (v,v") € 67 (v) such that the instance obtained by splitting (v',v)
and (v,v") at v remains feasible. Note that such a pair of arcs exists (since
the instance is feasible), and by Theorem 9.3 it is found in O(m + nlogn)
time by checking feasibility among all (at most 9) possibilities. Split off such
(v',v) and (v,v") at v, and recompute an irreducible instance (G'; X,Y") from
the resulting instance in O(m + nlogn) time (Lemma 9.1).

B. deg(v) 2 8forallv e V- (XUY), deg(t) #4 for allt € X UY, and there
isa 6-cut Z CV — (X UY): Then choose a 6-cut Z with minimal [Z| among
such 6-cuts, and let v be a nonterminal vertex in Z. Note that any nonempty
cut

Z* C Z satisfies |6(Z*;G)| > 8 from the assumption on Z.

Since |6~ (v)] = |61 (v)| > 4 by deg(v) > 8 and |6~ (Z)] = |6+(Z)| = 3, there
are arcs (v',v) € 6~ (v)—6~(2Z) and (v,v") € §*(v)—6*(Z), where v',v" € Z
(possibly v' = v”). Let (G'; X,Y) be the instance obtained from (G;X,Y)
by splitting off these arcs (v/,v) and (v,v") at v (in the case of v = v”,
splitting simply means removal of those two arcs). We show that (G'; X,Y)
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remains irreducible (hence feasible, because any irreducible instance having a
nonterminal vertex v with deg(v) > 6 is feasible by Lemma 3.3(iii)). Assume
that (G'; X, Y') has a reducible cut Z’. Since Z’ was not reduciblein (G; X,Y),
Z' must separate {v} and {v',v"}. Since Z' C Z would imply |6(Z’;G)| > 8
from the above and |6(2'; G’)] > 6 (hence, such Z’ is not reducible in G’), Z’
must intersect Z (and hence Z’ and Z cross each other because (V —(Z2'UZ))
contains a terminal). From the above, we have |6(Z N Z’;G)| > 8 and

6N Z56)] > 6 (= |8(2; 3.
Also, we obtain
16(zuz,G") = 18(Z";G')| +2

(otherwise [6(Z U Z2';G")| < |8(Z';G')| implies that Z U Z’ is a reducible
cut in G). However, these two inequalities contradict (2.1) (i.e., |6(Z; G)| +
|6(Z";G)| = |6(Z N Z'; G")| + {6(Z U Z’; G")|). This shows that (G'; X,Y) is
irreducible, and hence feasible.

A minimal 6-cut Z in the above can be found in O(m + nlogn) time as
follows. Since such Z never intersects X UY, we contract the four terminals
into a single vertex t* and ignore the arc orientation. Let G, be the resulting
undirected graph. Clearly, A(G;+) = 6 by the irreducibility of G and the
assumption of case B. Find a cactus representation (I, ¢) for (G~} in O(m+
nlogn) time [7]. Recall that I" has at least two leaf nodes, and one of them,
say, z, satisfies t* € ¢~(z). By definition of a cactus representation, Z =
¢~1(2) is a minimal 6-cut in G.

. deg(v) > 8forally € V—(XUY), deg(t) # 4 for all t € XUY, and |6(Z*)] > 8
forall Z* CV - (X UY), but there is a 4-cut Z with ZN{(XUY) = {t}
for some terminal ¢: Then take a minimal Z among them. Since deg(t) # 4,
we see that Z — {t} # 0 and deg(t) > 6 (if deg(t) = 2, then Z - {t} is a
6-cut with Z — {t} C V — (X UY), contradicting the assumption of case C).
Since [6(t)| = |6*(t)] > 3 by deg(t) > 6 and |6(2)| = |6+(2)] = 2,
there are arcs (v/,t) € §~({t}) — 6~ (2) and (¢,v") € §({t}) — 61(Z), where
v/, v" € Z (possibly v = v"). Let (G'; X,Y) be the instance obtained from
(G5 X,Y) by splitting off these arcs (v/,t) and (t,v") at ¢ (in the case of
v’ = v”, splitting means removal of those two arcs). We show that (G'; X,Y)
remains irreducible (hence feasible, because any irreducible instance having
a terminal vertex ¢ with deg(t) > 4 is feasible by Lemma 3.3(ii)). Assume
that (G'; X,Y) has a reducible cut Z’. Since Z’ is not reducible in (G; X,Y),
Z' must separate {t} and {v’,v"}. Since Z’ C Z implies that |§(Z’)] > 6 (if
t € Z') by the minimality of | Z| and |6(Z")| > 8 (if t € Z’) by the assumption
of case C (hence, such Z’ is not reducible in G'), then Z’ intersects Z (and
hence Z’ and Z cross each other since (V' — (Z’ U Z)) contains a terminal).
We see that Z’ is not a cut of type (1) because otherwise Z’ would be a
reducible 4-cut in (G; X,Y). If Z' is a cut of type (3) in (G'; X,Y), then
Z'isabct Z7CV - (XUY) in (G; X,Y), contradicting the assumption
of case C. Therefore, Z’' must be a reducible cut of type (2) in (G'; X,Y).
We first consider the case of t € Z N Z’. We have |6(Z N Z/;G)| > 6 (by
the minimality of |Z|) and |§(Z N Z";G")| > 4(= |6(Z;G")}). Since Z — Z'
contains no terminal, we obtain |§(Z U Z’;G")| > |6(Z'; G")| + 2 (otherwise
[6(ZUZ;G)| = |6(ZV 2" G')| < |6(Z'; G')| implies that ZU Z’ is a reducible
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cut in G). However, these two inequalities contradict (2.1), as in case B. Then
assumet € Z—Z', implying that there is another terminal ¢’ in Z'—Z. Clearly,
|6(Z—Z"; G)| = 6 (= |6(Z; G)|+2) (from minimality of Z). From |6(Z';G’)| =
2, we have |6(Z';G)| = 4 and deg(t') > 6 (otherwise, if deg(t') = 2, then
Z'—{t'} would be a 6-cut, contradicting the assumption of case C). From this
and the irreducibility of (G; X,Y), 16(Z' — Z;G)| > 4 (= |6(2’; G)}) holds.
These inequalities contradict (2.2). Consequently, {(G'; X,Y) is irreducible
and hence is feasible.

The above minimal 4-cut Z can be found in O(m+nlogn) time as follows.
Since such Z always separates {t} and (X UY) — {t}, contract the three other
terminals of (XUY')— {t} into a single vertex t and ignore the arc orientation.
Let G; be the resulting undirected graph. Clearly, MG5) = 4 (since case C
does not occur for this ¢ if A(G;) > 6). Find a cactus representation (T, )
for C(G;) in O(m+nlogn) time [7]. By definition of a cactus representation,
I' has a leaf node z with £ € ¢™1(2) and Z = ¢~1(z) is a desired minimal
4-cut in G.

D. deg(v) > 8forallv € V—-(XUY), deg(t) # 4forallt € XUY, and |6(Z*)| > 8
forall Z* CV — (XUY) and |6(Z)] > 6 for all Z with ZN (X UVY) = {t}
and t € X UY: Then choose an arbitrary nonterminal vertex v and two arcs
(v',v) and (v,v"). It is easy to see that the instance (G'; X,Y") obtained from
(G; X,Y) by splitting off these ares (v/,v) and (v,v") at v remains irreducible
(hence feasible, because any irreducible instance having a nonterminal vertex
v with deg(v) > 6 is feasible by Lemma 3.3(jii)).

Recall that none of cases A-D can be applied to an instance only when it has
four terminals with degree 2 but no nonterminal vertex. Given an irreducible feasible
instance, we continue to split off a pair of arcs to obtain smaller feasible instances
by following the above cases A-D until an instance consisting of four terminals with
degree 2 is obtained, in which we can easily find a solution. The entire running time
of this procedure is O(m(m + nlogn)), since the number of arcs decreases at least
by 2 after splitting off a pair of arcs. 1t is easy to see that a solution of the original
instance (G; X,Y) can be recovered in the same time complexity from the sequence
of such splittings. This establishes the next theorem.

THEOREM 9.4. Given a feasible instance (G; X,Y), where n and m are the
numbers of vertices and edges, respectively, a solution of (G;X,Y) can be computed
in O(m(m + nlogn)) time. 0O

10. Discussion. For the arc-disjoint path problems
(G; X; = {Si,ti},i =12,...,k)

associated with Eulerian digraphs, different problem settings are conceivable depend-
ing upon the restrictions on G and the directions of the required paths: (i) either
G + H is Eulerian, where H is the demand digraph, or G itself is Eulerian, and (ii)
either s;t;-paths are required for all 4, or one of the s;t;- and ¢;s;-paths is required
for each i. The result in [9] shows that (G + H Eulerian, s;t;-path, £ = 3) can be
solved in polynomial time, while our result here shows that (G Eulerian, one of the
siti- and i;s;-paths, & = 2) can also be solved in polynomial time. By generaliz-
ing the proof in [4, 9], it is possible to prove that all types become NP-hard if &
is considered as a part of input. Therefore, an interesting theoretical challenge, for
each problem type, will be to find out the maximum constant k that permits a poly-
nomial time algorithm, or to show that any constant k¥ permits a polynomial time
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algorithm.
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