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A simple algorithmic proof of a min-max theorem of E. Gy6ri on generators of
path systems is described. The algorithm relies on Dilworth’s theorem. © 1999
Academic Press

1. INTRODUCTION

Let P=(vg, f1, V1, J2s U2y «m Ju» Un) b€ 2 simple directed path where each
directed edge j, has tail v,_, and head v,. Let V:={p,,..,v,} and
E:={ji, ., j.} denote the node-set and edge-set of P, respectively. Path P
defines an ordering of the elements of ¥ in which v, <v, f0<h <k <n In
this case we will say that node v, precedes node v, and that edge j, precedes
edge f-

Let E*:={uv:u,ve V,u<v} be the set of all directed edges whose tail
u precedes its head ». For a subpath J of P, let f{J} and X /) denote the
first and last nodes of J, respectively. Also, for a (directed) edge e=uve E*
let f(e) :=u and l(e) :=v.

Let 2 be a system of distinct subpaths of P. We use the convention that
the edge-set of P, will be denoted by the same letter P,. The node set of P,
is denoted by V{P,). We say that a system & of subpaths of P generates a
path J if J is the union of some members of ¥. ¥ generates 2 or % is a
generator of P if every member of # is generated by 4. For example, 2 is
a generator of itself, or the system {j,, .. j,} conmsisting of onc-clement
paths is also a generator of #. Let y(#) denote the minimum cardinality
of a generator of 2.
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E. Gy6ri [7] proved a beautiful min-max theorem concerning y(#). To
formulate his result, we need the following notions. Let J¢ 2 be a path and
JjeJ an edge. We say that the pair (/, j) is a path-edge pair. Let & denote
the set of all path-edge pairs (J, j) for which jeJe 2. Let (J, j)~ denote
the set of nodes of J preceding edge 7 and let (J, j)* denote the set of nodes
of J following j. That is, (J, /)~ and (J, j)* form a partition of the node-set
V(J) of J. A directed edge uve E* covers (J, j)ifue(J, j)~ and ve(J, /).
A set C of directed edges covers & (or C is a covering of &) if each member
of & is covered by an element of C.

Note that there is a natural correspondence between generators of # and
coverings of #. Namely, by associating with each edge wv of a covering C
the subpath of P from « to v, one obtains a generator of 2, and conversely,
by associating with each member J of a generator ¥ a directed edge
from f{J} to i{J), one obtains a covering of #. Therefore y(#) may be
interpreted as the minimum number of directed edges covering 2.

Two path-edge pairs (1, 7), (J, j) are called independent if (I, )™ n{J, )~
=@ or(LH)*n(J, }* = . A set of path-edge pairs is called independent
if its members are pairwise independent, Let o(#) denote the maximum
cardinality of an independent subsystem of #. Because two independent
path-edge pairs cannot be covered by one edge, every covering of # must
have at least ¢(2) edges, or equivalently, every generator of 2 has at least
o(#) members, that is, a(#) < y(#). The theorem of Gydri [ 7] asserts that
here actually equality holds.

TueoreM 1.1 [E. Gydri). For a family @ of subpaths of a directed
path P, the minimum cardinality of a generator of # is equal to the
maximum cardinality of an independent set of path-edge pairs, that is,
Y P) = o(P).

The original proof of Gydri is complicated. Although his proof is
not algorithmic, its ideas could be used to construct a polynomial-time
algorithm to compute the two extrema in question. This was done by
D. S. Franzblau and D. J. Kleitman [6]. Their method was later extended
by A. Lubiw [9] to a weighted version of Gydri's theorem. The paper of
D. E. Knuth [8] provides a clarified and simplified version of the algo-
rithm of Franzblau and Kleitman along with a computer code for computing
the extrema in question. In Frank and Jordan [5] a general min-max
theorem was derived for the minimum number of directed edges covering
a crossing bi-supermodular function. That result gave rise to further exten-
sions of Gy6ri’s theorem. The proof-method of Frank and Jordan [5],
when specialized, gives rise to a simple proof of Gydri's theorem which is,
however, not algorithmic. The main purpose of the present paper is to
provide a short algorithmic proof of the theorem of Gyéri.
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2. ALGORITHMIC PRCOF

A member (J, j) of & will be called essential if there is no member J'
(#J) of # for which jeJ' = J. Let & denote the set of essential path-edge
pairs of . We will say that an essential pair (J, ) is sitting at j.

As we have seen already that o<y, we prove only the non-trivial
inequality o 2 y. The proof is an algorithm constructing a covering C of &
(that is, a generator of ) and an independent subset # of # for which
|C] = |#].

We introduce a partial order on &, For (1, i}, (J, /)& we write

(L)<(J, j) ifboth (L)~ s, /)~ and (L i)*=2(J, )* hold
(21)

This is indeed a partial order. We say that two members (/, ), (J, f) of &
are crossing or that (I, i) cresses (J, j) if they are uncomparable in this par-
tial order and they are not independent. Since (I, {) and (J, j) are essential,
provided that j precedes /, this is equivalent to requiring that {i, j} =11 J,
S) < f(D), and (J) <XI), (that is, f{J) < fI) < f(7) < f() <U) < K1)
A subset X of & is called cross-free if A contains no two crossing
members.

The algorithm consists of three phases. In the first one we construct a
cross-free subset 2" of #. In the second phase we apply Dilworth’s theorem
to % and compute a minimum chain-partition of " along with a maximum
subset .# of pairwise uncomparable members of 2. The chain-decomposition
will correspond to a set C of directed edges covering every member of .
In the third phase we modify C, without changing its cardinality, so as to
obtain a covering of #.

Phgse 1. Consider, one by one, the edges j,,.., j, of path P in this
order and assign each member of £ to one of two groups %" and . Once
a member is assigned to X" or to 7, its status will never change. The final
X and F will form a partition of &.

At the beginning both groups X" and J are empty. For every edge je P,
let 4, denote the set of elements of & sitting at /. At a general step, when
edge je P is processed, consider each member (J, /) of & which has not
been assigned to J~ and put it into X" At the same time put every essential
pair (J', j') e &, into & for which j precedes j* and (J, j) crosses (J', j').

CLam. The final X" is cross-free.

Proof. Suppose, indirectly, that ¥” contains two crossing members (/, i)
and (/, j) and assume that j precedes i But this is impossible since then
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(/, /) would be put into X first, and when (J, j) was put into X% the rule
of Phase | required putting (J, 1) into . |

Phase 2. Consider the partial order defined on X by (2.1) and apply
Dilworth’s theorem to .¥". We obtain that there exist an antichain # < 2"
and a chain-decomposition {%,,..,%€,} of X so that |#| =1 It is well
known (see, for example, Ford and Fulkerson [2]) that these configura-
tions can be efficiently computed via a bipartite matching algorithm. Since
X is cross-free, so is # and therefore .# is an independent family of
path-edge pairs. :

CLam.  The members of a chain € of A" can be covered by one edge.

Proof. By re-indexing, if necessary, we may assume that the members
(I}, 11} s (I, Bg) of € are indexed in such a way that (1,, i) <=(1,, i)~
c -l ) and (I, i) " 26, i) 2 -2, LetecE* be a
directed edge from f{I,) to iI,). Then e covers every member of €. |

By the claim each chain &, (i=1, .., f) can be covered by an edge e,.
Then C:= {e,, .., e,} covers every member of X and |C} = |.#|.

Phase 3. We say that two elements fi=x,y,, fa=x,y, of C are
exchangeable if x, <x; < y; <y, and

O‘Hﬁim.\:\uwcm\w.\mv (2.2)

is also a covering of A" where f :=x,¥,, f3 :=x,¥,. Replacing C by C' is
called an exchange step. Phase 3 consists of applying the exchange step as
long as there are exchangeable members of the current covering of .

For an edge f = xy let A(f) denote the number of edges of the underlying
path P between x and y. It is easy to see that ¥ (A% f): feC')<
3 (h*(f): fe C). Therefore Phase 3 terminates after at most |C||P|? < |P]?
applications of the exchange step.

At termination we are left with a covering C of X possessing no
exchangeable edges. The crucial point of the present proof of Gyéri's
theorem is the fortunate fact that such a covering of X% will automatically
be a covering of the whole set # of path-edge pairs.

LeMMma, If C is a covering of A" with no exchangeable edges, then C
covers K.

Proof. Suppose indirectly that C does not cover a member (I, i) of &.
Let us choose I and ¢ so that [(],{)~| is minimum, and, subject to that,
[(I, i)*] is minimum,

A
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First, observe that (7, ) is essential. For if there is a path Je# with
ieJc I, then the minimal choice of (I, )~ and (7, {)* implies that C covers
(J,9). Since (J, i)~ =(L,{)~ and (J,{)}* =(J, )+, we obtain that C covers
(1, 1), as well, contradicting the assumption that ([, {) is not covered by C.

Since C covers X, (I, /) does not belong to 5. By the rule of Phase 1,
there is a member {J, j) of X for which j precedes i and (J, j) crosses (I, {).
Let us choose (7, j} in such a way that |(J, /)*| is minimum. Since both
(1,1} and (J, j) are essential, so are (I, j) and (J,i). It follows from the
minimality of |(f,{)~| that C covers (I, j), that is, there is an edge
e, =x,y, € C covering (I, j).

Cram. {J, e

Proof. If, indirectly, (J,i) belongs to &, then the rule of Phasel
implies the existence of a member (J', j'} of ¥ so that j' precedes i and
(', J') crosses {J, i). j' cannot precede j for otherwise {(J’, j') would cross
{J, j) and hence (J, j) would belong to 4. Therefore either j' = j or else j
precedes j'. In both cases (J', j') crosses ([, i) and (J, j)* <=(J, )™,
contradicting the minimal choice of [(J, /}*|. ]

Since C covers 2 and (J,{)e " by the Claim, there is an element
e, = X3y, of C covering (J, {). Since neither e, nor e, covers (1, {), we have

SN €< fi)<xi <N <y <fl) <y <UT) <KD

By the hypothesis of the lemma, e, and e, are not exchangeable, that is,
there is a member (K, k) of X which is not covered by C' where C' is
defined in (2.2), Then (K, k) must be covered by e, but not covered by &)
and e, Hence f(J) < x, < fIK) <x, < 1 <KK) < y, <{J), thatis,je K J,
contradicting that (J, f) is essential. This contradiction proves the lemma. J

Associate with each edge wr in C the subpath of P from u to v and let
% denote the family of these associated subpaths. As we have noted in the
Introduction, % is a generator of # and |%.| = |.#|, as required for Gy&ri’s
theorem. ||

3. CONCLUSIONS: COMPLEXITY AND EXTENSIONS

The constructive proof above for Gy&ri’s theorem gives rise to a polyno-
mial time algorithm for computing a minimum generator of a path system
and a maximum independent family of path-edge pairs. To obtain a bound
on the complexity, let us consider the three phases separately, Observe first
that for indices i, h (0 <i<h<n) there is at most one path J of # with
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S(J) =v, for which (J, j,) is essential. Thetefore the set &, of essential pairs
sitting at an edge j, has at most A <n members and hence |&£| <r®

It is not difficult to compute &, in O(n?) steps and hence & can be deter-
mined in O(n®) steps. Since |6, | <n, a stage of Phase 1, when a specified
edge of P is processed, can be carried out in O(n?) steps and hence the
whole 2 can be computed in O(n?) steps.

Ford and Fulkerson {2] showed that a bipartite matching algorithm,
applied to a bipartite graph on 2p nodes, can be used to compute a mini-
mum chain-decomposition and a maximum cardinality antichain of a
partially ordered set on p elements. Since there are matching algorithms
of complexity O(p?®) and in our case p:= |24} <n? Phase2 terminates
in O(n®) steps. There is, however, a tighter bound for the complexity
of Phase 2, A. Benczir, J, Forster, and Z. Kiraly [1] proved by a clever
counting argument that any cross-free set of essential pairs, and hence the
cross-free set " computed by Phase 1, can have at most # log # members.
Therefore Phase 2 terminates in O{(n log n)>*) < O(n®) steps.

As we have noted already, Phase 3 needs at most O(n®} exchange steps,
and hence we can conclude that the overall complexity of the algorithm
can be estimated by O(n?).

Benczir et al. [ 1] actually provided a detailed description of the algo-
rithm, made further improvements, gave a careful analysis of the running
time, and obtained a bound of O(nm+n®./nlogn) for the complexity
where m = |#|. Their paper also reports on computational results along
with comparisons to Knuth’s algorithm.

Before turning to extensions, let us mention that Gyéri’s theorer has a
surprising application in combinatorial geometry. (As a matter of fact, this
problem was the starting point of investigations of Gyéri.)

COROLLARY. Suppose we are given a (bounded) region R in the plane
bounded by horizontal and vertical segments which is vertically convex in the
sense that each vertical straight line intersects R in an interval. Then the
minimum number of rectangles (of horizontal-vertical sides) whose union is R
is equal to the maximum number of points of R such that no two of them can
be covered by a rectangle belonging to R.

Since the derivation is simple and algorithmie, the algorithm described
above may be used to compute the optima in the corollary. As far as
possible extensions are concerned, it was shown in Frank and Jordan [5]
that Gydri's theorem is a special case of a general framework concerning
a crossing family # of pairs (!) of sets. Namely, we proved the foilowing.

THEOREM 3.1. Given a crossing family F of pairs of subsets and a cross-
ing bi-supermodular function p on %, the minimum number of directed edges
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covering each member X=(X",X*) of # at least p(X) times is equal to
max ,_ {3 (p(X): X S)) where S is a subset of pairwise independent
pairs. In particular (when p = 1), the minimum number of edges covering each
member of F is equal to the maximum number of pairwise independent pairs
of F.

This includes not only Gydri's theorem but its extensions, as well. For
example, suppose that, in addition to the underlying path P and the path
system 2, we are given another system %, of subpaths of P. We want to
find a minimum generator of # provided that the members of %, can be
used freely. Then (already the second part of) Theorem 3.1 implies:

THEGREM 3.2. Given two families P and %, of subpaths of a directed
path P, the minimum number of subpaths of P whose addition to %, yields a
generator of P is equal to the maximum cardinality of an independent set of
path-edge pairs which are not covered by %,.

When %, is empty, we are back at Gyéri's theorem. With a slight
modification of the algorithmic proof we described above for Gyéri's
theorem, one can easily prove this extension, as well. Namely, the set & of
essential path-edge pairs should be replaced by those essential path-edge
pairs which are not covered by %,.

Theorem 3.1 actually implies more general forms of Theorem 3.2. One
possible extension is when the underlying directed path P is replaced by a
directed circuit. A further one is when there is a certain weight function on
path-edge pairs (including as a special case results of A. Lubiw [9]). By
extending the ideas above we provided an algorithmic solution to these
extensions in Frank [4] but this solution is significantly more complicated
than the one above.

Another important application of Theorem 3.1 provides a min-max
formula for the minimum number of new edges whose addition to a
given directed graph G results in a K-connected directed graph, One of the
main motivations behind our investigations was to find a combinatorial
algorithm for computing the minimum. Although this is still open in
general, in the special case, however, when the starting digraph G is K—1
connected, it was possible to construct such an algorithm (Frank [3]).

REFERENCES

1. A. Bencair, J. Férster, and Z, Kirdly, Finding minimum generators for path systems of a
cycle—implementation and analysis, in preparation, 1998.

2. L. R. Ford and D. R. Fulketson, “Flows in Networks,” Princeton Univ. Press, Princeton,
NJ, 1962,



244

ANDRAS FRANK

3. A. Frank, Finding minimum edge-coverings of pairs of sets, preliminary draft, 1998,

. A. Frank, Finding minimum weighted generators of a path system, in “Contemporary
Trends in Discrete Mathematics™ (R. L. Graham, J, Kratochvil, J. NeSetfil, and F, §.
Roberts, Eds.), Ann. Discrete Math., 1999, to appear.

. A. Frank and T. Jordén, Minimal edge-coverings of paits of sets, J. Combin, Theory 65
No. 1 (1995), 73-110.

. D. S, Franzblau and D. J. Kleitman, An algorithm for covering polygons with rectangles,
Inform. and Control 63 (1984), 164-189.

. E. Gyéri, A minimax theorem on intervals, J. Combin. Theory Ser. B 37 {1984), 1-9.

. D. E. Knuth, Irredundant intervals, ACM J. Experiment. Algorithmics 1 (1996), 19.

. A. Lubiw, A weighted min-max relation for intervals, J. Combin. Theory Ser. B 53 (1991),

4

5

6

7

& oo

151-172.

Printed by Catherine Press, Ltd., Tempelhof 41, B-8000 Brugge, Belgium



