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Abstract. The minimum number of edges f an undirected graph covering a symmetric, supermodular
set-function is determined. As a special case, we derive an extension of a theorem of J. Bang-Jensen and
B. Jackson on hypergraph connectivity augmentation.

1. Introduction

T, Watanabe and A. Nakamura [WN1987) proved a min-max formula for the min-
imum number of new edges whose addition to a given undirected graph results in
a k-edge-connected graph. E. Cheng [C1999] considered the problem of increasing the
connectivity of hypergraphs by adding a minimum number of graph-edges, and provided
a solution for the special case when the starting hypergraph is (k — 1)-edge-connected,
Extending further the results of Cheng, J. Bang-Jensen and B. Jackson [BJ1999] solved
the general hypergraph connectivity augmentation problem. The purpose of the present
paper is to derive a generalization of the theorem of Bang-Jensen and Jackson where,
instead of a hypergraph whose connectivity is to be incereased, a symmetric super-
modular function is specified to be ‘covered’ by undirected edges. The result, when
specialized to hypergraphs, not only provides the theorem of Bang-Jensen and Jackson,
but it actually gives rise to an extension when the connectivity of the hypergraph is to
be increased inside a specified terminal set. This will be explained in Section 7.

Letus say some words about the proef methods. For proving their theorem, Watanabe
and Nakamnura used a sophisticated analysis of the structure of k-edge-connected graphs.
A different proof, based on the splitting-off technique, was given by G.-R. Cai and
Y.-G. Sun [CS1989]. A. Frank [F1992] used the the splitting-off technique in a different
way and obtained a short proof of the theorem of Watanabe and Nakamura. This
simplification enabled him to find several extensions such as local-edge-connectivity
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augmentation, minimum node-cost and degree-constrained augmentation. The same
technique gave rise to a directed counterpart of the theorem of Watanabe and Nakamura.

The hypergraph connectivity augmentation problem is significantly more difficulc
than the graph augmentation problem since a new type of necessary conditions comes
in. This was recognized by E. Cheng whose method for increasing optimally the edge-
connectivity of a hypergraph by one is based on a decomposition technique of sub-
modular functions due to W. Cunningham [C1983]. For solving the general hypergraph
augmentation problem, Bang-Jensen and Jackson returned to the splitting technique but
they also needed the inverse operation of splitting, The present method stems out of the
work of Bang-Jensen and Jackson. Our original purpose was to show that their theorem
can be extended to supermodular functions and we did this by invoking their ‘back
and forth’ splitting method. The more abstract setting, however, enabled us to realize
that the inverse splitting steps can be avoided. In this sense the present algotithm is
conceptionally simpler than the one of Bang-Jensen and Jackson.

The structure of the paper is as follows. In the next section we introduce the basic
notions, formulate the problems, and state the main results. Section 3 describes the
properties of a reduction technique called projection. Section 4 is devoted to introduce
and analyze the splitting-off operation in the supermodular setting. The proofs of the
main theorems are included in Section 5 along with an extension of Theorem 2. We
discuss algorithmic aspects in Section 6. The last section exhibits how to specialize
the main results in order to obtain a generalization of the hypergraph connectivity
augmentation theorem of Bang-Jensen and Jackson.

2. Preliminaries

Suppose we are given a finite ground-set V and a non-negative, integer-valued function p
on the subsets of V. We say that p is a set-function on V. We assume that p(8) = 0
and that p is symmetric, that is, p(X} = p(V — X) holds for every subset X C V.
Furthermore, suppose that p satisfies the supermodular inequality:

P+ p(N) = p(XUY) + p(XNY) (1a)

whenever p(X) > 0, p(Y) > 0 and X, ¥ are crossing sets, thatis, noneof V— (X U Y),
XNY, X —Y, Y — Xisempty. In this case we say that p is crossing supermodular. It
follows from the syminetry of p that

P +pMN) = p(X -1+ p¥ -X) (1b)

holds for crossing sets X, ¥. Note that (1a) automatically holdsif X ST Yor ¥ € X.
‘Likewise, (1b) holds if X and Y are disjeint or co-disjoint. (Two subsets of V are called
co-disjoint if their complements are disjoint).

For two subsets X and ¥, X — Y denotes the set of elements of X not belonging
to Y. If ¥ = {y}, then set ¥ is called a singleton. In this case X — Y is denotedby X — y
and X UY is denoted by X + y. A subset containing an element & and not containing
an element b is called an ab-set. A set X separates u, v if X contains exactly one of
u and v. Given a subset T C V, we say that X is T-separating or that X separates T

Covering symmetric supermodular functions by graphs 485

if XNT # @, T — X # # (equivalently, T has two elements separated by X). (Hence
a subset X separates V if and only if X is a nonempty, proper subset of V.) By a sub-
partition F := {V1,..., V&} of ¥ we mean a set of pairwise disjoint non-empty subsets
of V. Here A is the size of the sub-partition. We use the notation UF :=U(X : X € F).
If V = UF, then F is a partition of V. The sets V; are called the members of F.
We do not distinguish between a one-element set and its element. For example, if p is
a set-function on V and v € V, then we write p(v) to denote p{{v}).

By a hypergraph we mean a pair H = (V. 4) where V is the node-set of the
hypergraph and A is a collection of (possibly not distinct) subsets of V with at least two
clements. The members of A are called hyperedges. A hyperedge with two elements is
called a graph-edge or simply an edge. If every element of A is an edge, we speak of
an (undirected) graph. (We allow parallel edges but no loops.)

Let dy(X) denote the number of hyperedges intersecting both X and V — X For an
clement v € V we use the abbreviation dx (v) for dg({v}) and call it the degree of v.
(Since we do not allow hyperedges of one element, dy (v) is the number of hyperedges
containing v.)

Beside p we are given a non-negative, integer-valued function g : V. — Z,.
Throughout the paper we will use the notation g(X) := 3(gv):ve X).

We say that ¢ majorizes a graph G = (V, E) if

do(v) < g(v) foreverynodev € V. 2)
G is said to cover p if
dg(X) = p{X) for every subset X € V. »

One of our main concerns is to find a necessary and sufficient condition for the
existence of a graph satisfving (2) and (3). (An analogous question concerning directed
graphs was answered in [F1994].) The following ‘cut-type’ necessary condition ex-
presses the natural requirement that the total upper bound on the degrees in X should
be at least the lower bound p(X) for the number of edges entering X.

g(X) = p(X) forevery subset X T V, 4

For a formal proof of the necessity of (4), see (9) below. Unfortunately, (4) is not
sufficient in general, as shown by an example consisting of a ground set V with 4
elements and p = 1, g = 1. Here (4) is clearly satisfied but no graph G may satisfy (3}
since such a graph must be connected and hence it has at least three edges. On the other
hand, g = 1 implies that G can have at most 2 edges.

This example motivates the following notions, A set X for which p(X) = g(X) is
called tight (with respect to p). We call a partition F := {Vy, ..., Vi] of V withh >4
p-tall if

p(UF") > 1 for every sub-partition F' with @ C F' C F and (5
F has a member V; with p(V7) = 1. 6)

We call the maximum size of a p-full partition the dimension of p and denote it by
dim(p). If there is no p-fuil partition, then dim(p) is defined to be 0.
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Theorem 1. Let g : V — Z,. be a function and let p : 2V — Z be a symmetric,
crossing supermodular set-function. There is a graph G = (V, E) covering p and
majorized by g if and only if (&) holds,

g2(V) is even (7a)
whenever
every element of V belongs to a tight set, (7b)
and
dim(p) - 1 < g(V)/2. 8)

Proof of the necessity. Suppose that G is a graph satisfying (2) and (3). Then
p(X) <dg(X) = Mﬁq?v tveX) =g(X) &)

and (4) follows. If X is a tight set, then (9) implies that dg(v) = m?v. for QﬁQ clement
v € X. Therefore, if (7b) holds, then g{V) = 3 _(dg(v) : v € V). This sum is even and

hence (7a) follows.
Let F = {V1,..., Vi) be a p-full partition of size h. Then G must have at least

h — 1 edges. Indeed, by shrinking each V; into a nhode v; we obtain from G a graph that
must be connected by (3). Therefore G must have at least i — 1 edges. On the other
hand, since G is majorized by g, G has at most g(V}/2 edges. Thereforeh—1 < g(V)/2

and (8) follows.
a

(Note that in this proof, among the two defining properties (5) and (6) of p-fullness,
only (5) was used. The requirement in (6) has a special role that will be explained at the
end of this section.) .

In Section 5 (Lemma 6) we will prove that (7b) is equivalent to the existence of
a partition of V into tight sets. Here we show the following.

Lemma 1. [f Theorem I holds whenever g(V) is even, then it holds when g(V) is odd.

Proof. Suppose that g(V) is odd. Then, by the hypothesis (7), there is an element s m. |4
which does not belong to any tight set. This means, in particular, that g(s) > o.. Revise
g by reducing g(s) by 1 and let g’ denote the resulting function. Clearly, g’ (V) is even.
Since s does not belong to any tight set, (4) holds for (g’, p). Clearly, dim{p) - 1=
Lg{Vy/2] = g'(V)/2. That is, both (4) and (8) hold for (g’, p). By E%oﬁnm_m.. the
theorem holds for (g’, p) and therefore there is a graph G covering p and majorized

by g’. Then G is clearly majorized by g, as well. .

By this lemma, we will henceforth assume that g{V) is even. Our second result is

about the smallest graph covering p. In Section 6 a generalization of Theorem 2 will be

formulated and proved.

Theorem 2. Let p: 2V — Z, be a symmerric, crossing supermodular function and y
a positive integer. There exists a graph G = (V, E) with at most y edges covering p if
and only if

Y :XeP) <2y 10)
holds for every partition P of V and
dim(p) — 1 = y. an

Proof of the necessity. We have already seen the necessity of (11). To prove the necessity
of (10), suppose that there is a graph G = (V, E) covering p and let 7 be a partition
of V. Then 2y > Y (dg(X) : X € P) > 2(p(X) 1 X € P), that is, (10) indeed
holds.

O

Inthe sequel we need the following notions. A set X was called tight if p(X) = g(X).
If, in addition, 1 = p(X) = g(X), we say that X is a 1-tight set. Note that a set X
with g(X) = 0 is always tight since p was assumed to be non-negative. We call a set
X near-tight if p(X) = g(X) — 1. A tight or a near-tight set is called dangerous.
A dangerous set is maximal if it is not a proper subset of any dangerous set,

Let Z C V be a subset. Define V/ = V — Z + z where z is a new element. For
X CV'let p'(X):= p(X)ifz g X and let p/(X) := p(V' — X}y if z € X. Furthermore
let £'(z) := g(Z) and g'(v) := g(v) forevery v € V — z. We say that (g’, p') arises
from (g, p) by contracting Z. We can extend this notion. Let F =V, Va,..., W}
be a sub-partition of V and let (¢, p') denote the pair arising from (g. p) by contracting
all the members of F. (Clearly (g’, p’} does not depend on the order in which the
separate Set-contractions are carried out). We say that (g’, p’) arises from (g, p) by
contracting F.

We conclude the section by investigating the question whether the necessary condi-
tions above are indeed good characterizations. Suppose that p is given by an evaluation
oracle. Condition (4) is an appropriate certificate in the sense that if someone claims
that a certain set X violates {4), that is, £2(X) > p(X), then with one oracle call we can
immediately check the truth of this statement. Likewise, for a given partition P, we can
check (10) by calling the evaluation oracle |P| < | V| times.

The situation with conditions (8) and (11) is slightly more complicated. How can
we check whether a given partition F := {V},..., Vi} is p-full? (6) can clearly be
tested by A oracle calls. The problematical case is to test JF for (5) since this requires to
evaluate p(U;cr Vi) for all possible index subsets 8  J {1,..., &}, an exponential
number of oracle calls. To overcome this difficulty, we prove the following claims which
will also be useful later.

Claim 1. Let p’ be a symmetric crossing supermodular set-function on a ground-set V'
and Z a subset of V' with | Z| > 2. Suppose that there is an element s of Z for which
P'(s) =1and p'({s,2}) = 1 forevery z € Z — 5. Then

p'(X) > 1 for every subset X such thats € X © Z, and (12a)

P(Z)y=1ifzcv, (12b)
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Proof. What we have to show is that p'(X) > 0 for every set X withs e X C Z
and that p'(Z) > G in case Z # V'. Suppose indirectly that this is not true and let X
be a smallest subset of Z containing s for which p'(X) = 0. Then X C V' and, by
hypothesis, |X| > 3. Let u € X — s and X’ := X — u. By the minimality of X, we
have p'(X’) = 1. Now sets X" and Y := {s, u} are crossing and by (la) we have
141 < PN+ P 2 PEX NN+ P UY = pE) +p(X) =140,
a contradiction.

w}

Claim 2. Let p be a symmetric crossing supermodular set-function on a ground-set V
and F a sub-partition of V with |F| > 2. Suppose that there is a member 5 of F for
which p(8) = 1land p(SU F) > 1 forevery F € JF. Then

p(UF") = 1 for every sub-partition 7', § € F' c F,and (13a)

p(UF) > 1if UF C V. (135)
If F is a partition of V, then (5) holds.

Proof. Contract F and let V’ and p’ denote the arising ground-set and set-function,
respectively. Let Z denote the subset of V arising from the contraction of F. The first
part of the claim follows by applying Claim 1. When Fisa partition of V, the symmetry

of p implies (5).
[m]

By Claim 2 and (6) we immediately have:

Corollary 1, A partition F := {Vy1,..., Va} with h = & is p-full if and only if there is

a member Z € F for which p(Z) = 1 and p(ZUV}) = 1 for evervi=1,..., h
o

By Corollary 1 we can easily test a partition F for p-fullness by at most 22 < 2{V|
oracle calls. First compute p(V;) for eachi = 1,..., h. If none of these values is 1,
then (6) is violated and F is not p-full. If at least one of these values is one, we may
assume that p(V1) = 1. Compute p(V1 U V;) foreachi = 2,3, ..., k. If at least one of
these values is zero, then F is not p-full. Otherwise F is p-full.

(As we have already noted carlier, while proving the necessity of (8) and (9),
assumption (6) has not been required. The only role of (6) is to make possible to
test a given partition F for p-fullness. Without assuming (6), the problem of deciding
whether a partition F satisfies (5) includes an NP-complete problem. Indeed, let G =
(V, E) be an arbitrary graph in which we want to decide whether there is a cut with at
least k edges where k is a given integer. [This is the max-cut problem, a well-known NP-
complete problem]. Let F be the partition of V in which every member consists of one
element of V. Let p(X) = max(0, k — ds (X)) for@ c X c Vand p(@) = p(V) = 0.
Then p is crossing supermodular and symmetric. Now F satisfies (5) if and only if
k > de(X) for every subset @ C X C V. In other words, F satisfies (5) if and only if
the maximum cut is smaller than k.)
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3. Projection

In this section we introduce a reduction technique called projection. In the sequel,
projection will be used in two separate levels, First, it will have a simplifying role in the
proofs of Theorems 1 and 5 by enabling us to get rid of elements v for which g(v) = 0.
A second application of projection occurs in Section 5 where it is used to derive an
extension of Theorem 2.

Let p be a symmetric, crossing supermodular set-function on V and r an element
of V. Define a set-function p’ on V/ := V — r, as follows. p'(@) := p(V) =
and p’(X) = max(p(X), p(X +r)) for @ C X C V. It is easy to check that p’ is
symmetric and crossing supermodular. p’ is called the simple projection of p along r
or the projection of p to V. For any subset @ C X C V', let X = Xif p'(X) = p(X)
(i, p(X) = p(X +r))yandlet X 1= X +r if p'(X) > p(X) (i.e., p(X) < p(X + 7).
Clearly, p'(X) = p(X). For a sub-partition 7 of V/, let ' := {X : X € P'}.

The usability of this operation depends on whether the necessary conditions in
Theorems 1 and 2 can be preserved under projection. The next claim will imply that
this is the case with respect to (10).

Claim 3. If two non-empty subsets X, ¥ C V" are disjoint, then so are Xand Y. If P/
is a sub-partition of V', then 7' is a sub-partition of V for which

Ye®: ReP)=T (X :XeP). (14)

Proof. If indirectly both X and ¥ contain r, then p(X) > p(X)+1and p(¥) > p(¥)+1
and by (1b) we obtain p(X) + p(Y) = p(X = ¥) + p(¥ — X) = p(X) + p(1) <
p(X) + p(Y), a contradiction. The second part of the claim follows from the first.

a

In order to preserve (8) or (11) under projection, it would be satisfactory to assert that
a p/-full partition of V' can always be ‘extended’ to a p-full partition of V. However, we
can prove this only under an additional assumption (see Lemuna 3 below), Fortunately,
in the application this technical requirement will be satisfied. We need a preparatory
lemma.

Lemma 2. Suppose that

P(X) > 1 foreverysubset @ C X C V' (15
and that there is a subset S := [51,52,83, 53} of V' so that p'(s;) = 1 (1 =i = 4).
Lat N :={X:8cC X cCV, p(X) =0} Then V' has an element 7 covering all the
members of N.
Proof. There is nothing to prove if N = @ so we assume that A" # @.

Claim A. There are no two disjoint members of N
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Proof. Suppose that X, Y € m< are disjoint. By Claim 3 X and ¥ are also disjoint

and hence one of them, say X, does not contain r. But then, by (15), I < p'(X) =

p(X), contradicting the assumption that X € A,
n}

If there is an element z ¢ V' with p(z) = 0, then [z} € N and, by Claim A,
z satisfies the requirement of Lemma 2. So we may assume that

(16)

Ciaim B. If an element s € S belongs to a member N of A, then there is an element
x € N ~ssothat {5, x} € N.

p(v)y = 1 foreveryv e V',

Progf Since p(s) = 1 and p(N) = 0, N has at least two elements. By Claim 1,
N — s has an element x for which p({s, x}) = 0, that is, {5, x} ¢ M.
: o

Claim C. Every element 5 € § belongs to a member of A/.

Proof. Let N be a minimal member of A, By (16), |N| = 2. We are done when
s € N, soassume thats ¢ N.If S—5 € N, then |N| > 3 on one hand, but Claim B
and the minimality of & imply that |N| = 2, on the other. Therefore S —s € N
and there is an element 5’ € § — s with s’ € N.
Now one of the sets X := N + 5 and ¥ := (s, 5’} belongs to AV for otherwise we
wouldhave 1+1 = p(X)+p(Y) = p(X =P} +p(Y — X} = p(N)+ p(5) = 0+1,
a contradiction.

[m]

Let H = (V’, A) denote the graph for which A := {xy : {x, y} € N'}. By Claim A,
H does not have two disjoint edges. Therefore either there is a node z € V7 covering
all the edges in A or else A consists of three elements forming a triangle. This latter
case, however, cannot occur since, by Claims B and C, each of the four elements of 5 is
covered by a member of A. ’

By changing indices if necessary, we may suppose that z ¢ § — 54. (z may or may
not be equal to 54.) Then zs; € A (that is, {z, 5} € A) (1 <{ < 3). To conlude the
proof of the lemma, we show that z covers every member of A, If this is not true, then
let X be a minimal member of A not covered by z. By Claim A, X intersects (z, 51}
therefore s; € X. Claim B and the minimality of X imply that |X| = 2. Therefore X
is disjoint from at least one of the sets {z, 52} and {z, 53}, contradicting Claim A. This

contradiction completes the proof of Lemma 2.
oo

The next lemma shows how to transform a certain p’-full partition of V"’ into a p-full
partition of V.

Lemma 3. Let F| be a p'-full partition of V' for which
1Al =22 ) (P(X): X € F)/2.

Then there is a member Z of F for which F := Fy = {Z}U{Z +r} is a p-full partition
of V.

a7

Proof. By contracting the members of J; we may assume that each member of Fj is
a singleton. Then the p’-fullness of F implies (15} and inequality (17) transforms into

V=223 (F):ve V). (18)

We claim that the number « of elements v of V' for which p’(v) = 1is at least 4. Indeed,
from (18} we have 2|V'| —4 = 3 (P :ve V)za+2(|V]|-a) =2{V| -«
from which & > 4. Let § := {51, 52, 53, 54} € V' be a subset of V' so0 that p'(s;) = 1
(1 =i < 4)and apply Lemma 2.

Suppose that the elements of V' are vy, ..., vy and that v| is an element satisfying
the property in Lemma 2. Then

p(X) = 1forevery subset@ C X © V/ —v). (19)

Now the family F := {{v(, r}, {v2}, ..., {va}]} is a partition of V and we claim that

F is p-full. Indeed, by the symmetry of p, {19) implies (5). To see (6), recall that there

is an element (actually at least three) x of V” different from v; for which p'(x} = 1.
Then 1 < p(x) < p’(x) = 1, hence p(x) = 1 and (6) holds.

[

We extend the notion of elementary projection. For a given subset @ ¢ T C V,.
define the projection pr of p to T, as follows. pr(#) := pr(T) := 0 and pr(X) :=
max{p(X): X' C V,X'NT = X) for@ C X C V.Itcanbe seen that pr arises from p
by a sequence of simple projections along the elements of V — T and therefore pr is
symmetric and crossing supermodular if p is. We say that a sub-partition P of V is
T-separating, if every member of P is T-separating. Let dimy ( p) denote the maximum
size of a T-separating p-full partition of V.

Theorem 3. Let y be an integer. Suppose that

3 (p(X): X € P) < 2y for every T-separating sub-partition P of V 20y
and
dimy(p) —1 <y 21
Then
Y (pr(X): X € P) < 2y for every sub-partition P of T (22)
and |
dim(pr) —1<y. (23)

Proof. We use induction on |V — T|. There is nothing to prove if this number is zero
sinceif T = V, then (20) is equivalent to (22) and (21) is equivalent to (23). So suppose
that there is an element 7 € ¥V — T'. Let V/ = V — r and let p’ be the simple projection
of p to V/. We are going to prove that (20) and (21) hold for p’, that is,

3P/ (X} : X € P) < 2y for every T-separating sub-partition P of V' (207)
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and

dimr(p) — 1=y (217

From this the theorem will follow by induction. .

If P is a T-separating sub-partition of V', then, by Claim 3, P is a T-separating
sub-partition of V. Hence (14) and (20} imply (20°). To see (21), suppose indirectly
that there is a p’-full T-separating partition F; of V' for which [F;| — 2 = y. By (20°),
¥ = Y(p'(X) : X € F1)/2 and hence (17) is satisfied. Lemma 3 provides with a p-full
partition F of V for which |F| == |F;|. F is also T-separating and hence (21) fails to

hold. This contradiction proves the theorem.
a

Theorem 3 will be used in Section 5 to prove an extension of Theorem 2. Here we
derive the following corollary that will be used in the proofs of Theorem 1 and 5 to get
rid of elements v for which g(v) = 0.

Theorem 4. Let T < V be a set for which g(V — T) = 0. If g and p satisfy (4), then g
and pr satisfy (4), that is,

pr(X) < g(X) for every subset X C T, (24)
If g and p satisfy (4) and (B), then g and pr satisfy (8), that is,
dim(pr) — 1 = g(N/2 (= g(V)/2). (25)

Proof By the definition of pr, there is a set X so that pr(X) = hCD and X =71 X
It follows from g(V — 7) = O that g(X) = g(X). By applying (4) to X, we obtain
2(X)= g(X) = p(X) = pr(X), and (24) follows.

Let ¥ := g(V)/2. We claim that (20) holds. Let P be a T-separating sub- -partition
af V. By using (4}, (24), and the definition of pr, we obtain SpXy:XeP) =<
T(prXND: X e P) < SEXND: X € P) < gD = g(V) = 2y, that i, (20)
holds. Since dimr(p) <dim(p), (21) is a consequence of (8). Therefore Theorem 3

applies and (23) is the same as (23},
o

4, Splitting off

The technigue of splitting off a pair of edges of a graph so as to maintain certain

connectivity propertics has been a major tool in the solution of several connectivity

augmentation problems. Here we introduce an analogous reduction method concerning

g and p. We assume that (4) holds but (8) is not required until we mention it explicitly.
Suppose that

g{V) is even and g is positive on at least two elements of V. (26)

Let « and  be two elements of V with g(u) = 1,g(#) = 1. Let 24wy = glu)y — 1,
g™ := g — 1 and g*(x) ;= g(x) if x € V — {1, u}. Furthermore, define pHX) =

max(0, p(X) — 1) if X separates u and ¢ and p™(X) := p(X) otherwise. It is easy to see
that p™ is symmetric and crossing supermodular. We say that the pair (g™, p™) arises
from the pair (g, p) by splitting off (g, p) at {r, u}.
We are interested in finding a pair (¢, u} whose splitting preserves (4), that is,
g4(X) > p™(X) forevery subset X C V. 2mn
Such a pair is called splittable (with respect to p and g). We call a p-full partition
Fi={V1,..., Va} of V (h = 4) 1-tight if each member of F is 1-tight. We claim that
if ¢, u satisfy (27), then
there is no 1-tight p-full partition. (28)
Indeed, assume that u € Vy,¢ € V2. For X .= ViU Vo and ¥ := V2 U V3 we have
141 < pX)+pN) = p(X -1+ p(Y — X) = p(V1) + p(Va) = 1 + 1 from which
Pp(X) = 1 follows. Thus p™(X) = 1 and g*(X) = 0, contradicting (27). The following
theorem states the converse.

Theorem 5. Assume that g and p satisfy (4), (26) and (28). For an arbitrary element t
of V with g(t) > 0 there is an element u with g(u) > 0 such that (27) holds.

FProof. Tt follows from the definitions that (27) hoids if and only if no dangerous set
includes both # and ¢, or equivalently, no maximal dangerous set includes both » and ¢.

‘We may assurne that the theorem is true whenever the ground-set has fewer elements
than |V|. First suppose that there is an element r for which g(r) = 0. Let V/ :=V —r
and let p’ denote the projection of p along r. By Theorem 2.5, (4) holds for p'.
Condition (26) trivially holds for V’. Finally, we claim that (28) holds for . For if there
is a 1-tight p’-full partition F; of V', then (17) is satisfied since |F;| > 4 implies that
[F1l —2 = |F11/2 = 2 (P/(X) : X € F1}/2. Let F denote tha p-full partition of V
provided by Lemma 3. Since F is 1-tight and g(r) = 0, it follows that g{X) = 1 for
each member of F, that is, F is a 1-tight p-full partition of V, violating (28).

Since we assumed that the theorem holds for V', there is a pair {¢, u} that is splittable
with respect to p'. Since a p’ > p, this pair is splittable with respect to p, as well.

Therefore we can assume that g is positive everywhere. In this case every 1-tight set
is a singleton.

Claim A. If X and ¥ are maximal dangerous sets containing ¢, then they are
crossing.

Proof. Since XNY # 0, X-Y #0,Y—X #* @, wehavetoshowthat YUY # V.
Suppose indirectly that X U Y = V. Then the symmetry of p and (4) imply
that (g(X) =D+ (g - 1) = pX)+p() = p¥ —X)+p(X - 1) =
g¥ ~X)+g(X - 1) = g(X) + g(¥) — 28(X N Y) = g(X) + g(¥) — 2. Hence
we have equality throughout and, in particular, g(X N ¥) = 1. We also have
g(X—Y) = p(X—Y) = p(¥) = g(¥)—1 = g(¥Y — X} from which g(V) = g(X - )
+g¥Y —X)+g{XNY)=2g(X —¥) + 1, that is, g(V} is odd, a contradiction.

a
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Claim B. Let X and Y be crossing dangerous sets for which p(X) = 1, p(Y) = 1.
Then g(X NY) = 1,sets X — ¥, ¥ — X are tight and sets X, ¥ are near-tight.

Proof. Since g is positive everywhere, g(X N Y) > 1. By {(1b) and (4) we have
EX)-D+EDM-D=pX+pN spX-N+pf-X)=<gX-7)
+g(¥ = X)) =g(X)+g(1) =28(XNY) < g(X)+ g(¥) — 2 from which we
have g(XNY) =1,g(X) -1 =p(X), g -1 =p(1), p(X -V =gX -1,
oY — X)=g(Y — X).

o

Claim C. Let X and Y be crossing dangerous sets for which p(X) = 1, p(¥) = 1
and suppose that X is maximal dangerous. Then X NY is 1-tightand p(X U Y) =
gXunN-2=0.

Proof. By the maximality of X, the set X UY is not dangerous, that is, p(XUY) <
g(XUY)—2. By this, (1a)and (4), we have (g(X)—1)+(g(¥)—1) = p(X)+p(¥} =
pXNY+p(XUY) < g(XNY)+g(XUY)—2 = g(X) +g(¥) —2. Hence we must
have p(XNY) = g(XNY), p(XUY) = g(XUY)—-2. By ClaimB, g(XN}) =1,
that is, X N ¥ is 1-tight. By Claim B, X and ¥ are near-tight and hence g(X UY) =
g +8(N—g(XNY) = g(X)+g(N) =1 = (POO+D+(p(N)+1)~1 = 2+2—1
from which g(XUY) -2 > 0.

o

Claim D. Let X1, X2, X3 be three maximal dangerous sets for which ¢ € Z =
XiNnXonXs. LetZ, =X, —tletZ:={Z;:i =0,...,3)}). Then each member
of Z is 1-tight.

Progf. By Claim C X; N Xy is 1-tight and hence {t} = X; N X, from which
Zy = {1t} is 1-tight. By Claim B, X is near-tightand Z; = X; — X(= X; — 1) is
tight.

T PForl =i« <3 letX; =XiUX;and Zy; = 2, UZi(= Xy - 1),
By Claim B, X; is near-tight and p(X;;) = g(X;;) — 2 = 1. We claim that
Z;; is dangerous. Suppose indirectly that p(Z;;) < g(Z;;) — 2. Since p(X3) = 1,
p(Xi)) = 1, Xy — Xij # 0, X;; — X # 0, (1b) applies and we have [g(X;;) —2]+
[g(Xx)—1] = p(X;j))+ p(Xy) = p(Xij =~ X))+ p(Xi—Xij) = p(Zir+p(Ze) <
8(Zij) =2+ g(Zx) = [g(Xij) — 1] — 2+ [g(Xx) — 1], and this contradiction shows
that Z;; is indeed dangerous.

By applying Claim Cto X := X; and Y := Z;;, we obtainthat X NY = Z; is
1-tight.
]

Returning to the proof of the theorem, suppose indirectly that for every element u there
is a dangerous set containing ¢ and u. Thatis, thereis afamily D := {X), X2, ..., X} of
maximal dangerous setscontaining fsothat V = U(X; : i = 1, ..., r). By themaximality
of X;.each X; has atleast two elements and hence g(X;) = 2and p(X;) = g(X)—1 > 1.

By (26), r is at least 2, By Claim A, we cannot have r = 2, thatis, r > 3. It
follows from Claim D that the set Zp := {t} and the sets Z; := X; — ¢ are pairwise

N EvwE T T

disjoint 1-tight sets. Since p(Zo U Z;} = p(X;) > 1, Claim 2 implies that Z :=
{Za, Z), ..., Z;) isa 1-tight p-full partition of V, contradicting (28). This contradiction
proves the theorem.

oo

5. Proofs and an extension of Theorem 2

Let p and g be the same as in Theorem 1 and suppose that, in addition, (8) holds. In the
preceding section we showed for every element r with g(¢) = 1 that there is an ¢lement
u with g(u) > 1 so that splitting off the pair {¢, u} does not destroy (4). Our present
purpose is to show that, with an appropriate choice of ¢, such a splitting off operation
automatically preserves (8), as well. This will immediately imply Theorem 1.

We call an element z € V critical, if g(z) = 1 and z belongs to a 1-tight set. Let
K denote the set of critical elements and P the set of elements where g is positive. We
define an auxiliary graph D = (K, A) so that an edge uv belongs to A if

pr({u,vh = 1 29

where pp denotes the projection of p to P. (Equivalently, uv belongs to A if there is
aset X with p(X) > 1 sothatu, v € X and g(X — {u, v}) = 0.) We choose a node ¢ by
the following rule.
Selecting node 1. If A is empty, then let t be any element of P. If the maximum degree
of D is two and one of the components of D is a tirangle, then let t be an element of this
triangle. In the remaining case let t be a node of D with maximum degree.

Lemma 4. Let t be the element of V defined above and let F := {V1,..., Vi} be
a p-full partition of V for which h — 1 = g(V)/2, If V; is the member of F containing t,
then .
g(v) < L foreveryv e V. (30)

Proof. Suppose first that the lemma holds for the special case when g is positive
everywhere (that is P = V). This implies the general result. Indeed, suppose that
V — P # {J and consider the projecion pp of p on P. The auxiliary graph belonging
to the projection is the same as the one belonging to p, that is, D. (24) and (25} hold
by Theorem 4 which is equivalent to saying that, (4) and (8) hold for pp. Furthermore,
g(X) > p(X) > 1 for each member X of F. Since g(V — T} = 0, each member of F
intersects T and hence Fp = (XN P : X € F}is a pp-full partition of P for which
h —1 = g(P)/2. Since g is positive on every element of P, (30) follows.

Hence it suffices to prove the theorem for the special case when P = V. In this case
pr = p, every 1-tigth set consists of one element and an element v is critical if and only
g(v) = p(v) = 1 (that is, {v} is 1-tight).

Claim A. Every component of D is a clique, or a path, or a circuit.
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Proof. Tt suffices to show that the neighbours of a node of degree at least three
form a clique of D. Suppose that a node a of D is adjacent in D to nodes b, ¢, 4.
We show that bc € A. Indeed, by Claim 1 implies p(X) = 1 for X := {a, b, c}.
ForY := {a,d}wehave 1 +1 € pX)+ p} = pX -7+ pF¥ - X) =
p(b, c}) + p(d) = p({b, c}) + 1 from which p({b, c}} = 1, that is, bc € A,

o

Claim B. Let ab and bc be edges of D and let U C V — {a, ¢} be a set for which
belU pWy=1,|U|=2.Thenp(U+b) > 1, plU+c) = 1, p(U+a~-b) > 1,
pU+c—b > 1.

Proof. By the symmetrical role of @ and ¢, it suffices to show the first inequality.
By(laywehave 1+ 1 < p()+ p{{b,cD = plU+ )+ pby=pU+c)+1
from which p(U + ¢) = 1. Analogously, p(U + @) > 1. Furthermore, by (1b),
141 =pU4a)4p({be)) = plU+a-b)+ plc)=p(U+a—-b)+ 1from
which p{l/ + a — b} = 1. The p(U + ¢ — b) = 1 follows analogously.
]

Claim C. F contains at least two 1-tight members. If it contains exactly two, then
g{V)) = 2 for all other members of F.

Proof. Let o denote the number of 1-tight members of F. If 2 member of F is not
1-tight, then g(V;) > 2. Therefore 2h —2 =g(VI =Y, g(VD 2 e+ 2(h —a) =
2h — «a and the claim follows.

O

Suppose that the 1-tight members of F are Vi,..., V. Since we have assumed
that P = V, these sets are one-element sets. Let V; = {v;) (1 < < a) and Vy =
{v1, ..., vg}. Since F is p-full, ¥ is a clique of D. Therefore the maximum degree of

anode of D is at least o — 1.
Case I. o = 2. (30) trivially holds if V; is 1-tight. If V; is not 1-tight, then, by Claim C,
g(V;) = 2. Since g is positive everywhere, (30) follows.

Case 2. a > 3. By the selection rule, ¢ has at least two neighbours and the neighbours
form a clique.

Claim D. Let U be a member of F with [I/] = 2. Then there are no two adjacent
edges gb and be of Dsothatb e U C V —{a,c).

Proof Suppose indirectly that these edges exist. We show that
pltv, 8 = 1. (31)

This is true if v = a. If v; # q, then by Claim B and (1b) we have 1 +1 <
p(U+v1)+ p(U+a—-5b) < p({vy, b)) + p(a) = p({v1, b)) + 1 from which (31)
follows.

By applying Claim B to {a, b, v1} we obtain that p(U + v1) = 1 and hence
I+1<pl+uv)+piabh s plU+uv -+ p@=plU+u—-5+1
from which

plU+uv —by= 1 (32)

Let F' denote the partition of V arising from F by replacing U by U’ := {b}
and U” := U — b. By 31), p(Vi UU") = p({vi, b} > 1. By (32), p(V, UU") =
p(U + v = b) = 1. Therefore Claim 1 implies that 7" is p-full. From this, in turn,
we get dim(p) = 1 = (h + 1) — 1 = g(V)/2 + 1, contradicting (3).

a

Let us consider the member V; of F containing ¢ and let C be the component of
D containing ¢. Since Vp is a clique of at least three elements, the choice of ¢ implies
that C is also a clique of at least three elemeats. By Claim D), C may have at most one
element not in V;. Hence C and Vj are disjoint.

We show that C € V. Suppose indirectly that there is an element b € C — V; (that
is, C — V; = {b}) and b belongs to V;. Now {V;| = 2 for otherwise V; = {b} and
1 < p(V;) < g{b) = 1 from which V; is 1-tight, that is, j < o, contradicting that
VonC =@. Now |C| > 3and |C - V;| = limply |CNV;| = 2, thatis, the set I/ := V;
has an element b having two neighbours outside V;. This contradicts Claim D.

Since g(V;) = g(C) = |C| = o we obtain that 22 — 2 = g(V)/2 = 3 (g(X) :
XeR/2za+gViy+2(h—e—1) > a+a+ 2k — 2a — 2 = 2h — 2 from which
equality follows throughout and, in particular, g(C) = |C|. That is, V; = C and (30}
follows.

oo
By Theorem 5 there is an element 4 for which (27) holds.
Lemma 5. Foru andt
dim (p™) — 1 < g*(V)/2(= g(V)/2 -~ 1). (33)

Proof. Suppose indirectly that (33} fails to hold and let 7 := {V;,.... Vi} bea p-
full partition of ¥ for which k — 1 > g™(V)/2, thatis, k > g(V}/2 + 1. F contains
at least one 1-tight member (1-tight with respect to p for otherwise we would have
h>gW/2+1=3,8(Vi}/2+1 = 2h/2+ 1. Therefore there is a critical clement of
V and then, by the selection rule, ¢ is critical. Since p = p**, F satisfies (5), and hence
F is p-full and it must have exactly dim(p) members.

Let V; denote the member of JF containing r. If u also belongs to V;, then by
Lemma 4, g(u) = 1. Since p{{z, )} = 1 and g({t, u}) = 2, the set {t, u} is dangerous,
contradicting the assumption that (27) holds. Therefore 4 does not belong to V:. Let u
belong to V.

None of V; and V; is I-tight (with respect to p) since if V;, say, is 1-tight, then
p™(V;) = 0, contradicting the assumption that F is p™-full. Since h — 1 = g(V}/2,
F includes at least two 1-tight members: ¥y and V2. For X := ViU V;and Y := LUV}
weoblain l +1 < p(X) +pN < pX -+ p(¥ = X) = p(Vi) + p(V2) =1 +1
from which p(ViU V) = p(X) = 1. Since & V1 UV}, pt(V1UV;) = 0, contradicting
the assumption that F is p™-full.

oo

Proof of Theorem 1. As we have proved already the necessity of the conditions, we
turn to the sufficiency and assume (4) and (8) to hold. It was also shown that g(V) can be
assumed to be even. We use induction on g(V). The theorem is trivial if there is at most
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one element ¢ for which g(¢) > 0. In this case (4) and the symmetry of p imply that p
is identically zero and therefore the empty graph G = (V, #) satisfies the requirements.
Thus we may assume (26). Condition (28) holds since if there is a 1-tight p-full partition
Fi=(Vi,...,Va} (h = 4), then h = 3. g(Vy) = g(V) and, by (8), h — 1 < g(V)/2
from which A < 2.

By Theorem 5 and Lemma 5 there is a pair {z, u} of elements of V with g(r) > 0,
g(u) > Ofor which(27) and (33) hold. (27) means that (g™, p™) satisfies (4). (33) means
that (g™, p™) satisfies (8). By induction, there is a graph G’ covering p™ and majorized
by g™. Let G be a graph arising from ' by adding the edge zu. It follows from the
definition of g and p™ that G covers p and is majorized by g.

o

We conclude the section by proving Theorem 2. We start by showing that (7b) can
be formulated in a more aesthetic form.

Lemma 6. (7b) is equivalent to the existence of a partition of V into tight sets.

Proof. If such a partition exists, then (7b) is satisfied. Conversely, assume that (7b)
holds and let F be a family of tight sets covering V so that |F| is minimum. We are
done if F is a partition of V so suppose that X NY 3 @ for two members of ., Then
X UY ==V, for otherwise X, ¥ are crossing and the union of two crossing tight sets is
tight, that is, X and ¥ could be replaced by X U Y, contradicting the minimality of | F].
Now XU Y = V implies that F = [X,¥}. Wehave g(X) = p(X) = p(V - X) <
gV —X) < g®) = p(t) = p(V -1 < g(V-¥) < g(X) from which equality
follows everywhere. In particular, X — Y and ¥ — X are tight and g(V — X) = g(1),
thatis, g(X N ¥) = 0, and hence X N Y is also tight. Therefore (X — Y, X N Y, ¥ — X}

is a partition of V into tight sets.
O

Proof of Theorem 2. We have proved already the necessity of conditions (10) and (11).
“To derive their sufficiency, let g’ : V — Z be a function for which (4) is satisfied
and suppose that g’ is minimal with respect to this property. Then every element of V
belongs to a tight set. By Lemma 6 there is a partition P of V into tight sets. From (10)
g(V) =3 (g"(X): X € P) = 2(p(X) : X € P) < 2y. Increase g’ on an arbitrary
element by 2y — g’ (V). The resulting function g satisfies (4) and g(V) = 2y. Hence (11)
implies (8). Therefore the conditions of Theorem 1 are met and hence there is a graph &

covering p and majorized by g. Clearly, G has at most g(V}/2 = y edges.
o

Finally, we show the following extension of Theorem 2.
Theorem 6. Let p : 2V — Zy be a symmetric, crossing supermodular function,
T a subset of V, and y a positive integer. There exists an undirected graph G = (V, E)

with at most y edges so that

dg(X) = p(X) for every subset X C V separating T (34)

if and only if
S (p(X): X € P) < 2y for every T-separating sub-partition P of V (35)
and
dimr(py — 1 <y. (36)

If (35) and (36) hold, then graph G may be chosen so that dg(v) = 0 for every node
v € V — T (that is, all edges of G have both end-nodesin T).

Proof. The proof of the necessity of conditions is analogous to that in Theorem 2. For
the sufficiency, we assume (35) and (36) to hold. Since these coincide, respectively,
with (20) and (21), Theorem 2.1 applies and it implies (22) and (23). Now Theorem 2,
when applied to pr, implies the theorem.

n]

6. Algorithmic aspects

The proof of Theorem 1 gives rise to a polynomial time algorithm, provided that an
oracle to

minimize (m(X) + (X} —pX): X C V) 37

is available where m is a function on V and z is a non-negative functions on the
(unordered) pairs of the elements of V, and 4,(X) := d(z{uvy:u € X, v € X). Mini-
mization means that a set X attaining the minimum is computed. [Grotschel, Lovasz and
Schrijver, invented a polynomial time algorithm (that relies on the ellipsoid method)
to compute the minimum of a submodular function using only an evaluation oracle.
Because p is supermodular, g + d; — p is submodular and therefore the required mini-
mization oracle (37) is, in principle, always available. In the applications on hypergraph
connectivity to be described in the next section, (37) can be realized via network flow
techniques.]

The algorithm consists of a sequence of splitting operations which are carried out
as long as there are two elements with positive g. We describe only the first step when
a certain pair {7, u} is split off z({¢, «}) times. The same rule applies to the pair (g', p’) at
any intermediate step where g’ (v) := d,(v)(v € V) and p'(X) := p(X)—d (X} (X C V)
and z({u, v}) denotes the number of how many times the pair {«, v} have been perviously
split off.

We say that a pair {z,u} is simple, if min(g{x), g(z})) = 1, and multiple if
min{g(u), g()) = 2. With the help of (37), compute ¢ := min(g(X) ~ pX):teX,
u € X). (This can be done by applying (37) to m where m(f) and m(u} are the negative
of a suitably big number and m(v) := g(v) for v € V — ¢ — u. This way the minimizing
set X is forced to contain ¢ and u«).

If {t, u} is simple, we carry out o := min([e/2] , 1) (which is 0 or 1) splitting
at {¢, u} and say that the splitting is simple. If {t, x} is multiple, we carry out « ;=
min(|e/2] , g(6) — 1, g{#) — 1) splitting operations at {#, u} in one step. and call this
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step a multiple splitting. (In this case o can be 0, 1 or bigger.) A splitting (simple or
multiple) is called non-trivial if o > 0.

Let P the set of elements where p is positive. For a given subset Z C T we
can compute pp{Z) with one application of (37). (Define m(v) = Oforve V — P,
m(v) = Mforve P— Z,and m(v) = —M for v € Z, where M is a big number. Then
the minimum is attained on a set X for which Z = X N T and pp(Z) = p(X).)

Making use of Claim A of Section 5, the auxiliary graph D = (K, A) belonging
to (g, p) can be computed by at most 2|V| oracle calls. Hence we can determine the
element ¢ € P as described before Lemma 4, If g(#) > 1, (which can happen if A = @)
then choose any multiple pair {z, 4} that has not yet been considered for splitting and
perform a multiple splitting at {¢, u}. If g{£) = 1, Choose an element # € P so that the
pair {z, #} has not been considered for simple splitting and perform a simple splitting
at {r, u}. :

By this rule, every pair appears in at most one simple and in at most one mul-
tiple splitting. Note that performing a multiple splitting does not affect the auxiliary
digraph D. Therefore the rules above comply with the choice described in the proof of
Theorem 1 in Sections 4 and 5. The proof ensured that, as long as there are two elem-
ents with positive g, there is a non-trivial splitting. We can conclude that the algorithm
terminates after at most 2|V|? splitting operations. (This can be reduced to O(|V|) by
using a technique described in [F1992, pp. 51].)

As far as the algorithmic side of Theorem 2 is concerned, the proof at the and of
Section 4 required the computation of a minimal function g satisfying (4). This can
be done by calling (37) at most | V] times. (Indeed, start with a large g satisfying (4),
consider the elements of V in any order vy, ..., v, and iterate the following step.
Compute y; = min(g(X) — p(X) : v; € X C V) and reduce g(v;) by min(yt;, g(v;)).)

Finally, we show how Theorem 6 can be handled aigorithmically. By Theorem 3 all
we need to show is that the minimization oracle (37) is available with respect to pr.
Let mt be a function on T and z7 a non-negative function on the pair of elements of 7.
Definem : V — Zbym(v) := my(w)ifv € Tandm(v) = 0ifve V-T.Foru,ve V
define z({, v})) = z7({u, v}) if u, v € T and zero otherwise. It is easy to see that if X
is a minimizer for (37), then X’ := X N T minimizes mr (X"} + dyr (XY — pr{X’) over
subsets X' of T.

7. Increasing the connectivity of hypergraphs

Given a hypergraph H' = (V, A"), asubset @ C C C V is called a component of H',
if dgi(Cy = 0 and dg:(X) > Oforevery @ C X C C. Givenasubset T C V, we
let ¢ (H') denote the number of components of H’ having a non-empty intersection
with T. Given a positive integer k, H’ is said to be k-edge-connected in 7', if

dpp (X) = k for every subset @ C X C V separating T. (38)

When T = V in (38) we say that H’ is k-edge-connected.

Suppose we are given a hypergraph H = (V, A), a specified subset T of V, and
a positive integer y. When is it possible to add at most y new graph-edges to H so that
the resulting hypergraph H* = (V, A™) is k-edge-connected in 77 When the starting

hypergraph H itself is a graph, this problem was solved for T = V by Watanabe
and Nakamura [WN1987] and for arbitrary T by Frank [F1992]. In the case T = V,
the problem was solved by E. Cheng [C1999] when H is a (k — 1)-edge-connected
hypergraph and by J. Bang-Jensen and B. Jackson [BJ1999] when H is arbitrary, Here
we prove the following generalization of the theorem of Bang-Jensen and Jackson.

Theorem 7. A hypergraph H = (V, A) can be made k-edge-connected in T by adding
at most y new graph-edges if and only if

Pk —dy(X): X € P) < 2y for every sub-partition P of V separating T~ (39)
and

c(H") — 1 <y for every hypergraph H' = (V, A"
arising from H by leaving out k — 1 hyperedges. (40)

If (39) and (40) hold, the new edges can be chosen so as to connect elements of T.

Note that condition (40)is veidif H haslessthan k—1 hyperedges, When H = (V, 4)
is ahypergraphand Ap C A is a subset of hyperedges, the hypergraph H' = (V, A— Ag)
is said to arise from H by leaving out Ag. For a subset @ ¢ Z C V, we say that
H':= (V', A"} arises from H by contracting Z, if V' := V — Z + z, where z is a new
node,and A" = {(X' C V' : X' =X —-Z+zforX c A, XNZ 43X ~-Z # B}
UX' SV X =XforX € A, XN Z # @3} Ina hypergraph H the contraction of
a sub-partition P of V means that we contract separately the members of P.

Proof. To see the necessity of the conditions, suppose that there is a graph G =
(V, E) with |E| < y for which H* = (V, A + E) is k-edge-connected in 7. Then
dy(X) 4 di(X) = k for every set X separating T. Hence > (k—dpy(X): X € P) <
Y (de(X) : X € P) < 2y for every sub-partition P of V separating T, that is, (39)
holds.

Let H' be the hypergraph occurring in (40). Let G’ = (V’, E’) denote the graph
arising from G by contracting the components of H' and let 77 denote the subset of
elements of V' which arise by contracting a T'-separating component of H’. Because
H’ arises from H by leaving out exactly k — 1 hyperedges, dy(X) < k for every subset
X being the union of some components of H'. Since such a set X is T-separating and
H+ G is k-edge-connected, at least one edge of G must connect X and V — X. Therefore
T’ belongs to one componentof G’ and hence cr(H) —1 = |T'| -1 < |E'| < |E| < y,
proving {(40).

To prove the sufficiency, let us assume that conditions (39) and (40) hold. The
fellowing claim is well-known. Its proof is simply by checking the possible contributions
of one hyperedge to the two sides of (41).

Claim 4. For arbitrary subsets X, Y C V,
dy(X) +dpF} zdp(X N +dg(XUT). (41)

Moreover, if equality occurs, then there is no hyperedge Z of H for which
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Define a set-function p on V by p(@) = p(V) = 0 and
p(X) =max(0,k —dyg(X)Hforc XV (43)

Then p is symmetric and, by (41), crossing supermodular. Clearly, a set E of at most
y edges satisfies the requirement of the theorem precisely if G = (V, E) satisfies (34).
By Theorem 6, all we have to show is that (20) and (21) hold. Since (20) is exactly the
same as (39), our goal is to derive (21).

Suppose indirectly that (21) does not hold, that is, there is a p-full partition F :=
{Vi,..., Vy}of V so that

(44)

Let Hp = (V, Ap) be the hypergraph consisting of those hyperedges of H intersecting
at least two members of F.

h—2zy

Lemma 7. Hy has exactly k — 1 hyperedges.

Proof. For the lemma we may assume that each member of F consists of one
element for otherwise we can contract . We claim that the number ¢ of those
members of F for which p(X) = 1 isatleast four. Indeed, 21 —2 > y > 3 (p(X):
XeF)/2 Hence2h =423 (p(X): XeF)za+2h-o) =2h ~a, from
which a > 4, That is, V has a four-clement subset § = {s; : 1 < { < 4] for which
pisi) =1 (1 <i < 4). Since F is p-full, p(X) > 1 forevery subset @ C X C V.

Claim A. p(X} = 1 holds for every s;5;-set X,

Proof. Inductien on |X|. If |X| = 1, then p(X) = p(s;) = 1. Suppose
now that [X| > 2 and that the claim is true for any proper subset of X
contzining s;. For any elementz € X—s; wehave 141 < p(X)+p({z,5;}) <
p(X —z) + p(s;) = 1 4 1 from which p(X) = 1.

[}
By the definition of p, Claim 4 implies:
Claim B. If X and ¥ are two crossing subsets of V for which
pX)=pN=pXNN=pXUh =1, (45)
then there is no hyperedge Z in Hp satisfying (42).
O

Claim C. Every hyperedge Z of Hy contains ;.

Proaf. Suppose indirectly that 5; ¢ Z. Let z be an arbitrary element of Z. If
|Z] = 2,then, by |§| = 4, thereis an elements; € S— Z—5;.If | Z] = 3, then
let s; be an arbitrary element of § — z — 5;. (5; may or may not belong to Z).
Let X := {z, 5} and ¥ := Z — z + ;. By this definition, X, ¥ are crossing
and Z satisfies (42). On the other hand, (6.8) holds by Claim A and hence Z

does not satisfy (42} by Claim B, a contradiction.
[}

Since 1 = pls;) = k — dy,(s1), the element s; is contained in exactly k — 1
hyperedges of Hy. By Claim C every hyperedge of Hy contains s; and, the lemma
follows,

oo

Returning to the proof of the theorem (and regarding that F was assumed to consist of
one-clement members only for the proof of Lemma 7), we can conclude that, by leaving
out the k — 1 hyperedges of Hy from H, we obtain a hypergraph A’ in which every
hyperedge is a subset of a member of F. Since each member V; of F is T-separating,
V; includes a T-separating component of H’, therefore c7(H’) > h. By combining this
with (44), we obtain that (40) fails to hold, contradicting the assumption.

ooad

Corollary 2. Let H' = (V, A’} be a hypergraph which is k-edge-connected in T,
Suppose that H' contains a graph-edge u = uv for which v € T. Then there are two
elements x, y of T so that replacing edge e by a new edge f = Xy, the resulting
hypergraph HY = (V, A™) is also k-edge-connectedin T.

Proof. Let H = (V, A) be the hypergraph arising from H’ by deleting e. H can be
made k-edge-connected in T by adding one edge. Then, by Theorem 7, & can be made
k-edge-connected by adding one edge with both end-nodes in 7.

ul

We conclude the paper by mentioning that the algorithms outlined in the preceding
section can be specialized to the hypergraph connectivity augmentation problem. It
can be shown by using standard reduction techniques that the required cracle (37} is
available via max-flow min-cut computations.

The algorithm of Bang-Jensen and Jackson also uses the splitting operation but it
requires a kind of inverse-splitting operation, as well. Our algorithm is simpler in that it
dees not need inverse-splitting.
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