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Abstract. D.R. Fulkerson [7] described a two-phase greedy algorithm to find a minimum cost spanning
arborescence and to solve the dual linear program. This was extended by the present author for "kernel
systems", a model including the rooted edge-connectivity augmentation problem, as well, A similar type of
method was developed by D. Kornblum [9] for "lattice polyhedra”, a notion intraduced by A. Hoffman and
D.E. Schwartz {8].

In order to unify these approaches, here we describe a two-phase greedy algorithm working on a slight
extension of lattice polyhedra. This framework includes the rooted node-connectivity augmentation problem,
as well, and hence the resulting algorithm, when appropriately specialized, {inds a minimum cost of new
edges whose addition to a digraph increases its rooted connectivity by one. The cnly known algorithm for
this problem used submodular flows. Actually, the specialized algorithm sclves an extension of the rooted
edge-connectivity and node-connectivity augmentation problem.

1. Introduction

Let G = (V, E) be a directed graph with a special node 5. D.R. Fulkerson [7] developed
an algorithm for finding a minimum cost spanning s-rooted arborescence of G and for
solving the corresponding linear programming dual problem that consists of a certain
cut-packing problem.

By extending Fulkerson’s ideas, [3] described a two-phase greedy algerithm for
finding a minimum cost subset F of edges of a digraph G = (V, E) so that at least one
element of F enters X for every member X of a given intersecting family F of subsets
of V. (F is called intersecting if X, Y € F, X NY # @ imply that XNY,XUu¥eF)
This model includes as a special case the minimum cost arborescence problem. Another
interesting special case of it consists of finding a minimum cost of new edges whose
addition to an existing digraph D = (V, A) increases the rooted edge-connectivity of D
by one. That is, the starting digraph D is assumed to have k — 1 edge-disjoint paths from
5 1o every other node for some positive integer k, and the requirement for the augmented
digraph is to have k edge-disjoint paths from s to every other node.

It is quite natural to consider the corresponding problem concerning rooted node-
connectivity augmentation. Here the starting digraph D has k — 1 openly disjoint paths
from s to every other node and the requirement for the augmented digraph is to have k
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openly-disjoint paths from s to every other node. (Openly disjoint means that the paths
are disjoint apart from their end-nodes.) The model in [3] docs not cover this problem,
and the only known solution, described in [5], consists of a rather tricky way to reduce
the problem (by a method which can be carried out in polynomial time) to a submodular
flow problem. Since the latter problem admits strongly polynomial time (combinatorial)
solution algorithms so does the rooted connectivity augmentation problem. We stress,
however, that this submodular flow approach solves even the more general augmentation
problem when there is no any connectivity assumption on the starting digraph. In
a separate paper [4], by using the model of the present work, we will show a much
simpler way to reduce the rooted connectivity augmentation problem to submodular
flows.

The main motivation behind the present work was to construct a two-phase greedy
algorithm to

increase, at a minimum cost, the rooted node-connectivity of a digraph by one. (¥}

Actually, the suggested algorithm works on a model which is a slight generalization
of what Hoffman and Schwartz [8] call a lattice polyhedron. This abstract framework
enables us to solve not only (x) but the following extension, as well. Suppose that
a digraph D = (V, A) contains & — 1 openly disjoint paths from s to every node in T
where T is a specified subset of V — {s}. Let G = (V, E) be a digraph on the same node
set V with the property that every edge of G has its head in T (no restriction on the tails
is made). Given a cost functionc¢ : E — R4, finda minimum cost subset F of edges
of G so that the augmented digraph G* := (V, A + F) contains k openly disjoint paths
from s to every node of T

The algorithm below may be considered as a unification of D. Kornblum’s algo-
rithm for lattice polyhedra [9], Fulkerson’s [7] algorithm for minimum cost spanning
arborescences as well as its extension for kernel systems [3]. It is worth mentioning that
the first algorithm to compute the minimum cost arborescence is due to Yong-Jin Chu
and Tseng-Hong Liu [1]. Their method can also be considered as a two-phase greedy
algorithm. We also mention a recent related work by Faigle and Kern [2] in which
they exhibit a two-phase greedy algorithm concerning submodular linear programs on
forests. This model is a generalization of one by Queyranne, Spicksma and Tardella [10]
which is a common generalization of Edmonds’ greedy algorithm, the NW-corner rule,
and a greedy-type algorithm of Hoffman on Monge-matrices.

2. The problem and the algorithm

The following model was introduced in a slightly less general form by Hoffman and
Schwartz [8]. Let (F, <) be a partially ordered set with F # B.IfA < B, A # B,
we write A < B. We say that two elements A, B of F are intersecting if A and B are
non-comparable and there is a member C € F for which C < A, C < B. A subset F’
of F is called laminar if ' contains no two intersecting members.

Suppose we are given two commutative binary operations, the meet A and join v,
defined on comparable and on intersecting pairs, with the following properties.
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Propertyl. fA < B,thenAAB=A AV B =8
Property 2. If A and B are intersecting, then AA B < A, B and Av B> A,B.
We say that a non-negative function p : 7 - R4 is intersecting supermodular if
p(AY+ p(B) < p(AA B)+ p(AV B)

holds whenever p(A) > 0, p(B) > 0 and A, B are intersecting. Function p is called
decreasing if A < B implies that p(A) = p(B).
A function b ; F — R is called intersecting submodular if

A+ B(BY=bAABY+ DAV B)

holds for intersecting A, B.
Furthermore, we are given a set E and a function ¢ : F — 2E satisfying the
following properties.

Property3. If A < B < C, then g(A) N (C) © o(B). This is called the consecutive
property.

Property 4. If A, B are intersecting, then o(A v B)Ug(A A B) C o(A)U o(B).
Property 5. 1f o(A) N g(B) # #, then A, B are intersecting or comparable.

In the model of Hoffman and Schwartz the join and meet operations were defined on
every pair and both Property 2 and 4 were required for every pair A, B. In this case the
requirement in Property 5 holds automatically and therefore Property 5 may be omitted.

For example, let G = (V, E) be a digraph with a distinguished node 5. Let F be
an intersecting family of (non-empty) subsets of V — s so that each member of F is
entered by at least one edge of G. Let < be the relation of containment (thatis, A < B
ifAC B)Fortwosets with ANB #@letAnB :==ANBand Av B:=AUB,
Finally let ¢(X) denote the subset of edges of G entering X. Then the axioms above are
satisfied. This mode! was introduced in Frank [3] under the name "kernel systems". In
Section 4 we show an extension that is still covered by the general framework and that
will be the key to the rooted node connectivity augmentation problem.

In what follows we describe the problem and the algorithm concerning the abstract
framework introduced above but in order to understand the description and the argu-
ments more easily the reader may find it useful to keep in mind the special case of an
intersecting family of sets. Working with this, one has to check that no other features
of intersecting families are really used than those described in the axioms above. (For
example, a possible "other feature” of an intersecting family of sets is that for subsets
X, A, Bof V the containments X € A, X C Bimply X © A N B, while in the abstract
model it is quite possible to have two intersecting elements A, B € F and a third element
X e F for which X < A, X < B and A A B is not comparable to or larger than X, In
the general model it is also possible for some e € E and for intersecting A, B € F that
e € p(A) U o(B), e € A A B, while in the special case of digraphs if an edge ¢ enters
two members A and B of an intersecting family of subsets, then e enters ANB, as well.)
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For a vector x in RE and for A € F let px(4) = 3 (x(e) : e € o(A)). For
y:F —Riande € E, letm(y, ) = I ((X) e € o(X)).

Let {F, <) and E satisfy the axioms above, letc: E — R be a cost function, and
let p be an intersecting supermodular function on F which is decreasing. The primal
linear programming problem we consider is to minimize cx over the vectors x satisfying

ox(A) = p(A) forevery A€ F,x > 0. (1)

The dual linear programming problem is to maximize M”QCO pX)y : X € F,
CyiF o W+v. subject to .

c(e) = m(y, e) foreverye € E. 2)

In order for (1) to have a solution we will assume that g(A) is non-empty for
every A € F with p(A) > 0. The main goal of the present paper is to describe
a combinatoriat strongly polynomial algorithm to selve this pair of linear programs. The
algorithm terminates by outputting a primal optimal solution which is integer-valued
when p is integer-valued, and a dual optimal solution which is integer-valued when c is
integer-valved. Thus the algorithm provides a constructive proof of the statement that
the linear system (1) is totally dual integral (TDI}.

Actually, one can consider the following more general optimization problem. Let
0 < f < g be two capacity functions on E, ¢ a cost function on E, and let p be
intersecting supermodular (but not necessarily decreasing). With the proof method of
Hoffman and Schwartz (the uncrossing technique) one can prove that the linear system

0:(A) = p(A)forevery Ac F, f <x =g @3

is TDL TDI-ness implies that the primal linear program (mincx : x satifies (3)) has an
integer-valued optimum x for an arbitrary non-negative cost-function ¢ provided that
f, g, p are integer-valued. By the very definition of TDI-ness, the corresponding dual
linear program always has an integer-valued optimum whenever ¢ is integer-valued.

We remark that the proof of Hoffman and Schwartz is not algorithmic and there is no
known polynomial time algorithm to compute the primal and dual optima in question,
not even in the originat model defined by Hoffman and Schwartz.

Let us furn to the description of the algorithm. We call a vector x satisfying (1)
primal feasible and a vector y satisfying (2} dual feasible. For such an x and y we say
that an element e € E is y-tight or tight if c(e) = m(y, €) and an element A € Fis
x-tight or tight if g,(A) = p(A). The optimality criteria (that is, the complementary
slackness conditions) are

(01) If x(e) > 0, then e is y-tight,
(02) if y(A) > 0, then A is x-tight.

The algorithm consists of two phases. In the first one a feasible dual solution y is
constructed in a greedy way. In the second phase, using only y-tight elements, a vector
x satisfying (02) is constructed in a greedy way. By this construction the optimality
criteria are automatically satisfied and the correctness of the algorithm will be proved
by showing that the solution x obtained is actually feasible.
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Phase 1. The phase consists of steps. In each step a member A of F is determined
along with an element ¢ € g(A) and the y-value of A is determined. At the beginning
let y = 0. Suppose that A; € F, ¢; € E and y(Aj) have already been determined for
j<i—1InStepi (i =1,2,...) checkif there is a member A € JF for which

p(A) >0and fer,...,e_1}No(d) =0. G))]

If no such an A exists, then the first phase terminates. Set f =i =1, A := {41, ..., Ar}
and proceed to the second phase. If there is such an A, then choose a smallest element
A; of F satisfying (4). (Here "smallest" means that no element of the partially ordered
set (F, <) that fulfils (2.4) can be smaller than A;.) Let p; := min{c{e) —m(y, e} e €
o(A7)) and revise y by changing the current y(4;) = 0 to y(A;) := p,. Furthermore let
¢; denote one of the elements of g(A;) where the minimum is attained in the definition
of pi.

Phase 2. At the beginning let x = 0. Consider the elements ¢; in reverse order
and revise the x-value of elements e;, as follows. Let x(e;} := p(A;) and, if x(e;),
x(¢i—1)- .. ,x(er41) (i = 1) have already been calculated, then let x{e;) := p(A) —
o:(Ai).

Phase 2 and the whole algorithm terminate when x{e;) has been determined.

3. Proof of correctness

‘We will need the following lemma.
Lemma 1. For a non-negative vector x, the set-function gy is intersecting submodular.

Proof. The lemma follows (by taking non-negative linear combination) from the special
case when x(e) = 1 for any specified element £ of E and x(f) = Oforevery f € E—e.
Ife & o(A A BYU o(A v B), then gx(A) + 0x(8) = 0=o(AA B +0o:(AV B)
If e belongs to exactly one of the sets o(A A B) and g(A v B), then, by Property 4,
e € p{A) U o{B) and hence gx(A) + gx(B) = 1 = ox(A A B) + 0x(A Vv B). Finally, if
e belongs to both (A A B) and g(A Vv B), then, by the consecutive Property 3, e must
belong to both A and B and hence gx(A) + ox(B) = 2 =g0.(A A B)+g:(AV B).

[m]

The rule of Phase 1 immediately implies that Phase 1 terminates with a feasible dual
solution y and that each edge ¢; is y-tight. Hence the vector xprovided by Phase 2 satisfies
(O1). Since ¢; & o(A;) fori < j,therule of Phase 2 implies that g, (A;) = p(A;) holds
for every member A; € A from which (02) follows. In order to prove correctness of the
method, we have to show that x is primal feasible. This is equivalent to requiring that
x > 0 and that h,(A) < 0 for all A € F where h,(A) := p(A) — ¢:(4) denotes the
deficit of A. We call a member Z of F deficient if 2, (Z) > 0. The following is a direct
conseguence of rule of Phase 1.

Claim I. If X < Aj for some j = 1,...,tand p(X) > 0, then there is an index { for
whichi < j and & € g(X).
a
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Claim 2. Ais laminar.

Proof. Suppose indirectly that A;, Ap are two intersecting elements with j < h. By
applying Claim 1 to X := A; A Ap, we obtain that there is an e; for which i < j and
e; € o(X). By Property 4, &; € g(Aj) U o(Ap), which contradicts the rule of Phase 1
since i < j < h.

O

Claim 3. x = 0.

Proof. If A; is maximal in A, then x(e;) = p(Ap) > 0. If A; is not maximal in A, then
let A; € Abesuchthat A; > A; and in addition let A; be minimal with respect to
this property. Since A is laminar by Claim 2, this A; is uniquely determined. If there
is no ex € o(4;) (k # i), then x{e;) = p(A;) = 0 (by the rule of Phase 2). If there is
such an e, then k > i, A > A; and hence A = Aj. By the consecutive Property 3,
ex € 0(A) from which p(A;) = ex(4:) < x(e) +0x(A)) = x(2))+ p(4;). Since pis
decreasing, p(4;) = p(A)), thatis, x(e;) = 0.

: n|

Our next goal is to prove that there is no deficient element of F. We assume indirectly
the opposite and will derive a contradiction.

Claim 4. For a deficient element X € F there is an index j so that1 < j <rand
A; <X, ej eglX). 3

Proof. Let j be the smallest index for which ¢; € g(X). (By the stopping rule of
Phase 1 there is such an index for every member ¥ of F with positive p(Y).) We claim
that A; < X. Suppose this is not true. Since ¢; € o(X) N (Aj), Property 5 implies
that A; and X are either intersecting or comparable, that is, A; > X. In both cases, by
Claim 1, there is an index i < j for which ¢; € p(X AAj). Sincee; ¢ o(A ;), Property 4
implies that ¢; € g(X) contradicting the minimal choice of j.

O

Claim 5. For adeficient element X € F and any index j satisfying (5), there is an index
k for which

ex € o(A)) — o(X), x(ex) > 0, (6)

Proof Suppose no such an index & exists. Then, since p is decreasing, A; < X and
x > 0, we would have p(X) < p(Aj) = ox (Aj) < o+ (X), contradicting the assumption
he(X) = 0.

a

Claim 6. For a deficient element X € F and for any indices j, k satisfying (5) and (6)
Aj < Ak, (7a)
and

Ay and X are intersecting. (b
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Proof. Since e; # ¢; (as ex € 0(X), ¢; € o(X)), we have k > j, and hence, by
Property 5 and by Claim 2, A; < Ag. We show now that A, and X are uncomparable.
Indeed, if Ax < X, then A; < Ax < X and, by Property 3, ¢; € g(Ag) which is
impossible since k > j. Similarly, if Ay > X, then Ay > X > A; and Property 3
imply ex € g(X), contradicting (6). That is, A and X are indeed uncomparable. Since
Aj<Xand Aj < Ay, that is, there is a member of F smaller than both X and Ag, we
conclude thatA; and X are intersecting.

o

Let Z be a deficient element of . Let us choose a pair of indices j, k satisfying (5)
and (6) (with Z in place of X) in such a way that k is as small as possible. By Claim 6
we know that A; and Z are intersecting and hence Agy A Z < Z < Ap v Z. Thekey to
our proof is the following lemma.

Lemma 2. Z' := A A Z is not deficient.

Proof Suppose, indirectly, that Z’ is deficient. By applying Claims 4 and 6to X := Z'
we obtain that there are indices j/, k' so that

Aj < Z, ey € (2, )

er € 0(Aj) — 0(Z"), x(ex) > 0. (6"

We are going to show that the indices j', k' satisfy (5) and (6) with 2 in place of X.
To see (5), observe first that Aj» < Z follows from Ay < Z' and Z' < Z. Furthermore,
Ay < Z' < Ay implies that j < kand hence e;; & o{Ay). This and ejr € o(Ai A 2)
imply by Property 4 that e - € o(Z). That is, j' and X := Z indeed satisfy (3.1).

To see (6), by (6°) all we have to show is that eg ¢ g(Z). If this were false, then
Ay < Z' < Z would imply, by Property 3, that ep € o(Z’), a contradiction to (6’).
Thus X := Z and indices j* and &’ indeed satisfy (6).

It follows from the minimal choice of k that & < k’. By applying Claim 6 to Z', j', K,
wehave Ay < Ap. Since Ay < Z' < Ay and A is laminar, A and A are comparable.
This and ¥’ > k imply that Ay > Ag. Hence Ay = Ag > Z' » Ay from which, by
e € o{Ap) N o(Aj) and Property 3, we have ey € o(Z"), contradicting (6”).

O

Among the elements of F of maximum deficit, let Z be a largest. Let j, k be the
indices defined before Lemuna 2. By the maximal choice of Z we have he(Ap v 2) <
h,(Z). On the other hand, by Lemma 1 A is intersecting supermodular, and hence, by
Lemma2, hy(Z) = hx(Z) + hx(Ar) < he(Ax A Z) + Bx(Ap v Z) < 0+ hi(Ai v Z),
a contradiction. This contradiction shows that at the end of the algorithm there cannot
be any deficient member of F and thus the proof of the validity of the algorithm is
complete.

oo

In order to actually run the algorithm one needs a subroutine in Phase 1 to compute
the smallest ¢lement of F satisfying (4). This subroutine is called at most | E] times.
The complexity of the other operations is linear in | E].
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Remark 1. The main application of the model above concerns the rooted connectivity
augmentation problem of a digraph (to be described in the next section), This requires
the supermodular function p in question to be identically 1. For this case a simplified
proof of the correctness of the algorithm will be shown in Section 4. I must admit [ do
not know any natural and/or interesting concrete application in which a more general
decreasing intersecting supermodular function is invelved. (A possible next research
task —comparing the present algorithm to that of Faigle and Kern {2] — may reveal such
applications}).

4. T-intersecting families

In Section 2 we pointed out that intersecting families form a special case of the gen-
eral framework. Here we exhibit a slight extension that will be the basis for rooted
connectivity augmentation.

Let & = (V, E) be a digraph with a distinguished node s and a subset 7 of V — 5 50
that

every edge of G has its head in T 8

Let F be a family of (non-empty) subsets of V — s so that (i) each member of
F is entered by at least one edge of G, (i) if X, ¥ € Fand XNY NT # @, then
XNY, XUY € F. Let < be the relation of containment (thatis, A < Bif A € B.) For
twosetswith ANBNT #P@let AAB:= ANBand Av B := AU B. Finally let g(X)
denote the subset of edges of G entering X. Then the axioms above are easily seen to
be satisfied. Two sets X and ¥ are T-intersecting if noneof XN¥YNT, X -Y, ¥ - X
is empty. A family is T-laminar if it contains no two T-intersecting members,

Suppose that p = 1. In this case an optimum integer-valued vector x in (13isa0—1
vector so we can look for x in the form x ;= xr where F € E is a subset of edges
and xr denotes its characteristic vector. Since rooted connectivity augmentation was
the main motivation of this work and the algorithm as well as its proof is simpler in this
case, we briefly outline this simplified version.

For a subset F € E of edges and a member Z of F, we say that F covers or enters
Z orthat F is a covering of Z if pr(Z) > 1, that is, if F contains an edge entering Z.
F covers F, if it covers every member of F. (This is equivalent to saying that x := xr
satisfies (1).)

We assume that E is a covering of JF. For a dual feasible vector y, anedge e € Eis
y-tight if c(e) = m(y, e). For a covering F of F, aset A € F is F-tightif gr(A) = 1.
Now the optimality criteria are, as follows,

(O1) The elements of F are y-tight.
(02) If y(A) > 0, then gp(A) = 1.

The first phase of the algorithm is identical to the one described Section 2. To recall,
its outline is as follows.

Phase 1. At the beginning let y = 0. In Step i (i = 1, 2, ...), we assume that a subset
Aj € F, an edge ¢; € F entering A;, and dual variable y(A4;) have already been
determined for every index j < i — 1. Decide if 7 has a member A which is not covered
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by {e1,...,ei—1}. If no such a member exists, Phase 1 terminates. Let ¢ := { — 1,
A= {Aj1, ..., A;} and turn to Phase 2. If there is such an A, then let A; be the smallest
such member of F. Let ; ;= min{c{e) — m(y, €) : e enters A;) and revise y on A; by
¥(A;) 1= ;. Let ¢; be an edge entering A; where the minimum is attained.

Phase 2. Starting with F := #, build up F by adding edges one by one according to
the next rule. Consider the edge set {e], . .., e;} computed in Phase 1 in reverse order.
Starting with ¢, add the current edge e; to F if A; is not yet covered by F.

To prove the correctness of the algorithm, first observe that the vector y constructed
in Phase 1 is clearly dual feasible. Furthermore every edge ¢; is y-tight. Hence every
element of F is y-tight, that is, (O1) holds. By the rule of Phase 1, we have:

Claiml X C A; for some index j = 1,....1¢, and for X € F, then there is an
index i for which i < j and e; enters X.
O

Claim 2. A is T-laminar.

Proof. Suppose indirectly that A, A; are two T-intersecting sets and j < A. By
applying Claim 1 to X := Aj N Ap, We obtain that there is an edge ¢; for which i < j
and e; enters X. Then e; enters at least one of A; and A, which contradicts the rule of

Phase 1 since{ < j < h.
a

Claim 3. Every set A; is F-tight.

Proof By the construction of F, gr(A;) > 1. Suppose indirectly that there is an A;
entered by at least two elements of F and assume that A; is as large as possible. Let
e; and ¢ be two elements of F entering A;. By the rule of Phase 1 and (8), we have
i < j < k. Since A is T-laminar we obtain that A; C A; C Ay. But then both ¢; and ;
enter A4 ;, contradicting the maximal choice of A;.

O

By Claim 3 we see that (02) is satisfied.
Claim 4. For every set Z & F there is an index j for which e; enters Zand A; € Z.

Proof. At the end of Phase 1 there is an edge ¢; entering Z. Assume that f is as small
as possible. We show that A; € Z. If this were not true, then X := A; N Z would be
a proper subset of A;. By Claim 1 there is an index i < j for which e; enters X. Then
e; must enter at least one of A; and Z. On the other hand ¢; cannot enter A; by the
rule of the first phase, and it cannot enter Z either by the minimal choice of /, and this

contradiction orives the claim,
O

Claim 5. F covers F.
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Proof. Suppose indirectly that F has a member Z not covered by F and let Z be as
large as possible. By Claim 4 there is an index j for which ¢; enters Z and A; C Z.
Therefore e; is not in F and hence (by the rule of Phase 2) there is a set A; for which
Ag O Aj and ¢ enters A ; but not Z. It follows that A and Z are T-intersecting. By the
maximality of Z, pr{Ax U Z) = 1, that is, there is an edge ¢; € F entering Ay U Z. But
then e, enters at least one of Ay and Z which is impossible since Z is not covered by F,
and if e; enters Ag, then Ay is entered by both g and e contradicting Claim 3.

m}

5. Rooted connectivity augmentation

Let D = (V, A) be a digraph with a specified node s and a subset T € V —s. For anode
v e Vet Als, u; D) ((x(s, u; D), respectively) denote the maximum number of edge-
disjoint (openly disjoint) paths of D from s to v. We say that I is k-edge-connected
from s to T (k-node-connected from s to T) if A (s, r; D) > k (x(s, t; D) = k)holds for
everynodef € T.If T = V — s, we say that the s-rooted edge-connectivity (s-rooted
node-connectivity) of D is at least k. (s-rooted node-connectivity will be sometimes
abbreviated by s-rooted connectivity.)

Let G = (V, E) denote the digraph of possible new edges and let ¢ be a cost function
cn E. The problem we consider consists of determining a minimum cost subset of edges
of G whose addition to I results in a digraph Dt which is k edge- (node-) connected
from 5 to T. This problem is NP-complete even if k = 1, ¢ is 0 — -valued, and the
starting digraph I has no edges. (This special case is a directed version of the Steiner
tree problem. )

However, if G has the special property that

every edge of G has its head in T, )]

then both the rooted edge- and the node-connectivity augmentation problem will be
shown below to be a special case of the framework described above. Note that if
T = V — s, then (9) is automatically satisfied. In particular, one can apply the two-phase
greedy algorithm to find the required minimum cost augmentation if the starting digraph
D is (k — 1) edge- (node-) connected from s to T

Edge-connectivity. Consider first the rooted edge-connectivity augmentation problem.
We assume that A(s,¢; D) > k— 1 foreverynodet e T.Let F = {Z C V —5,2Z0N
T # B, ep(Z) = k — 1}. Since D is (k — 1)-edge-connected from s to T, we have
(k—1)+k—1)=pop(X)+ep(¥) = gp(XNY) +op(XUY) = (k—1) + (k- 1) for
any two T-intersecting members X, ¥ of F. Hence equality follows everywhere from
which pp(X NY) = gp(X UY) = k — 1, thatis, F is T-intersecting.

By the directed edge-version of Menger’s theorem F covers F if and only if
Ms, 1 D1Y > k for every node £ € T where DT := (V, A + F) denotes the augmented
digraph. Consequently, the algorithm described above can be applied to compute the
minimum cost set F,

Node-connectivity. Let us turn to openly disjoint paths. Let D' = (V’, A") denote the
starting digraph and let T’ be a subset of V' — &, Suppose that k(s',¢'; D') > k— 1
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fore evey node ¢’ € T'. Let G' = (V', E) denote the digraph of usable new edges We
require that

every edge of G’ has its head in T". 9

The goal is to find a minimum cost subset F of edges of G’ whose addition to ¥
results in a digraph in which there are k openly disjoint paths from s to every node
of T'. This problem can be reduced to the edge-disjoint case by a simple, well-known
technique called node-duplication, as follows.

For every node v € V' replace v by two new nodes v; and vy, Let s := sp. Let V
denote the set of new nodes andlet T := {v; : v € T’). Let D = (V, A) denote a digraph
in which every original edge uv € A’ determines an edge #,v; and every node v € V
determines an edge uup. In a digraph G = (V, E) we associate an edge upv, with every
original edge uv € E’ (however no edge of type uix nelongs to G). :

It is easy to check that k(s’, v; D') = A5, v;; D) holds for every node v € T’
Moreover, for a subset ' C E’ of edges, by letting F denote the subset of edges of G
corresponding to F', we obtain that the digraph (V. A’ + F") contains k openly disjoint
paths from s to v if and only if there are k edge-disjoint paths in (V, A + F) from s
to v. That is, the rooted node-connectivity augmentation problem reduces to the rooted
edge-connectivity augmentation problem.

Therefore, in order to have an estimation for the complexity of the algorithm it
suffices to consider the edge-connectivity case. Recall that the family A provided by
Phase 1 is laminar and hence it has at most 2» members where n = |V].

The first phase of the algorithm needs a subroutine to check whether, given a subset
E;={e1,...,e} € E of edges, there exists a member of F not entered by E;, and
if 50, the subroutine determines a minimal such member. In the concrete case of rooted
edge-connectivity augmentation this subroutine can be easily constructed, as follows.
E; covers every member of F if and only if there are k edge-disjoint paths from s to
every element of T in the digraph (V, AU E;). For one fixed element ¢ of T this can be
decided by a max-flow min-cut computation. Moreover, if the MFMC algorithm finds no
k edge-disjoint paths from s to ¢, then itis able to determine a minimal subset Z of nodes
forwhich? € Z € V — s and exactly k — 1 edges from AU E enter Z. Therefore by T
applications of the MFMC computation the required subroutine is indeed available. Let
M(n) denote the complexity of an MFMC algorithm on a digraph with 7 nodes, Then the
first phase of the algorithm requires at most O(A||TIM(n)) < O(nEM(n)) elementary
steps. Since there are MFMC algorithms of complexity O(n®) and this part majorizes
the complexity of the whole algorithm, we can conclude that the overall number of steps
of the algorithm is at most o).

With some care however this bound can be reduced. Namely, suppose for a specified
node v € T that an MFMC algorithm has already computed (k — 1) edge-disjoint
paths from s to v along with a minimal set Z possessing exactly k — 1 edges of the
digraph (V, E U {e1, ...e;}). Suppose we add a new edge ¢j+1 to the digraph. Then
we need only one augmenting step of the MFMC algorithm to decide whether there are
k edge-disjoint paths from s to ¢, and this can be done in linear time. That is, at the
beginning we need |7'| MFMC computations but after that taking one subsequent edge
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e; into considerations only O(|T|({E| + |E &._vv < 0@ steps are required. Hence the
complexity of the algorithm is at most O(n®).

Remark 2. The reader may think that working with a general T and assuming (9) is
a bit artificial and it would be more natural to consider only the special case T = V — 5.
Note however that the case T = V — s for openly disjoint paths does not reduce to the
case T = V — s for edge-disjoint paths.

Remark 3. Let G = (V, E) be a directed graph with a specified node s and a terminal
set T € V —s.Lete : E — Ry be acost function such that c(uv) = O foreveryuv € E
with v € V — T. The problem (x} of finding a minimum cost arborescence of root s
that contains every element of T is a special case of the abstract framework described
above (by letting F consist of all subsets of .V — s with a non-empty intersection
with 7). Problem (=) is apparently more general than the problem of finding a minimum
cost spanning arborescence (where T := V — 5), however there is a straightforward
elementary construction to reduce (%) to this latter problem.

Acknowledgements. Special thanks are due to Ulrich Faigle and w his Ph.D. student Daniel Paulusma who
drew my attention 1o a gap in the original proof of the validity of the algorithm.
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