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Let G(V, E} be a finite, undirected graph, and let I(X') be a set function on 2¥.
When can the edges of G be oriented so that the indegree of every subset X is at
least f{X)? A necessary and sufficient condition is given for the existence of
such an orientation when /(X) is “‘convex.”

INTRODUCTION

Let G(¥, E) be a finite undirected graph with vertex set 1" and edge set E.
Multiple edges are-allowed but loops are excluded. Let /(X ) be a nonnegative
integer function on the subsets of ¥, for which J(@) == I(¥) = 0. The
indegree p(X) of a vertex subset X of a digraph is defined in the natural way:
p(X) is the number of edges, the head of which is in X but the tail is not.

Under what condition can we orient the edges of G so that the indegree
p(X) of any subset X of V is at least /(X)?

The first result of this type is due to Hakimi [4]. He has solved the problem
when /(X) is an arbitrary nonnegative integer for { X! = 1 and =0
otherwise. In [3], generalizing Hakimi's result, the problem was solved for
some other special functions, for example, if I(X) is an arbitrary nonnegative
integer for | X| =l and for [ X] = |V | —1and {X) =0 otherwise; or
}X) is an arbitrary positive integer for | X | = 1 and for | X | = | V| — |
and /(X) = 1 otherwise. (The latter equality describes the strong connectivity
of the obtained digraph.) Nash-Williams [6] settled the question for the
function /(X) = £. IR

The purpose of this paper is to investigate the problem in some more
general cases. In the main theorem a necessary and sufficient condition is
given for the existence of a required orientation when X(X) is “convex.”
As a consequence of this theorem we obtain a common generalization of
Hakimi’s and Nash-Williams® results {Theorem 5).

The expression “orientation” has two meanings, without causing any
confusion. One may orient an edge (and speak about its orientation), in the
sense that the undirected edge is replaced by a directed one. On the other
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hand, if we assign an orientation to all the edges of an undirected graph G,
then G is said to possess an orientation.

1. THE MAIN THEOREM

All graphs we consider will have the underlying set V. For X C V, we put
X = V\X. If X consists of a single element x we shall write p(x) instead of
p({x}). In a directed or undirected graph, (X, ¥) will denote the number of
such edges one end vertex of which is in X\¥, and the other one in Y\X. We
use the abbreviation d(X) = d(X, X). Throughout, the shorter-terms graph
and digraph will be used instead of undirected and directed graphs,
respectively.

DEFINITION. A pair of subsets X, ¥ of V' is called crossingif X N ¥ # &,
XYUY£V,X¢CY,and YT X,

DerINiTION.  The nonnegative integer function /(X') defined on the subsets
of V is called convex with respect to G (briefly convex) when {( @) = (V) = 0
and the following inequality holds for every crossing pair X, Y-

X))+ KY)—dX, Y)Y SHX A Y)+ (XU Y). (1)

If (1) holds for every pair X, ¥ then I(X) is called strongly convex.
A set function I(X) is called supermodular if for any crossing pair X, Y the
relation

N+ <HXnY)+UXVY)

holds.
Fundamental results on functions of this type can be found in [1].
Obviously a supermodular function is convex with respect to any graph
and the reader may easily check that J(X) is convex if and only if the set
function 1(X} = }(X) — }d(X) is supermodular. Also note that if /(X) is
convex with respect to G, then it is convex with respect to any supergraph
of G.

THEOREM 1. For a convex set function I(X) there exists an orientation of
the edges of G(V, E) such that

X)) = UX) for @CXCV (2)

if and only if for every partition V = V; U ¥V, U - U ¥V, of the vertices, the
number e, of edges connecting different V.'s satisfies

ey = M vy 3

i=1
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and
e, = Y HP). 4)

Proof. Necessity. In a digraph the number of edges connecting different
Vs is MML p(V). If we have a good orientation (i.e., if (2) holds) then
p(¥) = I(V,) and (3) holds,

If there exists a good orientation with respect to /{X), then reversing the
orientation of all the edges gives a good orientation with respect to I'(X) =
/( X). Therefore (3) is true for I'(X) as well, which is exactly condition (4).

Sufficiency. 1f there exists an orientation of the edges and a partition
V = V,u - V¥, of the vertices for which

ﬁﬁ—\_v = NA—\HV - _' _Dm—\ﬁw = _\ﬁw\—v. m. = N_ .m.....u P AMV

then this partition obviously violates (3).
If there exist an orientation of the edges and a partition V = V, U -V V,
of the vertices for which

.Qﬁﬂ_.v = Nﬁwﬂv - —- ‘A —\.«v = Nﬂh\.mv. i= Nu M«...u L, A@V

then this partition violates (4).

We shall show that if graph G; has a good orientation and was obtained
from G by duplicating some edges, then after deleting one of the new edges
from G;, the resulting graph G, still has a good orientation. This statement
proves our theorem, since one may duplicate all the edges of G at first and
obtain a good orientation by orienting every old edge and its copy oppositely
(d(X) = I(X) follows from (3) and from the fact that /(R) is nonnegative).

At this point we remark that a graph G, obtained from G by duplicating
some edges satisfies (1), (3), and {4) provided G does.

Now let G; be a graph obtained from G by duplicating some edges of G
and assume that G; has a good orientation. Let e(a, &) be an edge in G} which
was not in G. Let G, denote the graph, obtained from G by deleting e. If the
good orientation of Gy is still good in G, , we have finished with the proof.
Otherwise we have a “wrong’ orientation G, of G, , i.e., in G, there are some
sets for which p(X) << f(X). Such sets will be called wrong {p and d in the sequel
concern the graph G,).

We try to improve this orientation. Let the orientation of e(a, b) be ¢(a, b)
in the good orientation of G; . Although the orientation G, is wrong, it is
not too wrong; i.e.,

If X C Vis wrong then p(X) = (X)) — 1. (N
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Since b is contained in every wrong set, we have

..H,._._o intersection of wrong sets is nonempty. (8)

Since a is not contained in any wrong set, we have

The union of all the wrong sets is not ¥. @

Henceforth let G, denote such an orientation of G, for which (7)+(9) hold
and the number of wrong sets is as small as possible. Suppose, indirectly,
that this number is not 0. This will lead to a contradiction.

We need some lemmas.

LemMa 1. For any pair X, Y of subsets of V,
o(X)+ p(Y) = p(X N Y) + p(X¥ U Y} + d(X, Y).

Proof. A simple enumeration of edges verifies the statement. [

LEMMA 2. Let W, , W, be two wrong sets in G, . then both W, W W, and
W, N W, are wrong as well.

Proof. If W, C W, or W, C W,, we have nothing to prove. Otherwise
W, , W, form a crossing pair by (8) and (9), thus

(W) + KWy < KWy W) + I(W, 0 W)+ d(Wy, W), (10)

On the other :w:a. by (7), (8), and (9) we get
p(W, O W) = (W, N Wy — 1,
p(W, U W) =W, v Wy — 1.

(11)

Hence by Lernma 1:

(W) — t + I(Wy) — 1 = p(Wy) + p(Wr) . (12)
= p(W), 0 W) + p(Wy U W) + d(W,, W)
W N W) — 14+ (W, W) — 1 4+d(W,, W)

Equations (10) and A_Nv :.:_u_w that every Ennsm__Q in QSV (11), and (12}
must hold as equality. |

LemMA 3. In G, the union of Ec‘.. number of wrong sets is wrong again.

Proof. The proof is straightforward by Lemma 2. [

The union of all the wrong sets is denoted by R. By Lemma 3, R is wrong.
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DEeFNITION. A nonempty subset § of V is called strict (in G,
HAS) = I(S).

Remark. 1If, in Gy, p(S) = 0, the set § is trivially either wrong or strict.

LemMa 4. If S, and S, are strict subsets, S, U S, # V and .m.. NS, CR,
then S; \ S, and §; N S, are strict.
Proof. The proof is similar to that of Lemma 2: If 5, C.S; or 5, C S,

there is nothing to prove. Otherwise S, , S, form a crossing pair, and §; U S, ,
S, N S, are not wrong by the definition of R. Thus

p(S) + p(Sy)

S N Sy) + p(8 U 8y) - d(Sy, Sy)
2SN Sy + IS VS + dS;,S5,)
= I(S,) + I(S2),

i

K(Sy) + K(Sy)

I

from which the lemma follows. [

LeMMA 5. If 8, ,S,are strict, S, \J S, is not strict, and (S§; U Sp) " R =
then S, NS, = .

Proof. This is obvious by Lemma 4. [

LeMMA 6. If S is strict in Gy, R, is wrong, S and R, are crossing, and
ST R, then S © R, is wrong.

Proof. By the same argument used in the proof of Lemma 2 we get that
at least one of the sets S N R, and S R, is wrong. But § ﬂ R, hence SV R,
may not be wrong. [I

We try to alter the orientation of G, so that

(i) R should become good,
(i) no new wrong set should arise, (13)
(iii) statements (7)-(9) should still hold.

If we find such alteration, then this fact and the minimal property of G,
are in contradiction, which proves the theorem.
We distinguish some cases.

Case 1.

There exists a vertex x ¢ R, not contained in any strict set.

Then there exists a directed path P from a vertex y of R to x (a good subset
of indegree O is strict). Reverse the orientation of the edges of P. It can be
easily checked that the resulting orientation of G, satisfies {13).
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Case 2.

Every vertex x ¢ R is contained in a strict set.

Subcase 2.1. Every vertex x¢ R is contained in a strict set which is
disjoint from R,

In this case R is the union of some strict sets. The maximal strict subsets
Ve, Va,ow Vi of R are pairwise disjoint by Lemma 5, hence V, = R,
Vy ..., Vi is a partition of V. This partition and G, satisfy (3); therefore (3)
does not hold: a contradiction. This case is impossible,

Subcase 2.2. There exists a vertex x ¢ R which is contained in some strict
sets, but all these sets intersect R.
Let the minimal strict sets containing x be M; , M, ,..., M, .

2.2.1. There exists a vertex ye M, " My N - N M, N R.

Then no strict set M exists for which x e M and y ¢ M. Therefore there
exists a directed path from y to x and altering the orientations of all the
edges along this path, we obtain a new orientation of G, which satisfies (13).

222 MinM,n-nM,NR=go.

This is equivalent to

M,uM,u - UM, 2R (14)
By the minimality of the M,’s and by Lemma 4 we get
E.. v, Eu. = —\v

that is,

M:nM;, =g for 1 <i<j<r {15)

By (8) there exists a vertex & contained in all the wrong sets. Assume that
be M;. In this case M; C R. Otherwise apply Lemma 6 with the choice
S=M,, Ry =R, Then Rn M, is wrong and does not contain &: a
contradiction.

Assume M,, M,,.. M, CR and M, ,, My2,.. M,C R, where 1 <
k < r. One can easily check by a simple induction that all the subsets
RAMey,, ROM O My, w ROM O My, 0 N M, are wrong,
Namely, in the /’th step apply Lemma 6 with the choice R, = RN My, N -
NAMe;, S= M., (if §and R, are not crossing, it is easy to see that
R, CS, hence R, NS = R, is wrong). ,

Now RAn M, nnNnM, =M uM,w UMby (4) and (15). Let
Ri=MuM,w - UMandletV,=R,,V,=M,, Vo, = M,,.,. V, =
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M, (wheret = k + 1). Vy, V,,...,, V,form a partition of ¥ by (15) and by the
construction of V; . This partition satisfies (6) with respect to G, , hence (4)
does not hold. Case 2.2.2 is impossible. This completes the proof. J

ExAMPLE. Theorem 1 is not necessarily true for nonconvex functions. Let
v =1{1,2,3,4} E={(1, 2),(3,4)} and let /{X) be defined on 2" as follows:
I(1,3) =1(2,3,4) = I(4) = I and I(X)} = 0 otherwise.

Although conditions (3) and (4) are satisfied, no good orientation exists.
The function /(X) is not convex: X = {1, 2}, ¥ = {I, 3} form a crossing pair
violating (1) {every other crossing pair satisfies (1)).

2. COROLLARIES

Remark 1. My original proof for Theorem | followed the same line but
originally the theorem was formulated for supermodular set functions only.
L. Lovidsz noticed that my lemmas and the theorem remain true for convex
set functions as well.

Remark 2. When /(X) is nonincreasing, that is,
XCY implies NX) = Y},

then obviously (3) implies (4); hence (3) is already sufficient for the existence
of a good crientation (similarly, if /{X) is nondecreasing then (4) implies (3)).
The following remark and theorem are also due to Lovisz.

Remark 3. 1fI{X)}is convex and condition (1) holds not only for crossing
pairs but disjoint pairs as well, then (3) is automatically satisfied.

Thisis true for r =2, If ¢ > 2, let V', , = V¥, W V,_, and ¥ = V, for
i=1,2,.,t— 2 Now we get by induction

t t-2
M )< M Hy) + 1w )+ d(b ey, V)

i=1 i=1
ey +dVi,, V) =e,.

Similarly if /(X) is convex and (1) holds for all the pairs X, ¥, where
X uY = V,then (4) is satisfied. Hence we get

THeorEM 2. IF H(X) is strongly convex with respect to G then there exists
an orientation of G which satisfies (2) (we can obrain a simple proof of this
theorem using the strong convexity only).
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THEOREM 3. Let u(X) be a nonnegative integer set function on the subsets
of V. Suppose u(X} is concave with respect to G(V, E); that is,

X))+ W) —dX, NN =2uXNnY)+uXvY) (16)
for any crossing pair X, Y. Assume further that
u(X) < d(X). (a7
Then there exists an orientation of G such that
o) <ulX) for XCV, (18)

if and only if for every partition V = V, U Vo U - U V; of the vertices, the
number e, of edges connecting different V.'s .E:.m.,mm._.
t

e, < ¥, u(Vy (19)

=1

and
13

e, < 3 u(P), (20)

=]

Proof. An orientation satisfies (18) if and only if
p(X) = d(X) — u(X) for XCV.

Let I(X) = d(X) — w{X). I(X) is nonnegative and a simple calculation
shows that it is convex with respect to G. The condition of the existence of the
required orientation, by Theorem 1, is that for every partition V' = ¥, v
ZAVEREVE 7%

e, > 3 (dV) — w(Vy)

i=1

and
t

ey = M @V — u(V)).

tw]

But MHL d(V)) = 2e,, hence the theorem follows. [

THEOREM 4. Let s(X) be an arbitrary nonnegative integer set function on
the subsets of V. There exists an orientation of G for which

pX) = s(X) . for XCV 1)
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if and only if
s(X) is strongly convex, (22)
S(X)+s(X) =d(X) for XCV. (23)
Proof. Necessity. Condition (22} follows from Lemma I'and (23) is
trivial.

Sufficiency. By Theorem 2 we have an orientation for which p(X) = s(X)
for X C V. (23) implies that this inequality must hold as an equality. |

(Of course there exists an immediate proof for this theorem.)

3. SPECIAL CASES
We shall present some special functions for which Theorem 1 is applicable.
1. Let /(X) be a convex set function with respect to G(¥, E) and let

a(x) and b(x) be two. nonnegative integer functions on V. We seek an orien-
tation of G such that - ‘

p(X) = I(X) for XCV, (24)
alx) < p(x) < b(x) for xeV.
For this aim we construct the following set function F(X):
= KX) _ i <X <] V|1
(X)) = max(i(X), a(x)) if X ={x} (25)

max(I(X), d(X) — b(x)) if X = Vi{x).

Obviously an orientation satisfies (24) if and only if it satisfies (2) for I'(X).
Moreover it is clear that /'(X) is also convex because when X, Y is a crossing
pair then .

1 <|X] < | “\_l,__
l<| Y] <|VI—1;
hence (1) remains true for /',

Applying this method .in any of the special cases below we obtain some
new results which appear to be interesting for their own sake as well.

2, Let p(x) be a nonnegative integer function on V., Let us define
X)) = mingxy p(M (2 CXC VL 2)=K¥)=0.
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Now I(X) is supermodular and nonincreasing;-therefore it is enough to
assume (3) to apply Theorem 1.

3, Consider the last example if p(x) = k. In this case (3) is evidently
equivalent to

d(X) =2 for 2CXCV, (26)

hence Theorem 1 yields a weak form of a famous theorem of Nash-Williams

[6].

We formulate Theorem 1 for the situation described in Examples 1 and 3.

THEOREM 5. Let G(V, E) be a graph and let a(x), b(x) (a(x) < b(x)) be two
nonnegative integer functions on V. There exists a k-strongly-edge-connected
orientation of G in which

p(x) = alx) for xeV

if and only if for every partition V = Vo, W Vi U UV, of the vertices (now
V, may be empty) the number e, of edges connecting different Vis(i = 0) and
the number ¢, of edges lying in Vy satisfy:

e, + e, =kt + Y alx) 2D

xTE -\c

There exists a k-strongly-edge-connected orientation of G for which
plx) << b(x), when xel,

if and only if for every partition V = VoW Vi U Viof the vertices, and
for the number €, of edges connecting different V's (=1

—e, +eh =kt — 3 bx). (28)

zE€¥,

There exists a k-strongly-edge-connected orientation of G for which
alx) < p(x) < b(x)  for xeV
if and only if (27) and (28) hold.

4. Let G(V, E) be a graph and let # be a vertex of G called its root.
Let us define /(X) as follows:

I(Xy=0 if rekX,
=k  otherwise.
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This function is supermodular and nonincreasing; thus by a direct application
of Theorem 1 we get

THEOREM 6. There exists an orientation of G such that
o(X) =k  whenever r¢XCV (29)
if and only if

for every partition V, U VU - U ¥y of the
vertices and for the number e, of the edges (30)
connecting different V's:

e, =(—1-k

Of course we can again apply the method used in Theorem 1. In this case,
however, the exact formulation of Theorem 1 for this special case is left to
the reader.

A digraph satisfying (29), by a well-known theorem of Edmonds [2, 5],
has & edge-disjoint arborescences of root r, In this way we get a celebrated
theorem of Tutte [7]: The graph G has k edge-disjoint spanning trees if and
only if (30) holds. (Of course the theorem of Tutte immediately implies
Theorem 6).
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