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Parity {matching theory) and connectivity (network flows) are two main branches of com-
binatorial optimization. In an attempt to understand better their interrelation, we study
& problem where both parity and connectivity requirements are imposed. The main result
is a characterization of undirected graphs G = (V, E) having a k-edge-connected T-odd
orientation for every subset T'C V with |E|+ |T| even. (T-odd orientation: the in-degree
of v is odd precisely if v is in 7.} As a corollary, we obtain that every (2k)-edge-connected
graph with |V]+|E| even has a (k— 1)-edge-connected orientation in which the in-degree
of every node is odd. Along the way, a structural characterization will be given for dig-
raphs with a root-nede s having % edge-disjoint paths from s to every node and k — 1
edge-disjoint paths from every node to 5.

1. Introduction

The notion of parity plays an important role in describing combinatorial
structures. The prime example is W.T. Tutte’s theorem [20] on the exis-
tence of a perfect matching of a graph. Later, the notion of “odd compo-
nents” has been extended and used by W. Mader [12] in his disjoint A-paths
theorem, by R. Giles [8] in describing matching-forests, by L. Nebesky [16]
in determining the maximum genus, by W. Cunningham and J. Geelen [2]
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veT. It is easy to prove that a connected graph has a T-odd orientation if
and only if T is G-even. (Namely, if an orientation is not yet T-odd, then
there are at least two bad nodes. Let P be a path in the undirected sense
that connects two bad nodes. By reversing the orientation of all of the edges
of P, we obtain an orientation having two fewer bad nodes.) Therefore we
will throughout assume that each undirected graph G occuring in the paper
is connected.

Note that if we subdivide each edge of G by a new node and let T’
denote the union of T' and the set of subdividing nodes, then there is a one-
to-one correspondence between T-odd orientations of G and T'-joins of the
subdivided graph G’. To recall: a T'-join is a subgraph of G’ in which a
node v is of odd degree precisely if v belongs to T".

Given a matroid M on a groundset 5 and a partition of S into pairs, the
matroid parity problem consists of deciding if M has a basis intersecting
each pair in an even number of elements (that is, in 0 or 2.) There are
several equivalent formulations of this, and one of them, which may be called
‘the polymatroid parity problem, is as follows. Given an integer-valued
submodular function b:2Y —Z (that is, 5(X) +5(Y) 2 (X NY)+b(X UY)
for every pair of subsets X,Y CS), decide if the base-polyhedron B(b):=
{zeRY :2(Z)<b(2) for every ZCV and z(V)=b(V)} contains an integer
point whose components are of prescribed parity (say, all even).

As mentioned above, L. Nebesky [16] characterized graphs having a roo-
ted out-connected and T-odd orientation. It is known that, given a connec-
ted undirected graph G=(V, E) with a specified root-node s and a positive
integer k, those integer-valued vectors m:V — Z, for which G has a ro-
oted k-out-connected orientation with in-degree p{v} = m(v) (v € V) span
a base-polyhedron. Therefore Nebesky’s problem may be considered as a
special polymatroid parity problem. For general matroids, matroid-parity
is known to be intractable, but there are several special cases where deep
characterizations are available, and Nebesky’s is one of them.

In this view it is quite natural to change the edge-connection property
in Nebesky’s theorem. For example, the rooted l-out-connected and T-odd
orientation problem was recently solved in [5]. In another natural variation,
one may be interested in finding a characterization of graphs and G-even
subsets T having a strongly-connected (or, more generally, I-ec) T-odd ori-
entation. Note that the notion of strong-connectivity in some respects is
more complex than that of rooted out-connectivity. For example, finding
a minimum cost rooted out-connected subgraph of a digraph (that is, fin-
ding a cheapest spanning arborescence) is polynomially solvable while the
minimum cost strongly connected subgraph problem is NP-complete.
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Strongly connected and T-odd orientability of graphs can also be shown
to be a polymatroid parity problem and the initial goal of our research was
to decide whether this problem is still tractable (like Nebesky’s) or perhaps
it is already NP-complete. Though this problem remains unsolved, it served
as the main motivation behind the present work. We consider the following
property of undirected graphs G.

(P1): G has an l-edge-connected T-odd orientation for every G-even subset
T of nodes.

The main result of this paper (Theorem 4.1) is an NP and a co-NP
characterization of graphs admitting (P1}. As a co-NP characterization, we
prove that (P1) holds if and only if G is (2[+2) " -edge-connected. With the
help of this characterization, a G-even subset T can be found along with
a polynomially checkable certificate for the non-existence of an l-ec T-odd
orientation. As an NP characterization, we prove that (P1) holds if and
only if G can be constructed from a node by a sequence of two kinds of
simple operations. With the help of this building procedure, an I-ec T-odd
orientation of G can be found for any concrete G-even set T'.

As a corollary, it will be shown that every 4-edge-connected graph G =
(V,E) with a G-even subset T has a strongly connected T-odd orientation,
or more generally, that every (214 2)-edge-connected graph, has an l-edge-
connected T-odd orientation. Here (2/4-1)-edge-connectivity is not sufficient:
take =1, G the complete graph on four nodes and T=V.

The proof of the main result has two ingredients. The first one (The-
orem 2.3) is a characterization of graphs having k~-edge-connected orienta-
tion, a result which may be considered as a counterpart of C.St.J.A. Nash-
Williams’ classical theorem on the existence of k-edge-connected orientati-
ons [15]. The second one {Theorem 2.6) is a splitting-off result concerning
k~-edge-connectivity of digraphs which may be considered as a counterpart
of W. Mader’s directed splitting off theorem [13]. Mader used his theorem
to describe a constructive characterization of all k-edge-connected digraphs.
We describe an analogous characterization of k~-ec digraphs which will be
used for constructing all {2k)~-ec undirected graphs.

An interesting feature of this approach is that it relies on two earlier,
rather general results on supermodular functions (Theorems 2.2 and 2.5)
which may be viewed as abstract forms of the above-mentioned theorems
of Nash-Williams and Mader, respectively. This demonstrates that those
general results can quite nicely be applied in concrete situations.

The following analogy may serve as a further motivation to the problem
of characterizing graphs admitting property (P1). For any connected graph
G and subset T of nodes of even cardinality, the maximum number v of
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in characterizing optimal path-matchings. L. Lovész’ [10} general framework
on matroid parity (as its name already suggests) also relies on odd compo-
nents. Sometimes parity comes in already with the problem formulation.
Lovész [9] for example considered the existence of subgraphs with parity
prescription on the degree of nodes. The theory of T-joins describes several
problems of this type.

Another large class of combinatorial optimization problems concerns con-
nectivity properties of graphs, in particular, the role of cuts, partitions, trees,
paths, and flows are especially well studied.

In some cases the two areas overlap. For example, Seymour’s theorem
{18] on minimum T-joins implies a result on the edge-disjoint paths problem
in planar graphs. In [4] some informal analogy was pointed out between
results on parity and on connectivity, but in order to understand better
the relationship of these two big aspects of combinatorial optimization, it
is desirable to explore further problems where both parity and connectivity
requirements are imposed. For example, Nebesky provided a characterization
of graphs having an orientation in which every node is reachable from a given
node by a directed path and the in-degree of every node is odd.

One goal of the present paper is to provide a new result on orientati-
ons of undirected graphs simultaneously satisfying connectivity and parity
requirements. The following concepts of connectivity will be used.

Let k be a positive integer. A digraph D =(V, A) is k-edge-connected
(k-ec, for short) if the in-degree o(X) = pp(X) of X (:the number of
edges entering X)) is at least k for every non-empty proper subset X of V.
By Menger’s theorem, this is equivalent to requiring that there are k edge-
disjoint paths from each node to every other. The out-degree §(X)=6p(X)
is the number of edges leaving X, that is, §(X)=p(V—-X). The 1-ec digraphs
are called strongly connected. We call D rooted out-connected if it
has a node s so that ¢(X) > 1 for every non-empty subset X CV —s, or
equivalently, if every node is reachable by a directed path from s. More
generally, D is rooted k-out-connected (from s) if g(X) > k for every
non-empty subset X C V —s. By Menger’s theorem, this is equivalent to
requiring that there are k-edge-disjoint paths from s to every other nede.
When the root s is specified we speak of s-rooted connectivity.

A digraph D is said to be k-edge-connected (k™ -ec) if it has a node
3, called root node, so that o(X) >k for every subset X with 8C X CV —s,
and o(X) > k—1 for every subset X with s € X C V. The name k™ -edge-
connectivity is motivated by the observation that a k-ec digraph is clearly
k7-ec and a k™ -ec digraph is (k — 1)-ec, that is, k~ edge-connectivity of
digraphs is somewhere between (k —1)- and k-edge-connectivity. When the
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role of the root is emphasized, we say that D is k™-ec with respect to s.
Throughout the root-node will be denoted by s. Note that by reorienting
the edges of a directed path from s to another node s’ of a k™ -ec digraph
one obtains a k™ -ec digraph with respect to root s'.

Define a set-function py as follows. Let pg(8):=px(V):=0 and

_ [k HRcXCV-s
E ?CQ .tflw fmxnﬂ

By the definition, D is k™ -ec if and only if o{X) > pr(X) holds for every
X CV. By Menger’s theorem the k™ -edge-connectivity of D is equivalent to
requiring that D has k edge-disjoint paths from s to every node and k-1
edge-disjoint paths from every node to s.

An undirected graph G=(V, E) is k-edge-connected (k-ec) if ﬂrm num-
ber d(X) of edges connecting any non-empty proper subset X of V' and its
complement V — X is at least k. We are going to introduce a refinement of
this notion and to this end it is useful to recall W.T. Tutte's classical disjoint
tree theorem [19].

Theorem 1.1 (Tutte). An undirected graph G=(V, E) contains k edge-
disjoint spanning trees if and only if

(2) ec(F) Z k(t—1)

holds for every partition F = {V1,V5,...,V;} of V into non-empty subsets
where eq(F) denotes the number of edges connecting distinct parts of F.

We call an undirected graph G=(V, E} (2k)-edge-connected {(2k)"-
ec) if
(3) eq(F) >kt -1
for every partition F:={V1,V3,...,V;} of V. Throughout we will assume on
partitions to admit at least two non-empty classes and no empty ones.

The name (2k)~-edge-connectivity is motivated by the observation that
a (2k)-ec graph, on one hand, is always (2k)-ec since eg{F)=Y_,d(V;)/2>
2kt/2=kt, that is, (3) is satisfied, and, on the other hand, a (2k)~-ec graph
G is (2k—1)-ec since (3}, when specialized to | F|=t=2, requires for every cut
of G to have at least 2k—1 edges. In other words, {2k)-edge-connectivity of
undirected graphs is somewhere between (2k—1)- and (2k)-edge-connectivity.
Note that, by Tutte’s disjoint tree theorem, a graph is (2k) -ec if and only
if it contains k edge-disjoint spanning trees even after deleting any subset
of k—1 edges.

Let T be a subset of V. We call T G-even if |T|+|E| is even. An orien-
tation of G is called T-odd if the in-degree of a node v is odd precisely when
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disjoint T-cuts is always at most the minimum cardinality 7r of a T-join and
there are interesting cases when equality holds. For example, this is so if G
is planar and T belongs to one face. Also the min-max equality holds if G is
bipartite or series-parallel and 7 is arbitrary (theorems of P.D. Seymour [18],
[17]). Here two general problems had been considered. First, characterize
those pairs (G,T') for which 0 = w7 and second, characterize those graphs
G for which 70 = v holds for every (!) even subset T of nodes. The first
problem is apparently more natural since its property clearly belongs to
NP while it is not clear at all whether the property in the second problem
belongs to either of NP or co-NP. Moreover, a goed characterization for pairs
(G,T) in the first problem would likely give rise to a good characterization
for the second problem. However, it turned out that the first problem is NP-
complete (M. Middendorf and F. Pfeiffer [14]) while the second one behaves
nicer as it belongs to co-NP, a theorem of A. Ageev, A. Kostochka, and Z.
Szigeti [1].

The organization of the rest of the paper is as follows. The present sec-
tion is completed by listing definitions and notation. In Section 2 we recall
some known theorems concerning orientations and splitting, and derive two
ingredients (Theorems 2.3 and 2.6) of the main proof. Section 3 exhibits a
constructive characterization of k™ -ec digraphs while Section 4 contains the
main theorem and its proof. In Section 6 new proofs are included for the
two older theorems from Section 2.

A one-element set is called singleton. We often will not distinguish be-
tween a singleton and its element. In particular, the in-degree of a singleton
{z} will be denoted by g(z) rather than g({z}). For a set X and an element
r, we denote XU{r} by X +r.

For a directed or undirected graph G, let i (X)=1(X) denote the number
of edges having both end-nodes in X. Let d(X,Y) (respectively, d(X,Y))
denote the number of edges connecting a node of X —Y and a node of Y — X
(a node of XY and a node of V — (X UY))}. Simple calculation yields the
following identities for the in-degree function g of a digraph G:

(4) (X NY)+o(XUY)=o(X)+o(Y) - d(X,Y),

(5) o(X ~Y) + o(Y —X) = o(X) + o(¥)—d(X,Y)~[o(X NY)-86(X NY)).

Let f be an edge and r a node of G. Then G — f and G — r denote,
respectively, the (di-)graphs arising from G by deleting edge f or node r. By
splitting off a pair of edges e=ur and f=rv of a (di)-graph, we mean the
operation that replaces e and f by a new (directed) edge uv. In a digraph
with p(r) = é(r), by a complete splitting at r we mean an operation
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consisting of pairing first the edges entering and leaving r, splitting then
all these pairs off, and finally leaving r out. We may define analogously a
complete splitting at a node r of an undirected graph provided the degree
of r is even.

Both in the directed and in the undirected case the inverse operation
of complete splitting is as follows. Add a new node r, subdivide j existing
edges by new nodes and identify the j subdividing node with r. This will be
called pinching j edges (with r). When j =0 this means adding a single
new node r, while in case j =1 we subdivide one edge with a node r.

By the operation of adding a new edge to a (di)graph we always mean
that the new edge connects existing nodes. Unless otherwise stated, the
newly added edge may be a loop or may be parallel to existing edges.

Two subsets X and ¥ of node-set V are called intersecting if none of
sets X — Y, Y — X, XNY is empty. If, in addition, V — (X UY) is non-
empty, then X and ¥ are crossing. A family of subsets containing no two
crossing (respectively, intersecting) sets is called cross-free (laminar). A
family consisting of the complements of the members of a partition of V is
called a co-partition of V.

Let p be a non-negative, integer-valued set-function on V for which p(f#) =
p(V) = 0. Function p is called crossing supermodular if p(X)+p(Y) <
p(XNY)+p(XUY) holds for every pair of crossing subsets X,Y of V. When
this inequality is required only for crossing sets X,¥ with p(X) > 0 and
p(Y) >0, we speak of positively crossing supermodular functions.

For a number z, let z+ :=max(0,z). For a function m:V — R and subset
X CV we will use the notation m(X):=3% {(m{v):ve X).

2. Orientation and splitting off

In this section we recall C. St. J. A. Nash-Williams’ orientation theorem [15]
and W. Mader’s directed splitting off theorem [13], exhibit their extensions
into an abstract form concerning crossing supermodular functions, and fi-
nally derive a special case of each which will in turn be used in Section 4 for
the proof of the main theorem.

Theorem 2.1 (Nash-Williams). An undirected graph G has a k-edge-
connected orientation if and only if G is (2k)-edge-connected.

This has been extended in [3] to the following result. A relatively short,
new proof will be included in Section 6.
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Theorem 2.2. Let G =(V,E) be an undirected graph. Suppose that p is
a non-negative integer-valued crossing supermodular set-function on V for
which p(9) = p(V) = 0. Then there exists an orientation of G for which
o(X) = p(X) holds for every X CV if and only if both

t
(6) ea(F) 2 > _p(Vi)
i=1
and . .
(7) ea(F) 2 S p(V - Vi)
=1

hold for every partition F ={Vy,...,V;} of V. Furthermore, if p is monotone
decreasing (that is, p(X)>p(Y) whenever §C X CY CV), then already (6)
is sufficient. If p is symmetric (that is, p(X)=p(V — X) whenever X CV),
then already the special case t=2 of (6) is sufficient (which is equivalent to
requiring that dg(X)>2p(X) for every 8C X CV).

Note that the special case p(X) = k of the last part gives back Nash-
Williams’ theorem. We will need the following corollary of the second part.

Theorem 2.3. An undirected graph G has a k™ -edge-connected orientation
if and only if G is (2k)~-edge-connected.

Proof. Recall the definition of function p; in (1) and observe that p:=p;
is a monotone decreasing, crossing supermodular function. Since {6) for this
function is just equivalent to the {2k) -edge-connectivity of G, the theorem
follows from the second half of Theorem 2.2. 1

The second important ingredient of our approach is motivated by the

following result of W. Mader [13]. We say that a digraph D= (U+r,A) is
k-edge-connected in U if

(8) o(X) >k, &(X) >k for every subset§ C X CU.

By Menger’s theorem this is equivalent to requiring that there are k edge-
disjoint paths in D from u to v for every ordered pair of nodes u,v€U.

Theorem 2.4 (Mader). Let D = (U +r,A) be a directed graph with a
special node r for which g(r)=¥5(r). Suppose that D is k-edge-connected in
U. Then there is a complete splitting at r resulting in a k-edge-connected
digraph on node set U.

The following result of [6] may be considered as an extension of Mader’s
theorem. A new proof will be included in Section 6..
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Theorem 2.5, Let U be a ground-set, p a non-negative, integer-valued po-
sitively crossing supermodular set-function on U for which p(#) =p(U)=0.
Let m;, m, be two non-negative integer-valued functions on U for which
m;(U)=m,(U). There exists a digraph H =(U, F) for which

(9) on(X) =z p(X) for every X C U

and

(10) e (v) = mi(v), 6g(v) =my(v) foreveryvelU
if and only if

{11) my(X) > p(X) for every X CU

and

(12) mo(U — X) > p(X) for every X C U.

In [6] it was shown how this implies Mader’s theorem: define p(X) :=
(k-1 (X)) (BC X CU) and p(®) :=p(U) :=0 where p1 denotes the in-degree
function of the digraph arising from D by deleting . Since g; is submodular,
p is positively crossing supermodular. Furthermore let m;(v) (veU) denote
the number of parallel edges of D from r to v and let my(v) denote the
number of parallel edges from » to r. Clearly, a digraph H =(V,F) satisfies
(10} if and only if F is the set of new edges arising from a complete splitting
at r. It is also immediate to see that (9) is equivalent to the requirement that
the split off digraph is k-edge-connected, while (11) and (12) are equivalent
to the property that D is k-edge-connected in U.

The same approach may be applied to k™ -ec digraphs. We say that a
digraph D= (U +r, A) with root node s€ U is k™ -edge-connected in U if

(13) o(X) > k,8(X) >k —1forevery subset 0 C X C U —s.

By Menger’s theorem this is equivalent to requiring that there are & edge-
disjoint paths in D from s to v and there are k~1 edge-disjoint paths in D
from v to s for every node v€U.

By applying Theorem 2.5 to another suitable function p, we obtain a
splitting off theorem concerning k™-edge-connectivity.

Theorem 2.6. Let D' = (U+r,A’} be a directed graph with a root node
s €U and a special node r for which ¢'(r) = &(r). Suppose that D' is k-
edge-connected in U. Then there is a complete splitting at r resulting in a
k~-edge-connected digraph on node set U,
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Proof. Let Dy =(U, A1) be the digraph arising from D’ by deleting » and
let g1 denote the in-degree function of Dy. Let m;(u) (respectively, mo(u))
denote the number of parallel edges in I from 7 to « (from u to r). Since
¢'(r)=6'(r) we have mo(U)=m;(U). Let p(X}:= (pp{X }—or (X))t (X CU)
and p(#) :=p(U):=0. Since both p; and —p1 are crossing supermodular, p
is positively crossing supermodular.

We claim that (11) holds. Indeed, for every 8 C X CU one has pp(X) <
¢/(X) =1 (X)-+ms(X) from which p(X) = (px(X)~e1(X))~ <mi(X), which
is (11). :

We claim that (12) holds, as.well. Indeed, for every § C X C U we have
PR(X) = pr(X +7) < &/(X +7) = p1(X) + mo(U = X) from which p(X) =
(pe(X) — 01(X))T €m,(U — X), which is (12).

By Theorem 2.5, there exists a digraph H = (U, F) satisfying (9) and (10).
It follows from (9) and from the definition of p that the digraph Dy + H 1=
(U, A1 UF) is k™-ec. By (10), D1 + H is a digraph arising from D’ by a
complete splitting and hence the proof is complete. |

3. Constructing all k™ -edge-connected digraphs

In [13] Mader proved the following elegant description of all k-edge-
connected digraphs, and the goal of this section is to derive an analogous
constructive characterization for k™ -ec digraphs.

Theorem 3.1 (Mader). A directed graph D=(V, A) is k-edge-connected
if and only if D can be obtained from a single node by the following two
operations: (i) add a new edge, (it) pinch k existing edges.

This result immediately follows by combining Theorem 2.4 with another
impressive result of Mader:

Theorem 3.2 (Mader). A minimally (with respect to edge-deletion) k-
edge-connected directed graph (with at least two nodes) always contains a
node r of in-degree k and out-degree k.

The following result may be considered as a counterpart of this theorem
concerning k™ edge-connectivity. Recall the definition of p; in (1) by which
a digraph is k™-ec if and only of o(X) > px(X) for every subset X of nodes.
We say that a digraph is minimally k~-edge-connected (with respect to
a given root s) if it is k™-ec but leaving out any edge destroys k™ -edge-
connectivity.
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Theorem 3.3. Let D =(V,A) be a minimally k™ -edge-connected digraph
with respect to a root node s. If [V|>2, then there is a node r€V —s and
an edge f = ur € A entering r so that p(r} =k, §(r)=k—1and D—f is
k~-edge-connected in V —r. :

Proof. Observe first that for k=1 a minimally k™ -ec digraph is nothing
but a spanning arborescence of root s and the theorem asserts that such a
digraph contains a node of in-degree one and out-degree zero which is clearly
true. Therefore we assume that k> 2, which implies, in particular, that I
is strongly connected.

We call a subset X CV tight if o(X)=pi(X). A node 7 of D and the
set {r} as well will be called special if g(r) =k, §(r)=k—1. A special set is
clearly tight. (Since 6(s) >k, s is not special.) By the minimality of D, every
edge enters a tight set. We will show that there is an edges f=wur € A so that
the head r of f is special and the singleton {r} is the only tight set entered
by f. For such an edge f, D— f is k™-ec in V —r, that is, f satisfies the
requirements of the theorem. So assume indirectly that every edge enters a
non-special tight set.

We need some preparatory claims.

Claim A. For crossing sets X and Y, one has pr(X)+pe(Y)=p:(XNY)+
pe(XUY) and pe(X)+pr(Y) <pi(X =Y ) +pe(Y - X). |

Claim B. The intersection of two crossing tight sets is not special.

Proof. Let X and Y be the two sets. By (5) we have g(X)+o(Y)=p(X)+
PR(Y) <pr(X =Y )pu(Y —X) S o(X =Y )+o(Y -X) = o(X)+o(¥Y)-d(X,¥)—
[e(XNY)—§(XNY)] from which o(XNY) <§(XNY) follows and hence
XNY cannot be special. ]

Claim C. For crossing tight sets X and Y, both XNY and XUY are tight.
Moreover, d(X,Y)=0 holds.

Proof. By (4) we have o(X)+o(Y) =pp (X )+pr(Y) =pe (XNY )4p (XUY) <
o XNY)+p(XUY) = o(X)+ o(Y) —d(X,Y) from which equality holds
everywhere, and the claim follows. |

Let us turn to the proof of the theorem and recall that there is a set 7 of

non-special tight sets so that every edge of D enters a member of 7. Assume
that |7 is minimal and, subject to this,

(14) > (121 : Z € T) is maximum.
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Claim D. 7 contains no two crossing members.

Proof. Suppose indirectly that X and ¥ are two crossing members of 7.
By Claim B, XNY is not special. By Claim C, XNY and X UY are tight.
Hence T':=T —{X,Y}u{XnNY,XUY} is a family of non-special tight sets.
Since d(X,Y) =0, every edge of D enters a member of 7', as well. By the
minimality of 7, we cannot have |7'| < |T|, that is, XNY,XUY €7 and
so |7"]=1T]|. Since X and Y are crossing, | X|>+{Y |2 <|XNY |2+ |X UY[?,
contradicting (14). ]

Let K:={X€T:5¢X}and £L:={V-X:XeT,sc€X}. Then K contains
no special set, o{X)=k for every X €K, and §(X)=k -1 for every X e L.
Let C denote the union of K and £ in the sense that if X is a set belonging
to both X and £, then C includes two copies of X. Now C is a laminar family
of subsets of V —s, and every edge e of D is covered by C in the sense that
e enters a member of X or leaves a member of L. Let us choose families K
and £ so as to satisfy all these properties and so that > (|X|: X €C) is
minimum.

Claim E. There is no node v€V for which {v}€X and {v}<€L.

Proof. v€ £ implies §(v)=k—1. v€ KX implies p(v) =k, that is, v would be
special, contradicting the assumption on X |

Claim ¥. There is a non-singleton member Z of C.

Proof. Suppose indirectly that every member of C is a singleton. Let K =
{v: {v} € K}. Since D is strongly connected and {V| > 2, there is an edge
e=st leaving s. Edge e cannot leave any member of £ since these members
are subsets of V' — 5. Therefore e must enter a member of K, that is, K is
non-empty. By the strong connectivity of D, there is an edge €' leaving K.
By Claim E, no element of K, as a singleton, is a member of £, and hence
€' neither enters a member of X nor leaves a member of £, contradicting the
assumption. |

Let Z be a non-singleton member of C which is minimal in the sense that
every proper subset of Z belonging to C is a singleton.

Claim G. Z induces a strongly connected digraph.

Proof. Suppose indirectly that there is a nonempty subset X C Z so that
there is no edge in D from X to Z— X. If Z € X, then replace Z in K by
Z—X. Since k< p(Z ~ X) < o(Z) =k we have 9(Z — X )= k. Furthermore,
Z—X cannot be special since every edge entering Z enters Z—X as well and
hence every edge entering X leaves Z — X from which k& <o(X) <6(Z - X).
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If Z €L, then replace Z in £ by X. Since k—1<86(X)<6(Z)=k—1, we
have §(X)=k—1. In both cases we obtain a laminar family satisfying the
requirements for C and this contradicts the minimal choice of C. ]

To conclude the proof of the theorem, we distinguish two cases.

Case 1. ZeK.

There must be an element v of Z for which {v} € X, for otherwise Z could
be left out from K. We claim that {u} € K for every u € Z. For otherwise
X :={xe€ Z:{z} €K} is a non-empty, proper subset of Z, so by Claim G
there is an edge e=xy with z€ X,y€Z — X, and then e cannot be covered
by C (using that {z} is not in £ by Claim E).

It follows that every edge uv with u©,v € Z leaves a member of £ which is
a singleton by the minimal choice of Z, and hence, by Claim G, {v}isin £
for every v€ Z. Then we have k=9(Z)=3 (o(v) :v€ Z) —i(Z) > k|Z|—i(Z)
and k—1<8(Z)=2(6(v) :ve Z)—i(Z) = (k—1)|Z| —i(Z) from which
(k—1)(|Z}—1)>i(Z) 2 k(| Z| ~ 1), a contradiction. Therefore Case 1 cannot
occur.

Case 2. Zc L. ~

There must be an element v of Z for which {v} €L, for otherwise Z can
be left out from £. We claim that {u} ¢ £ for every u € Z. For otherwise
X :={xe€ Z:{z} €L} is a non-empty, proper subset of Z, so by Claim G
there is an edge e=yz with z€ X,y€ Z— X, and then e cannot be covered
by C (using that {z} is not in K by Claim E).

1t follows that every edge uv with u,v € Z must enter a member of X,
which is a singleton, by the minimal choice of Z, and hence, by Claim G, {v}
is in K for every v € Z. Therefore, as K contains no special sets, no element
of Z is special, from which §(v} >k holds for every v€ Z.

We have k—1=86(Z)=>3_(6(v):veZ)—i(Z) 2 k|Z|—#(Z)} and k< p(Z)=
Y (olv):v € Z)—1i(Z) =k|Z|—i(Z) from which k—12 k, a contradiction.
Therefore Case 2 cannot occur either, and this contradiction completes the
proof of the theorem. il

We are now in a position to formulate the main result of this section.

Theorem 3.4. Let D=(V, A) be a digraph with a root-node s and let k> 2
be an integer. Then D is k™ -edge-connected (with respect to s) if and only
if D can be constructed from s by a sequence of the following operations:
(i) add a new edge, (ij) pinch k—1 existing edges with a new node r and
add a new edge entering r and leaving an existing node.
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Proof. It is easy to see that both operations (j) and (jj) preserve k~-edge-
connectivity.

To see the converse, suppose that D is k7 -ec. If D has no edges, then
D has the only node s. Suppose now that A is non-empty and assume by
induction that every k™ -ec digraph, having a fewer number of edges than D
has, is constructible in the sense that it can be constructed as described
in the theorem.

If D has an edge f so that DV:=D— f is k™ -ec, then D’ is constructible
and then we obtain D form D' by adding back f, that is, by operation (j).
Therefore we may assume that the deletion of any edge destroys k™ -edge-
connectivity.

By Theorem 3.3 there is a special node r€V —s and an edge f=ur of
D so that D':=D— f is k~-edge-connected in I/ :=V —r. In D’ both the in-
degree and the out-degree of r is k& so we may apply Theorem 2.6 to I'. The
digraph Dy + H arising from the complete splitting ensured by Theorem 2.6
is {T-ec. (Here Dy;=D~r and H=(V,F) is the digraph of split-off edges.)
Now D1+ H has k41 fewer edges than D has so D1+ H is constructible by
induction.

Clearly, D arises from D+ H by pinching first F' with » and adding then
f =ur, that is, D arises from D; + H by applying operation (ij}, proving
that D is also constructible, |

Remarks. Note that using network flow algorithms, it is possible to check
in polynomial time for every edge f = ur of D whether f can be deleted
from D without violating k™ -edge-connectivity in V —r. If so, we can leave
out f and hence we may assume that every edge of D) enters a tight set. A
flow algorithm can also compute the (unique) largest tight set X entered by
f. Edge f satisfies the requirements of Theorem 3.3 if and only if X ={r}
and 6(X)=Fk—1. Since Theorem 3.3 ensures the existence of such an edge,
we can find one.

The proof of Theorem 2.5 in 6] is algorithmic and gives rise to a com-
binatorial strongly polynomial algorithm provided an oracle is available to
decide whether a digraph D' = (V, A’) with in-degree function o’ satisfies
o'(X) 2 p(X) for every subset X CV. We applied Theorem 2.5 to a function
p defined by p(X):=(pr(X)—pg1(X))™ and in this case the oracle can indeed
be constructed via a network flow algorithm. Hence we can find in polyno-
mial time a digraph H = (U, F) for which D1+ H is k™-ec in U. By applying
this method at most |A| times, one can find the sequence of operations (j)
and (jj) guaranteed by Theorem 3.4.
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4, The main result

¢

Our main result is as follows.

Theorem 4.1. Let G=(V, E) be an undirected graph with n>1 nodes and
let | be a positive integer. The following properties are equivalent.

(P1) G has an l-edge-connected T-odd orientation for every G-even subset
TCV,

(P2) G is (21 +2)” -edge-connected, that is,
(15) ec(F) > 1+ 1)t -1
Vil of V,

(P3) G can be constructed from a node by a sequence of the following
operations: (i) add a new edge, (ii) pinch a subset F' of | (distinct) existing
edges with a new node r and connect r with an arbitrary existing node u
(that may or may not be an end-node of an element of F'). :

for every partition F:={V1,Va,.

Note that, by mvv_%mzm Theorem 2.3 to k=I+1, we obtain that property
(P2) is equivalent to (P2'), and by applying Theorem 1.1 of Tutte to k=I+1,
we obtain that property (P2) is equivalent to (P2"), where

(P2') G has an orientation which is (I +1)~ -edge-connected,

(P27} G—J contains I+1 edge-disjoint spanning trees for every choice of an
{-element subset J of edges.

Proof. (P1)—(P2). Let F:={V1,...,V;} be a partition of V. For j=2,...
choose an element t; of V; if [+4(V;) is even. Furthermore, if the number of
chosen elements plus |E| is odd, then choose an element #; of V3. Let T be
the set of chosen elements. Then T is G-even and, by (P1), G has an l-ec T-
odd orientation. For every 7=2,...,t, o(V;) >, and we claim that equality
cannot occur. Indeed, if { +i(V;) = o(V;) +i(V;) =3 (e(v) : v €V;) = |V;NT|
{mod 2}, then ! +i(V;)+|V; NT| would be even contradicting the definition
of T. Therefore, for every j=2,...,t we have o(V;)>1+1 and also g(V1) > 1.
Hence eg(F) HMUw.nH o(Vi) = (1+1)(t—1)+I=(I+1)t -1, that is, (15) holds
and (P2) follows.

(P2)—(P3) Let s be any node of G. By Theorem 2.3, G has an: ({+1)~
orientation, denoted by D= (V, A). By Theorem 3.4, D can be constructed
from s by a sequence of operations (j) and (jj). The ooﬁmmvos&ﬂm mm@cmﬂnm
of operations (i) and (ii) results in G, that is, (P3) holds.
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(P3)—(P1). We use induction on the number of edges. There is nothing to
prove if G has no edges so suppose that F is non-empty. Let T be a G-even
subset of V. Let G' denote the graph from which G is obtained by one of
the operations (i) and (ii). By induction, we may assume that G’ has an l-ec
T'-odd orientation for every G'-even set T".

Suppose first that G arises from G’ by adding a new edge f = zy. Let
T' := T @ {y} (where @ stands for the symmetric difference). Clearly, T"
is V-even. By induction, there exists an l-ec T'-odd orientation of G'. By
orienting edge ¢ from z to y, we obtain an l-ec T-odd orientation of G.

Second, suppose that G arises from G’ by operation (ii), that is, by
pinching F with r and adding ur. In case r € T, define T/ := T —r if !
is even and T':=(T —r) @ {u} if [ is odd. In case r gT, define T":=T @ {u}
if I is even and T’ =T if I is odd. Then 7" is G'-even and, by induction, G’
has an l-ec T'-odd orientation G’ . Orient the undirected edge ur from u to
7 if either [ is even and r €T or else [ is odd and r € T. Otherwise (that is,
if either I is odd and r €T or else [ is even and r ¢T') orient ur from r to u.

Furthermore, if an element zy of F is oriented in G' from z to y, then the
two corresponding edges rz,ry of G be oriented from  to r and from r to
y, respectively. Obviously, the resulting orientation of G is l-ec and T-odd. §

We remark that property (P2") can be derived directly from (P3) without
invoking Tutte’s theorem. Since both (P1) and (P2') are about the existence
of certain orientations of G, it is tempting to try to find a direct, short proof
of their equivalence, or at least one of the two opposite implications. We did
not succeed even in the special case [=1.

Since any (2k)-ec graph is (2k)"-ec, one has the following corollary.

Corollary 4.2. A (21+2)-edge-connected undirected graph G=(V, E)) with
|E|+|V| even has an I-edge-connected orientation so that the in-degree of
every node is odd. 1

We do not know any simple proof of this result even in the special case
of I=1. ‘

5. Remarks and problems

In Theorem 4.1, property (P2) may be viewed as a co-NP characterization of
property {(P1). This means that there is a polynomially checkable certificate
for the negation of (P1), namely, a partition F of V violating (15). In fact,
if (P2) fails to hold for a partition, then a concrete G-even subset T can be
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constructed (as proved in (P1)— (P2)) for which no l-ec T-odd orientation
exists.

Also, property (P3) may be viewed as an NP characterization of (P1).
This time a polynomially checkable certificate for the truth of (P1) is a
sequence of operations (i) and (ii) which actually builds up G from an initial
node. Moreover, if a building procedure for G described in (P3) is available,
then one can easily find (as described in the proof of (P3) — (P1) above) an
l-ec T-odd orientation of G for any specified G-even set T

In the introduction it was mentioned that, generalizing Nebesky’s the-
orem, [5] provided a necessary and sufficient condition for the existence of a
rooted [-out-connected and T-odd orientation of a graph where T is a speci-
fied G-even subset. The counterpart of Theorem 4.1 concerning rooted {-out-
connectivity was also given in [5] but this is much easier than Theorem 4.1.
Namely, an undirected graph G=(V, E) with a root-node s has an s-rooted
l-out-connected and T-odd orientation for every G-even subset T of nodes if
and only if eq(F) > (I41)(t—1) holds for every partition F:={W1,V,...,Vi}
of V. The necessity of this condition is rather straightforward and can be
proved along the same line as the necessity of (15) was proved in Theorem
4.1. An easy, direct proof of sufficiency was given in [5]. For completeness,
we cite this proof. Let T be any fixed G-even subset. By Tutte’s Theorem
1.1 the condition is equivalent to the existence of !+ 1 edge-disjoint span-
ning trees. Orient the edges not in these trees arbitrarily. Among the I+1
trees take I and orient each to become an s-rooted arborescence, ensuring
this way the s-rooted I-out-connectivity. Finally, the remaining tree, being
a connected graph, can be oriented so as to meet the parity prescription on
the in-degrees.

As far as algorithmic aspects are considered, for a given graph G=(V, E),
the question whether there is a partition F violating (15) or else G can be
built up as described in property (P3)} of Theorem 4.1 can be answered algo-
rithmically as follows. The proof of Theorem 2.3 described in [3] is algorith-
mic, and gives rise to a combinatorial strongly polynomial time algorithm
in the special case p=p;, for finding either a k™ -ec orientation of G or else a
partition violating (3) (which is equivalent to (15) for k=1+1). As we have
mentioned at the end of Section 3, finding a sequence of operations (j) and
(jj) to build D, and hence a sequence of operations (i) and (ii) to build G,
can also be done in polynomial time.

Naturally, this is just an outline of the existence of a combinatorial poly-
nomial time algorithm for finding either a partition of V' violating (15) or
else a sequence of operations (i) and (ii) to build G, and leaves room for
improvements to get a more decent bound on the complexity.
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In this work an edge-connectivity and parity constrained graph orienta-
tion problem has been solved. As a main tool of the solution, we introduced
the notions of k™ -edge-connectivity of digraphs and (2k)~-edge-connectivity
of undirected graphs which may be considered as refinements of the known
edge-connectivity notion of graphs and digraphs. This naturally gives rise
to the problem of investigating further refinements.

For integers k and ! (among which ! may be negative), we say an undirec-
ted graph G'=(V, E} to be (k,!)-partition-connected, in short, (k,I)-pc if
the number eq(F) of cross edges is at least k(t—1)+1 for every partition F
of V into non-empty parts where t=|F|>2. It is not difficult to show that
for 1>k, a graph G is (k,l)-pc if and only if G is (k+)-edge-connected. Note
that (k,k — 1)-partition-connectivity is the same as k~-edge-connectivity.

By Theorem 1.1 of Tutte, (k,0)-partition-connectivity is equivalent to
the existence of k edge-disjoint spanning trees. For negative values of [, it
can be proved with standard matroidal tools that G is (k,!)-pc if and only if
G can be made (k,0)-partition-connected by adding I} new edges. That is,
for negative I, every (k,!)-pc graph arises from a (k,0)-pc graph by deleting
[I| edges.

For non-negative integers | < k, a digraph D = (V, A) is called (k,I)-
edge-connected if D has a node s so that o(X) > &k and §(X) > { for
every non-empty subset X CV —s For =k, [ =0, and | = k — 1, this
is, respectively, equivalent to k-edge-connectivity, rooted k-out-connectivity,
and k™ -edge-connectivity.

Fortunately, Theorem 2.2 may be applied again and, by choosing function
ptobe p(X):=kif 0CXCV—s, p(X):=lif s€e X CV, p(B):=p(V):=0,
we obtain the following generalization of Theorem 2.3.

Theorem 5.1. For nonnegative integers l <k, an undirected graph G has a
(k,l)-edge-connected orientation if and only if G is (k,l)-partition-connected.

It would be interesting to find constructive characterizations for (k,1)-ec
digraphs and (k,!)-pc undirected graphs. We propose the following conjec-
tures.

Conjecture 5.2. Let 0 <! < k be integers. A directed graph D = (V,A)
is (k,l)-edge-connected if and only if it can be built form a node by the
following two operations: (j) add a new edge, (j5) pinch i (I < i < k)
existing edges with a new node r, and add k—i new edges entering r and
leaving existing nodes.

Conjecture 5.3. Let 0<! <k be integers. An undirected graph G'=(V, E)
is (k,I)-partition-connected if and only if it can be built from a node by the
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following two operations: (j) add a new edge, (77) pinch i (I <i<k) existing
edges with a new node r, and add k—¢ new edges connecting r with existing
nodes.

By Theorem 5.1, the second conjecture follows from the first one. For
1=0, Conjecture 5.2 is known to follow by an easy elementary construction
from Theorem 3.1 of Mader. For =k —1 the statement of Conjecture 5.2
is the same as Theorem 3.4. In a recent paper [7}, we proved Conjecture 5.2
for [=1. The smallest open case is [=2, k=4,

Theorem 2.6 is a result. on splitting off preserving (k,k — 1)-edge-
connectivity. A generalization of this concerning (k,!)-edge-connectivity
(0 <! < k) follows from Theorem 2.5 in an analogous way as Theorem 2.6
did:

Theorem 5.4. Let | < k be positive integers. Let D' = (U +r,A’) be a
directed graph with a root node s€U and a special node r for which ¢'(r}=
&'(r). Suppose that D' is (k,l)-edge-connected in U. Then there is a complete
splitting at r resulting in a (k,!)-edge-connected digraph on node set U.

Therefore the only obstacle in proving Conjecture 5.2 is the lack of an
extension of Theorem 3.3. We formulate it as a conjecture.

Conjecture 5.5. Let [ < k be positive integers. Let D =(V, A) be a mini-
mally (k,I)-edge-connected digraph with respect to a root node s. If [V|>2,
then there is a node r € V — s with o(r) =k, §{(r) <k and a subset F of
o(r) —6(r) edges entering r so that D — F is (k,I)-edge-connected in V --r.

The technique applied in the proof of Theorem 3.3 may be used to derive
the following consequence of this conjecture: Where I <k, a minimally (k,1)-
ec digraph with at least two nodes contains a node r € V —s with o(r) =
k, 6(r)<k.

6. New proof of Theorems 2.2 and 2.5

In this section we include new proofs of the two general theorems in Section
2 concerning supermodular functions. The goal, on one hand, is to make
the paper self-contained, and to provide proof-techniques different from the
existing ones on the other. We note however that the relatively short proof
below of Theorem 2.2, unlike its original proof, is not algorithmic.

Proof of Theorem 2.2. As the necessity of (6) and (7) is straightforward,
we prove the sufficiency only. Let us start with the first part of the theorem
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and assume that (6) and (7) hold. For a subset X CV, we use eqg(X) to
denote the number of edges of G with at least one end-node in X. (For a
partition F consisting of V —X and of the singletons of X, clearly, eq(X)=
eg{F).) We will need the following well-known and easy claim.

Claim 6.1. Given m : V — Z,, there is an orientation of G for which
o(v)=m(v) for every veV if and only if m(V)=|E| and m(X) <eq(X) for
every XCV.

Proof. The necessity is trivial. To prove sufficiency it suffices to show the
existence of an orientation for which g(v) > m(v) for every v€V since then,
by m{V')=|E]|, equality must hold everywhere. Start with any orientation.
If it has a deficient node s, that is, g(s) < m(s), then the set X of nodes
reachable from s in the given orientation must contain a node ¢ with g(t) >
m(t), for otherwise X would violate the condition (as m(X) >3 (e(v):ve
X)=eq(X)—6g(X)=ea(X)). By reorienting each edge of a directed path
from s to t we obtain a better orientation. : ]

Let R be a family of (not necessarily distinct) non-empty proper subsets
of V. We say that R is regular if each node of ¥V belongs to the same
number of elements of R. Clearly, both a partition and a co-partition of V
are regular cross-free families.

Claim 6.2. A regular cross-free family R includes a partition or a co-
partition of V.

Proof. Let R:={X:V~Xe&R}. Then R is also regular and cross-free, and
the claim is equivalent to stating that R or R includes a partition of V.

Let Z be a minimal member of RUR (with respect to containment). By
symmetry, we may assume that Z ¢ R. We are going to show that R includes
a partition of V — Z. This partition along with {Z} will provide the desired
partition of V.

Every member X of R either includes Z or is disjoint from Z, for other-
wise X would cross Z by the minimal choice of Z. Therefore the regularity
of R implies that every element of V —Z belongs to a member of R disjoint
from Z, and the maximal members of R disjoint from Z do not cross, that
is, they form a partition of V — Z. ]

Let eg(R):=1 3 (dg(X): X €R). (When R is a partition, then this sum
is the number of edges connecting different parts.) By Claim 6.2, any cross-

free, regular family R can be decomposed into partitions and co-partitions.
Hence (6) and (7) imply

(16) > (X)) : X € R) < ea(R).
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Actually, (16) holds for every regular family R. To see this, suppose indi-
rectly that there is a regular family R violating (16) and assume that, given
[R|, S2(]X]?: X €R) is as large as possible. Since R cannot be cross-free, it
contains two crossing members S and T'. Let R’ denote the family arising
from R by replacing § and T by SN T and SUT. (This operation may be
called an uncrossing step.) Clearly R’ is regular. By the crossing supermo-
dularity of p, ¥ (p(X): X eR") 2 (p(X): X € R). By the submodularity of
dg, eg(R’) <eg(R), that is, R’ also violates (16), contradicting the extremal
choice of R as |R'|=|R| and (| X|?>: X €R") >3 (|X|2: X eR).

We say that a regular family is tight if (16) is satisfied with equality. It
follows from the argument above that an uncrossing step preserves tightness
of a regular family. Also, if a tight regular family R includes a regular sub-
family Rq, then Ry:=R —7R; is also regular, so they both satisfy (16) and
hence both R;'s (i=1,2) are tight.

We may assume that every singleton {v} belongs to a tight partition R,.
For otherwise, revise p by increasing its value on {v} as much as possible
without violating (6) or (7). Clearly, such a modification results in a cross-
ing supermodular function and cannot destroy (7) unless (6) is destroyed.
Therefore when p(v) cannot be increased anymore without violating (6) and
(7}, then there is a tight partition including {v} as a member. The union R
of tight partitions R, (v€ V) is tight and so is the regular cross-free family
‘R arising from Ry after applying uncrossing steps as long as possible. Since
an uncrossing step never removes singletons, R includes all singletons {v}
(veV) from which we can conclude that partition {{v}:v€V} is tight.

Let m(v) := p(v) (v € V). The tightness of partition {{v}:v € V} is
equivalent to m(V)=|E|. Let 8C X CV and let F be the partition consisting
of V — X and the singletons of X. By (6) and by p(V — X) > 0 we have
m{X)=Y (mv):veX)=3 (pv):veX) <Y (pv):veX)+p(V-X) <
ea{F) = eg(X). By applying Claim 6.1 to m, we obtain an orientation of
G for which p(v) = p(v) for every v € V. We claim that this orientation
satisfles the requirement of the thecrem. Indeed, for a subset X of V, let
F be the partition consisting of X and the singletons of V — X. By (6) we
have p(X) + 2(p(v) 10 € V — X) < e(F) = o(X) + X(o(0) 1 v € V - X) =
o(X)+ > (p(v):v€V —X) from which p(X)<e(X), as required.

To see the second part of the theorem, suppose that p is monotone
decreasing. We only have to show that in this case (6) implies (7). Since
Vit1 €V =V, by the monotonicity of p we have p(V — V) < p(Vi4,) for
i=1,...,t (where Viy; := V1), from which } ({(p(V-V):i=1,...,8) <
> ((p(Vi):i=1,...,t) <eg(F) and (7) follows.
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To see the last part of the theorem, suppose now that p is symmetric.
Then {6} and {7} are equivalent so it suffices to show that (6) holds true for
every partition of V into ¢ parts provided that (6) holds for every partition
of V into 2 parts, which is equivalent to requiring that d(X) > 2p(X) for
every subset X CV. Let F={V,,...,V;} be a partition of V into ¢t >3 parts.
Then, by using d(V;) > 2p(Vi), we have eg(F)=3,d(V})/2> ;p(Vi), that
is, (6) indeed holds. il

Proof of Theorem 2.5. Necessity. Suppose there is a digraph H with the
required properties. Then m;(X) =3 (er(v):v€ X) > ou(X) 2 p(X) and
mo(U—~X}=3(8u(v):veU—-X)26x(U—X)=pn(X)2p(X), that is, (11)
and (12) hold.

Sufficiency. Assume indirectly that no digraph exists with the required
properties. Since m;(U) =m,(U), it can easily be seen that there is a digraph
H (possibly with loops and parallel edges) satisfying (10). Let gg(X) :=
p(X) —op(X) and pg :=max(qu(X): X CU). Let F:={XCU:qu(X)=
up . By p(8)=0=pg(0), we have ug >0 and since pg=0 is equivalent to
(9), pgr must be positive. This implies that p(X) > 0 for every member X
of .ﬂ.m.

Claim 6.3. Let X and Y be two crossing members of Fg. Then both XNY
and X UY belong to Fy.

Proof. Since gy is submodular, p is positively crossing supermodular, and
p(X) >0 and p(Y) >0, we have pg+prg=qu(X)+qu(¥) <gu(XNY)+
g (X UY) <pp+png from which g (X NY)=py and gg(XUY)=puy, and
the claim follows. ]

Assume now that H is chosen in such a way that (x) py is as small as
possible and, subject to this, (xx) |Fg| is as small as possible.

Let K be a minimal member of g and L2 K a maximal member of Fg.
There is an edge e=uv of H with u,v € K for otherwise m;(K)=3 (or(2):
z€ K)=pp(K)=p(K}— pg < p(K), contradicting (11). There is an edge
f=zy of H with z,y € U—L for otherwise m,(U—L)=3 (6g(z):veU-L)=
6p(U —Ly=en(L)=p(L}—pun <p(L), contradicting (12).

Revise H by replacing edges e and f by edges uy and zv, and let H’
denote the resulting digraph. Clearly, H' satisfies (10), as well. The following
is immediate.

Claim 6.4. Ifgg+(X) < pg(X) for some subset X CU, then either uv enters
X and zy leaves X or else uv leaves X and zy enters X (and, in particular,
none of ¢ and f is a loop). ]

GRAPH ORIENTATIONS WITH EDGE-CONNECTION 69

This implies gg(X)> o (X)—1 for every subset X CU. There is no set
X € Fg for which pg(X)=pg(X)—1, for otherwise X and K are crossing
by Claim 6.4 and then X NK e Fg by Claim 6.3, contradicting the minimal
choice of K. It follows that uy < uy and actually here we have equality by
assumption (*).

Since pp+(K) > o (K), the subset K is not in Fgs. By assumption (+x),
there must be a set X which is in Fyr—Fpy. Then g/ (X) <oy (X), that is,
e (X) = pp(X)—1. Apply Claim 6.4. By symmetry we may assume that
uv enters X and zy leaves X.

We have g (X)+1=qp (X)=ppr =pn. As g (X)=p(H') and g (K)=
i+gr are positive number, so are p(X) and p(K). Since K and X are crossing,
by the minimal choice of K we have py + (py — 1) = gu(K) + qu(X) <
g (KNX)+qu(KUX) < (g —1)+ pp, from which gg(KUX)=pugy. That
is, X' :=KUX belongs to Fy. Since L and X’ are either crossing or LC X',
we obtain by using Claim 6.3 that X'UL € Fg, in a contradiction with the
maximal choice of L. o (1]
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