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1. INTRODUCTION

W.H. Cunningham and J.F. Geelen [2 and 3] introduced the notion of path-
matchings as a common generalization of the weighted matching problem and the
weighted matroid intersection problem. They proved that this problem is solvable
in polynomial time through the ellipsoid method [7]. They also proved the total

dual integrality of thecorresponding linear system. '

Cunningham and Geelen defined a path-matching as follows. Let G = (V, E)
be an undirected graph and T, 7T, disjoint sets of G; we call these two sets the
terminal sets of G. We denote V — (T} U T3) by R. Let M, and M, be two matroids
on T and T, respectively. An independent path-matching with respect to My, M,
is a set K of edges such that every component ofthe subgraph Gy = (V,K) having
at least one edge is a simple path from 73 UR to T> UR, all of whose internal
nodes are in R, and such that the set of nodes of T; in any of these paths
is independent in M;, for i = land 2. The one-edge components in R are called
the matching edges of K. The value of a path-matching K is defined to be the
number val(K) = |K| + |K'|, where K’ denotes the set of the matching edges of
K. (That is, the matching edges count twice.)

A basic path-matching is a set K of edges such that the subgraph Gx = (V,K)
is a collection of r disjoint paths, all of whose internal nodes are in R, linking a
basis of M, to a basis of M», together with a perfect matching of the nodes of R
not in any of the paths. That is, the rank of M; and M, are the same and equals to
r. Note that the value of a basic path-matching is r + |R)|.

If M, and M, are free matroids, then we refer to an independent path-matching
as a path-matching and to a basic path-matching as a perfect path-matching (then
71| = |T2| = r).

A pair of subsets Iy CT\UR, I, C T, UR is called stable, if no edge of G
joins a node in /; — I to anode in /; or a node in I, — 1, to a node in /,. Let c(G)
denote the number of components of G having an odd number of nodes. For a
subset S of nodes of G, GIS] denotes the subgraph of G induced by S. Through-
out the study, we do not distinguish between a set ofcardinality one and its only
element. '

Cunningham and Geelen proved the following min-max formula for the maxi-
mum value of a path-matching.

Theorem 1.1.  For the maximum value of a path-matching one has the Jollowing
SJormula:

max val(M) =
M, a path-matching

min |T| UR— Il| + |T2 UR-— ]2| + |1'1 ﬁ]zl — C(G[[l ﬂ]z]).
(h.I) a stable pair

They proved the following theorem as a consequence of the min-max formula.
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FIGURE 1. A cut X separating T, and To.

Theorem 1.2. If |T\| = |T;| = k, then there exists a perfect path-matching if
and only if -

W UL+ c(GILNE]) <|R|+k  for all stable pairs (I}, 1).

We define a cut separating the terminal sets 7; and T, to be asubset X cv
such that there is no path between 7y — X and 75 — X in G — X. (See Fig. 1)

Let oddg(X) denote the number of connected components of G — X which are
disjoint from 77 U T, and have anodd number of nodes, and let Oddg(X) denote
the union of these components. In this note, we provide a simplified characteriza-
tion for the existence of a perfect path-matching, which is a direct extension of
Tutte’s theorem onperfect matchings. It allows us to provide a combinatorial proof
by mimicking Anderson’s simple proof of Tutte’s theorem [1]. (Cunningham and
Geelen gave two proofs for their min-max theorem. The first one uses the Tutte-
matrix, while the second approach relies on polyhedral methods.)

Theorem 1.3. In G = (V,E) there exists a perfect path-matching if and only if
|T)| = |T»| = k and

|X| > oddg(X) +k holds for all cuts X. (1)

As a corollary, we are going to deduce the following simplified version of
Theorem 1.1.

Theorem 1.4.  For the maximum value of a path-matching one has the Jollowing
formula:

M, ap;}}ziirﬁatchmg val(M) - [R| + X%I?ut(lxl B OddG(X)) (2)

When 7y, = T, = @, Theorems 1.3 and 1.4 specialize to Tutte’s theorem and the
Berge-Tutte formula, respectively.

One can easily derive the following formula [5, 8] for the rank function r of the
matching matroid defined by G.
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Theorem 1.5. Let G = (V,E) be a graph and R an arbitrary subset of V. For
the maximum size r(R) of a subset of R covered by a matching of G one has

r(R) = K| + min(1X| - oddo(X). ©

Proof. LetT =V - R and T> = (). For this special choice, it can easily be
seen that there is a maximum value path-matching M so that each path of M
consists of one edge, i.e., M is a matching on V. The value of such a path-
matching is the number of its (one-element) paths plus twice the number of its
matching edges. That is, val(M) is exactly the number of nodes in R covered by
M. Therefore, Theorem 1.4 implies equation (3). ]

Cunningham and Geelen showed in [3] that Menger’s theorem on the number
of node-disjoint paths can also be derived from Theorem 1.2 by a simple ele-
mentary construction. This derivation is even easier if Theorem 1.3 is used rather
than Theorem 1.2,

Note that Theorem 1.4 may be interpreted as a more specific version of
Theorem 1.1, which asserts that the minimum in Theorem 1.1 is always attained
at a stable pair (/;,1;) arising from a cut X by taking J; =V — X — W, and
I, =V — X — W,, where W, denotes the set of nodes of G — X reachable from
Ii—-X(i=1,2).

2. PROOFS

A cut X is called trivial if X =T, or X =T,. A cut X is defined to be tight if
|X| = oddg(X) -+ k, that is, condition (1) is satisfied by equality.

A graph G = (V,E) is said to be factor-critical, if it is connected and each
node is missed by a maximum matching.

Lemma 2.1 (Gallai’s lemma [6)). If G = (V,E) is factor-critical, then |V]is an
odd number and a maximum matching of G has cardinality (|V| — 1)/2.

It follows directly from Tutte’s theorem that

a connected G is factor-critical if and only if 4
oddg(Y)<|¥Y|-1VYCV, |¥|> 1L )

The following is an easy corollary of Gallai’s lemma for a factor-critical graph.

u, v € V== there exists a u, v-path such that (5)
there exists a perfect matching on the nodes not in the path.

Let |T3| = |T2| = k. We call a set K of edges a nearly perfect path-matching, if
the subgraph Gx = (V,K) is a collection of k disjoint paths linking 7} to T,
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together with even cycles and one-edge-component edges covering all the nodes
of R not in any of the & paths. The following claim is straightforward from this
definition.

Claim 2.1. G has a perfect path-matching if and only if G has a nearly perfect
path-matching.

Proof of Theorem 1.3. Necessity of inequality (1). Let us consider a perfect
path-matching M consisting of k paths P}, P,, ..., P,. Let o be the number of the
components of Oddg(X) that are traversed by some P;, and let 3 := oddg(X)—a.
For a path P;, let #; denote the number of components of Oddg(X) which are
traversed by P;.

Now we have

k
k+oddo(X)=k+a+B<Y (4+1)+5<|X], (6)
i=1

for all cuts X, since orienting each P; from Ty to T, there is a first node on P; in
X, furthermore after traversing an (odd) component P; enters X again.

For any tight cut X, we have equality everywhere in Equation (6). This
means that M and X have the following properties: any component C of Odd(X)
is either traversed by one path P; and Cn P; is connected, or there is exactly
one matching edge with one end-node in C and the other in X; there is no
edge of M spanned by X and the even components of G — X, which are
disjoint from T\ and 7 are avoided by any path P; of M. Furthermore, for
any path P; of M, the intersection of W; and P; is connected orempty (same is
for W5).

The proof of sufficiency goes by induction on |R| -+ |E|. If [R| =0, [E| <1, the
theorem is obviously true.

Case 1. Every tight cut is trivial.

If k=0, ie, Ty =1;=0, then R#. For cut X =§ by condition (1),
0 > 0 + oddg(X), hence G has an even number of nodes. So every node of R is
a nontrivial tight cut. Hence k > 0. Let us consider an edge e = uv with u € T3,
Let G’ denote G —~ e. If condition (1) is satisfied in G’ , then we are done
by induction. Suppose now that G’ does not satisfy (1), i.e., there is a cut X in G’
so that |X| < oddg (X) + k. Since |X| > oddg(X) + k, u € Ty — X and either v is
in an odd component of G' — X or else v is in a path from T, -~ X to T» — X.
In the first case, oddg(X)+k < |X| < 0ddg(X) +k = odd(X) + 1+ k, so
|IX| = oddg(X) + k, and X is tight. Furthermore, X + u is also tight. At least
one of these two tight cuts is nontrivial, contradicting our assumption that every
tight cut is trivial (Fig. 2a).

In the second case |X -+ u| > odd(X + u) + k = odde (X) + k > |X| -+ 1, and
hence |X + u| = oddg(X +u) + k, that is, X + u is a tight cut. An analogous
argument shows that X + v is also a tight caut,
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FIGURE 2a and 2b.

By the assumption, both X + & and X + v are trivial cuts, it follows that X — ]
and Ty = {u}, T» = {v}. Since ¥ = {u, v} is not tight, for any component C of
G — Y has even cardinality. We claim that C has a perfect matching which
implics that G has a perfect path-matching. For any subset Z of the node-set of C,
Z UY is a nontrivial cut of G, hence the number of odd components of C — Z is at
most {Z|, and we are done by Tutte’s theorem. (Our proof uses Tutte’s theorem
but by induction, we could avoid doing so.)

Case 2. There exists a nontrivial tight cut.
Let us consider a maximal nontrivial tight cut X.

Claim 2.2. Fach component of G - X lying entirely in R is factor-critical.

Proof. If a component C has an even number of nodes, then X + v is also a
tight cut for any node v € C contradicting the maximality of X. If C has an odd
number of nodes, then let ¥ C C be a subset with maximal value of oddc(Y)—{Y|.
Since X U ¥ is a nontrivial tight cut, ¥ = ), hence C is factor-critical according to
Equation (4). [ ]

Let us contract each component of Oddg(X) to a node. Let Gy denote the
graph obtained this way. O denotes the set of new nodes. Let
Ry := R — Odd{(X}U Q.

Claim 2.3. If Gy has a perfect path-matching, then so has G.

Proof. Let K denote a perfect path-matching of Gg. Let K denote the set
of edges of G corresponding to K. We claim that K can be completed in G to
be a perfect path-matching. To this end, let C denote a component of
0ddg(X), and let ¢ denote its corresponding node in Gp. By Claim 2.2, C is
factor-critical.

If K¢ covers ¢ by a matching egde, then K covers one node, say v, of C, and by
Gallai’s lemma, there is a perfect matching on C — v. If Ky covers ¢ by a path,
then K covers either one node v of C or two distinct nodes, say u and v, of C. In
the first case, Gallai’s lemma applies again, while in the second one, by Equation
(5), there is a path P in C connecting u and v and a perfect matching on
C — V(P), where V(P) denotes the nodes of P. =
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We are going to show that Gy has a perfect path-matching. Recall the definition
of sets Wy, W, after Theorem 1.5. Let G' = (V! EY), where V! := V — (XN Ty)
U W2 U Oddg(X)} U Q and E; is the set of the induced edges after the deletions
and contractions. Let 7j:=(T\—X)UQ,T}:=X—7,. Similarly, let
G" = (V',E"), where V" 1=V — ((XNT,) UW,; UOddg(X)) UQ and E, is the
set of the induced edges after the deletions and contractions. Let
T =X —T,,T; := (T, — X) U Q (See Fig. 3). Note that these two graphs may
have nodes in common. Let R' := V! — (T} U T}). R" is defined similarly.

Claim 24. G’ has a perfect path-matching M\ with respect to the terminal sets
T} and T}.

Proof. By definition |T!| = |T1| — |T; N X| +|Q], |T}| = |X| — |T; NX|. We
have |T{] = |T}|, since X is tight, i.e., |X| = oddg(X) + k (recall that |T1| = k and
|Q| = 0dd(X)). Let k; := |T1].

We claim that |Y| > oddg(Y) + k; for every cut Y of G'. Let ¥ be a cut of (.
Notice that Z := (¥ - Q) U (T3 N X) is a cut of G, hence |Z| > oddg(Z) + k (see
Fig. 4). Since the nodes of Q—7Y are isolated in G —Z, oddg(Z) >
odde(Y) + |0 — Y|. Hence

Y| —|onY|+ | nX =izZ| > oddg(Z) + k > oddp(Y) + |Q - Y|+ k.
That is,

Y| 210N Y| = TN X| +odda(Y) + |Q — Y| + k =
oddg(Y) + (k — [Ty N X| +|Q|) = odde (Y) + k.

Since X is nontrivial, either X NR #0 or 71 NX # B, hence |R} + |E!| <
|R| + |E|. Consequently, by induction, G' has a perfect path-matching with
respect to 7} and T N

Analogously, G” has a perfect path-matching M, with respect to T] and T]. We
claim that M, UM, is a nearly perfect path-matching in Go. Indeed, every node
of RRUR"UQU (XNR) = Ry either has degree 2 in M, UM, or it is covered
by a matching edge. Furthermore, there is no odd cycle and every path has one

T X [} :'c}E}Q

/=)

i a] =

ereeod P
— Eq-- - —
il {e]e)

2
0000
=/

o

FIGURE 3. G'and G".
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end-node in T; and the other in 7. By Claims 2.1 and 2.3, G has a perfect path-
matching. (See Fig. 5) [ ]

Proof of Theorem 1.4. First we show for each cut X that any path-matching
M has value at most |R| + 1X| — oddg(X). This can be done by a refinement of the
argument used to prove the necessity of condition (1), but we exhibit a shorter
inductive way. If X is empty, then there is no path between 7| and T» and the
statement is obviously true in this case. Let v be an element of X. If v € T, UTs,
then in G — v, we have val(M') < |R|+ (X — v| — odds_,(X) = IR| + |X| —
oddg(X) — 1 for any path-matching M’ by induction. Let M* denote the path-
matching obtained from M by deleting node v. Since val(M) < val(M*) + 1,
val(M) < |R] + |X| — oddg(X). If v € R, then in G — v, we have for any path-
matching M’ by induction val(M') < |R — v|+ |X — v| - oddg_,(X) = IR| +
|X| — 0ddg(X) — 2 for any path-matching M’ by induction. Let M* denote the

T.'l p x,

[¢)
"‘\L'XL" e
‘
-y !
L 1 b /.
)
[ -~
5! f -
,’ ’ -
a ) k-
e [ - -
L2 ..
~ P
l‘-“
*. L h ’.

d
, f K
’ 4
’ r +
-

FIGURE 5. Combining M, and M,.
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path-matching obtained from M by deleting node w. Since val(M) < val(M*)+2,
val(M) < |R| + |X| ~ oddg(X).

Now we prove that there is a cut and a path-matching for which equality holds
in Equation (2). Suppose that |Ti|=1>k=|T,}, and let m := ming 4o
(IX| — oddg(X)). Let T; be a set obtained from T, by adding I — k new nodes
cach of which is connected by an edge with every node in R U 7. Let R’ be a set
obtained from R by adding k¥ — m new nodes each of which is connected by an
edge with every node in R'UT; UT,. We added ({ — k) + (k — m) = I — m new
nodes to G. Let G’ denote the graph obtained this way.

Since Tp is a cutin G, m < k. If m =k, then |Y| — odd(Y) > I holds, since
any cut ¥ in G’ includes either T or T; — Ty. If m < k, then any cut ¥ in G’
includes either Ty or T; or (T, — T») U (R' — R), hence |Y| — odd(Y) > I holds.

A cut X of G together with the new nodes (T -- 72) U (R’ — R)) form a cut of
G'. So miny, 4 cu|Y| — 0ddg(Y) = m+ (I - m) = [, and by Theorem 1.3, there
exists a perfect path-matching M’ in G, i.e., the value of M is val(M') =
[R|-+1=|RU(R —R)| +1=IR|+ (k—m) + L ENM is a path-matching in G
withvalueval(ENM') = (R + k —m+1) - |T) — Ta| — 2|R — R| = (|R| -+ k —
mA41) — (1= k) = 2(k — m) = |R| +- m = |R|+ miny , . (|X| — 0ddg(X)). m

Finally, we mention that a corresponding min-max formula for the maximum
value of an independent path-matching is as follows. Let r; and r, denote the
rank-function of My and M,.

Theorem 2.1.  The maximum value of an independent path-matching is equal to

Xmin rl(T; ﬂX) -+ r2(T2 ﬂX) -+ |R ﬂXl - Oddc;(X)
L a cut

This formula can be proved by using standard matroidal techniques along with
the above proofs.Theorem 2.1 contains as a special case Edmonds’ theorem on
the maximum cardinality of a common independent set of two matroids [4].
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