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Abstract

Two important branches of graph connectivity problems are connectivity augmentation, which
consists of augmenting a graph by adding new edges so as to meet a specified target connectivity,
and connectivity orientation, where the goal is to find an orientation of an undirected or mixed
graph that satisfies some specified edge-connection property, In the present work, an attempt is
made to link the above two branches, by considering degree-specified and minimum cardinality
augmentation of graphs so that the resulting graph admits an orientation satisfying a prescribed
edge-connection requirement, such as (&, I)-edge-connectivity. The results are obtained by com-
bining the supermodular polyhedral methods used in connectivity orientation with the splitting
off operation, which is a standard tool in solving augmentation problems.
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

In a connectivity augmentation problem the goal is to augment a graph or digraph by
adding a cardinality or degree-constrained new graph so as to meet a specified target
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connectivity. Initial deep results of the area are due to Lovdsz [9] and to Watanabe
and Nakamura {14] on augmenting a graph to make it k-edge-connected. Since then,
augmentation results for many different connectivity properties of graphs and digraphs
have been proved, employing various versions of the splitting off technique, which was
originally introduced by Lovasz [9] and subsequently developed further by Mader [10]
and others.

In a connectivity orientation problem one is interested in the existence of an
orientation of an undirected graph that satisfies some specified edge-connection
properties. For example, classical results of Nash-Williams [11] and of Tutte [13]
characterize graphs having k-cdge-connected and rooted k-edge-connected orientations,
respectively. To formulate a common generalization of their results, we call a digraph
D = (V,4) (k, Iedge-connected for non-negative integers &k > I if there is a node
s €V such that there are &k edge-disjoint paths from s to any other node, and there
are ! edge-disjoint paths to s from any other node. Then (k k)-edge-connectivity is
equivalent to k-edge-connectivity, and (&, 0)-edge-connectivity is equivalent to rooted
k-edge-connectivity from some node 5. Good characterizations of undirected and mixed
graphs having a (k, /)-edge-connected orientation were given in [3] and in [5] using
submodular flows and related polyhedral methods (the characterizations for undirected
graphs are significantly less complicated than those for the more general case of mixed
graphs).

In this paper, an attempt is made to link these two branches of connectivity problems
by studying combined augmentation and orientation problems. For example we char-
acterize undirected and mixed graphs that can be augmented by adding an appropriate
degree-specified undirected graph so as to have a (k, /)-edge-connected orientation. An-
other new result concerns the minimum number of new edges whose addition to an
initial undirected graph results in a graph admitting a (k,/)-edge-connected orienta-
tion. Our proof methods for these characterizations combine the splitting off technique
used in connectivity augmentation with extensions of the supermodular polyhedral tech-
niques used in [5] to solve connectivity orientation problems. Since these methods are
constructive from an algorithmic point of view, the proofs give rise to polynomial
algorithms for finding a feasible augmentation.

The results are presented in the customary framework for connectivity orientations.
We consider graphs that can have loops and multiple edges. Given a graph G =(V,E)
and a set function & : 2V — Z (called the requirement function), an orientation G of
G is said to cover h if gz(X) = A(X) for every set X C ¥V, where ga(X) denotes
the number of edges of the digraph G entering the set X. Throughout the paper we
assume that A(@)=h(¥)=0. The h-orientation problem is to find an orientation of G
that covers h. For general / this includes NP-complete problems, so special classes of
set functions must be considered. A set function 4 is called crossing G-supermodular
with respect to a given graph G=(V,E) if

WX)+H(Y) S hX O ¥) 4+ hX UY)+dg(X,Y) (1)

for every crossing pair (X, ¥), where the sets X, Y C V are crossing if none of X — ¥,
Y-X,XNY and ¥ —~ (X UY) are empty, and dg(X,Y) is the number of edges
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in £ connecting X — Y and ¥ ~ X (for ds(X,X) we will also use dg(¥ 1. Note
that for any graph G this condition is weaker than crossing supermodularity (it is
equivalent if G is the empty graph). For a set X C ¥, let ig(X) denote the number
of edges uv € E with u,v € X; then the set function % + ig is crossing supermodular
if and only if & is crossing G-supermodular. As in [5], we restrict our attention to
crossing G-supermodular set functions. The augmentation problem corresponding to
h-orientation is the following: given an undirected graph G, find an undirected graph
H (cither with specified degrees, or with minimum number of edges), so that G + H
has an orientation covering h.

It was shown in [3] that for a graph G and a non-negative crossing G-supermodular
requirement function 4 the h-orientation problem can be solved in polynomial time. In
Sections 3 and 4 we solve the corresponding degree-specified and minimum cardinal-
ity augmentation problems, respectively. Our methods also provide a solution for the
minimum cost augmentation problem for node-induced cost functions.

In Section 5, these results are applied to the augmentation problem where the aim is
to obtain a graph admitting a (%, /)-edge-connected orientation; in this case the charac-
terizations can be simplified. The theorems can also be interpreted without referring to
orientations. A graph G is called (&, /)-tree-connected if each graph obtained by deleting
any ! edges from G contains k edge-disjoint spanning trees. It is known that if £ = [,
then (k, I)-tree-connected graphs are exactly those that have a (k, I)-edge-connected ori-
entation; thus the results imply a solution for the (&, I)-trce-connectivity augmentation
problem.

In [5], submodular flows were used in the solution to the A-orientation problem when
h is a crossing G-supermodular set function that can have negative values; this implies
for example a characterization for (£, /)-edge-connected orientability of a mixed graph
M. In Section 6, we generalize this result by considering the A-orientation problem
for set functions which are positively crossing G-supermodular: (1) holds for every
crossing pair (X,Y) for which A(X),(Y) > 0. The main result is a characterization
for the corresponding degree-specified augmentation problem. The proof exploits the
TDI-ness of a system closely related to the intersection of two base polyhedra.

2. Preliminaries

A family of sets is a collection of subsets of the ground set ¥, with possible rep-
etition. The union of two families #; and #,, denoted by &, + &, is the family
where the multiplicity of every subset is the sum of its multiplicities in &, and #,.
If every member of a family & is replaced by its complement, the resulting family
is denoted by co(#). For an element v€ ¥V, d#(v) denotes the number of members
of & containing v; & is regular if d#(v) is the same for every ve V. A family &#
is a composition of X for X C V if & + {V — X} is regular. The covering number
of # is minyey d#(v); for example, a partition of a set X C ¥ is a composition
of X with covering number 0. If # is a composition of X C ¥ for which co(%)
is a partition of X, then & is called a co-partition of X. A co-partition of V (or
simply a co-partition) is a family & for which co(#) is a partition. A family #
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is cross-free if it has no two crossing members. Simple examples are partitions and
co-partitions; in fact, it is easily seen that these are the only minimal regular cross-free
families:

Proposition 2.1. Every regular cross-free family decomposes into partitions and
co-partitions.

For a vector x : ¥ — R and a set ¥ C ¥V, we use the notation x(¥)=3_ ., x(v).
For ve R, (v)* denotes max{v,0}. The upper truncation of a set function p: 2" —
ZU{—oo} is

pNX) = max {2 P(Z)| F a partition of X}. (2)
ZeF

If p is intersecting supermodular, then p”" is fully supermodular (see [1]). If p is
crossing supermodular, then so is p®. With the set function p we associate the poly-
hedra

C(p):=1{x: ¥V =R | x(¥) = p(¥) VY C ¥}, (3)

Blp)={x:V-oR|[x(V)=p(V); (Y= p(Y) VY CV}. €Y)

Clearly, C(p) = C(p"). A polyhedron is a contra-polymatroid if it equals C(p) for
some monotone increasing fully supermodular function p; it is a base polyhedron if it
corresponds to B( p) for some fully supermodular function p.

The following two theorems are important tools in the upcoming proofs. The first
one deals with base polyhedra given by crossing supermodular functions, while the
second is a generalization of Mader’s directed splitting off theorem.

Theorem 2.2 (Fujishige [7]). Let p: 2¥ — Z U {~oco} be a crossing supermodular
Sfunction. Then B(p) is non-empty if and only if

i I3
Yopxy < pv), D pK) < (t—1)p¥)
i=1 i=1
both hold for every partition {X,,...,X;} of V. Furthermore, if B(p) is non-empty,

then it is a base polyhedron, thus its vertices are integral.

Theorem 2.3 (Frank [4]). Let p be a positively crossing supermodular set function on
V; let m;, m, be non-negative integer-valued functions on V for which m{(VY=m{V).
There exists a digraph D=(V, 4) such that pp(v)=m(v), pp(V —0)=m,(v) Ve e V,
and ¢p(X) = p(X) VX CV if and only if

m{X)z p(X) for every X CV,

m(V—X)z plX) forevery X CV.
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Let G = (V,E) be a graph. For a family # of sets and w,veV, let F; =
XeF|lug X,veX}. We define

eg(#):= Z max{lﬁﬁublﬁ-ﬁul}'

e=treE

Note that eg(#) is the maximum of ) xes 05(X), taken over all possible orientations
G of G (for regular families this sum is the same for any orientation). For partitions it
equals the number of cross-edges (edges whose two endpoints are in different metnbers
of the partition). More generally, if & is a regular family with covering number ¢,
then eg(F) =14 3 yc s de(X), hence

e(F)=alE| - Y ia(X). (5)

XeF

3. Degree-specified angmentation

The main resuit of this section is 2 theorem on the degree-specified augmentation
problem concerning k-orientation for non-negative crossing supermodular requirement
functions. The special case when m = 0, that is, the degree-specification is 0 on
every node, corresponds to the orientation theorem in [3], while a 2k-edge-connectivity
augmentation theorem (otherwise a simple consequence of the splitting off theorem of
Lovész) is obtained if the value of the requirement function is k on every proper subset
of V. The characterizations given by the theorem are good in the sense that they provide
an easily verifiable certificate if the augmentation is impossible. Moreover, the proof
is constructive and gives rise to a polynomial algorithm, since it involves polyhedral
and splitting off problems that can be solved in polynomial time.

Theorem 3.1, Let G = (V,E) be a graph, h : 2V — Z. a non-negative crossing
G-supermodular set function on V, and m : V. — Z, a degree specification with
m(V) even. There exists an undirected graph H = (V,F) such that G+ H has an
orientation covering h and dp(v)=m(v) for all v€ ¥V if and only if the following hold
for every partition #F of V:

20 5 37 ) - eol#), Q)
2 XeF
min m(X) > ;h(X) —eg(#), M
M > Y ) - esleo(#), ®)
X&e colF)
minm(®)> Y X)— eclco(F)). ©)

XE co(#)
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Proof. To see the necessity of these conditions, observe that m(V)/2 is the number
of new edges, while 3", » A(X) — ec(#) measures the deficiency of a partition &,
i.e. the difference between the total requirement of the partition and the portion of
this requirement that is satisfied by an arbitrary orientation of G. Hence (6) simply
requires that the deficiency of a partition should not exceed the number of new edges.
The necessity of (7) is also straightforward since each new cross-edge must have
an endnode in X, so the number of new cross-edges, which should be at least the
deficiency of &, is at most m(X ). (Note that if m = 0, then (6) and (7) are equivalent. )
The necessity of (8) and (9) can be seen analogously.

To prove sufficiency, we add a new node z to the set of nodes, and for every
veV we add m(v) parallel edges between v and z; the resulting graph is denoted by
G’ = (V',E"). The following extension of the set function 4 is considered:

m(V}

h'(z) = h’(V) = T,

HX +2)=HX)=hX) fO£XCV

The proof consists of finding first an orientation of G’ that covers 4/, and splitting then
off the directed edges at z so that the resulting digraph on the ground set ¥ covers A.
To find an orientation covering A, we resort to a well-known lemma on the in-degrees
of orientations (see e.g. [8]):

Lemma 3.2. For a given vector x' : ¥/ — Z,, there is an orentation G’ of G’ such
that oz (v) =x'(v) for every v V' if and only if (V)= |E’| and x'(¥) = ig:(Y) for
every Y C V.

Lemma 3.2 and the non-negativity of h imply that if we can find a vector x' : ¥/ —
Z, that satisfies x'(V')= |E’| and

(V) Z H(¥)+ig(Y) for every Y C V', (10)

then there is an orientation G’ of G' such that 0g(v) = x'(v) for every ve V', and
such that G’ covers ¥, since e (Y)=x'(Y)—ig(Y) 2 K(Y). A vector x' satisfying
(10) is called feasible. By definition /'(z)}=k (F)=m{¥V)/2, hence x'(z) must be equal
to m(¥)/2; let x : ¥ — Z, denote the restriction of x' to V. It easily follows from
the definition of /' that the vector x’ is feasible if and only if x is an element of the
polyhedron B( pn,) (defined in (4)) associated with the set function

+
PuX) 1= HX) +ic(X) + (m(X)— -'%V)) x

Claim 3.3. The set function p, is crossing supermodular.
Proof. The G-supermodularity of & implies that & + i¢ is crossing supermodular. Let

m*(X) = (m(X) — m(V)/2y"; we show that this set function is fully supermodular.
Indeed, if m*(¥)=0, then m*(X )+m" (Y )=m*(X)} < m*(XUY)=m*(XNY }+n* (X UY).
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If m*(X),m*(Y) >0, then m*(X)+m*(V)=m(X N} +mXUY)-m(V) < m*(X N
¥)+m*(X JUY). The sum of a crossing supermodular and a fully supermodular function
is crossing supermodular. [

Claim 3.4. Suppose that (6){9) are true. Then B(pn) is non-empty.

Proof. By Theorem 2.2 it suffices to show that 3, & pm(X) < |E| + m(¥)/2 and
2xe coF) Pm(X) < (1t = 1)|E| + m(V)/2) for every partition # with f members.

Observe that a partition has at most one member X with m(X) > m(V)/2. If there is no
such member, then (6) and the identity (5) imply that } ", 5 pm(X) < |E[+m(V)/2; if
there is one such member, then (7) and (5) imply the same. Similarly, a co-partition has
at most one member X with m(X) < m(V)/2, so (8) or (9) (depending on the existence
of such a member) and (5) for the co-partition co(F) imply 3, ooy Pm(X) < (1—
IXIE|+m(V)/2). O

By Theorem 2.2, B( pm) is a base polyhedron with integral vertices, and for such a
vertex x the con‘espondmg vector x’ : V' - Z, is feasible. By Lemma 3.2, G' has an
orientation G =(V',E") with m—dcgree vector x', and the feasibility of x’ implies that
G' covers ',

Let m;(v) be the multiplicity of the edge zv in G, mo(v) be the multiplicity of the
edge vz in G, and let G denote the digraph obtained from G’ by deleting the node
z. Then m(X) 2 h(X) — 0a(X} and mo(V — X) 2 h(X) — gz(X) for every X C V,
since G’ covers k'. By the crossing G-supermodularity of 4, the set function p(X):=
MX)—ea(X) is crossing supermodular. Applied on these values, Theorem 2.3 asserts
that there exists a digraph D with underlying undirected graph H, such that H satisfies
the degree specifications, and G+ D covers h. Since G +D is an orientation of G+ H,
this proves Theorem 3.1. O

If the requirement function is monotone decreasing (that is, A(X) = W(Y) if X C ¥),
or symmetric, then the conditions of Theorem 3.1 can be simplified.

Corollary 3.5. Let G=(V,E) be a graph, h : 2V — Z. a non-negative, monotone
decreasing crossing G-supermodular set function on V, and m : V — Z, a degree
specification with m(V') even. There exists an undirected graph H = (V,F) such that
G + H has an orientation covering h and dg(v} = m(v) for all veV if and only
if (6) and (7) hold for every partition F of V.

Proof. The co-partition type constraints (8) and (9) are unnecessary, since >, 5 A(X)
2 Y oxe coFy M) and eg(F) = eg(co(F)) for every partition #. O

Corollary 3.6. Let G =(V,E) be a graph, h : 2¥ — Z. a non-negative, symmetric
crossing G-supermodular set function on V, and m : V — Z, a degree specification
with m{V'} even. There exists an undirected graph H =(V,F) such that G+ H has an
orientation covering h and dy(vYy=m(v) for all veV if and only if m{(X) = 2h(X) -
da(X) for every X C V.
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Proof. The co-partition type constraints are redundant for the same reason as in Corol-
lary 3.5. Let {Xi,...,X;} be a parttition such that m(X;) = m(X;) (i = 2,...,1). If
m(X;) 2 2h(X;) — de(X;) for every i, then by adding up these inequalities we ob-
tain (6); by adding m(X)) > 2h(X,) — dg(X)) to the inequalities featuring the rest of
the partition members, we obtain (7). 0O

4. Minimum cardinality augmentation

Theorem 3.1 characterized degree-specifications that are ‘good’ in the sense that
a corresponding feasible augmentation exists. In this section, we derive a min—max
theorem for minimum cardinality augmentation, by analyzing the properties of these
good degree-specifications. We show that they are the integral vectors (with even
co-ordinate sum) of a contra-polymatroid.

Theorem 4.1. Let G = (V,E) be a graph, and h : 2¥ - Z, a non-negative crossing
G-supermodular set function. There is an undirected graph H = (V,F) with y edges
such that G + H has an orientation covering h if and only if

72 Y MX) - ec(F) an

XeF

holds for every partition and co-partition & of V, and
27> Y hZ) - eo(F) (12)

ZeF
holds for every cross-free regular family F that for some X C V decomposes into a
partition of X and a co-partition of X.

Proof. In both types of conditions, 3 . 5 A(X) ~ eg(F ) measures the difference be-
tween the total requirement of the family # and the sum of the in-degrees of its
members for an arbitrary orientation of G. Now necessity follows easily by observing
that each of the y oriented new edges can cover at most one member of a (sub)partition
or a (sub)-copartition.

Sufficiency will be proved by showing that if (11) and (12) hold, then there exists
a vector m : V — Z, with m(}) = 2y satisfying (6)+9); thus by Theorem 3.1 we
can find a feasible augmentation with degree-specification m. The essential result in
the proof is that the polyhedron

C:={m:V — Z, |m satisfies (6)-(9)}

is a contra-polymatroid. In order to show this, we first transform (6)-{9), which are
conditions on partitions and co-partitions, into requirements for the subsets of V. Define
the set functions

pi(X) := h(X) +ic(X),

p(X) = KXY +ic(X) - |E|.
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By the crossing G-supermodularity of %, the set functions p; and p; are crossing
supermodular, therefore the set functions p{* and pj (as defined in (2)) are also
crossing supermodular. By identity (5), a non-negative vector m satisfies (6)+9) if
and only if the following hold:

m(V) 2z ZfYng;;(P?(X)+ pAX)),
m(X) =z pr(X) + pX) forevery X C V,
m(¥) 2 2max (p1(X) + pp (X)),

m(X) = pi(X)+ py(X) for every X C V.

We define a new set function

pX) = max {p{ (X} + p(X), p(X)+ p3(X),0} (X C V), (13)

p(V) :=2max p(X). (14)

Thus conditions (6}(9) are ‘coded into’ p, i.e. the polyhedron C can be characterized
as

C={m:V-oZ|mX)zpX)¥VX CV}

To prove that C is a contra-polymatroid, we will show that the set function p” is fully
supermodular. First we establish some other properties of p”:

Proposition 4.2. For every proper subset X of V, the value of p™NX) is
fal — A ! A !
pX) glg,(Pl X) + pr (X)), (15)

Proof. By the definitions of p and the upper truncation, the value of p"(X) is attained
by taking two appropriate partitions of some X’ C X, and adding up p;, on the members
of the first one, plus p,; on the members of the second one. Thus, p” is less than or
equal to the maximum on the right-hand side of {15). For the other inequality, suppose
indirectly that there exists X' C X and partitions #; and %, of X’ such that

X< ) p@)+ > pa2).
ZeF, ZEF,

Repeat the following step as many times as possible:

o If Z) € F| and Z; € F, are crossing, then replace Z, in &, by Z) — Z,, and replace
Zz in fz by Zz “Z[.

Observe that the resulting families are partitions of a decreasing sequence of proper
subsets of X', so the procedure terminates after a finite number of steps. Furthermore,
7, and Z, are crossing, so h(Z))+h(Z%) S HZNZ%)+MZ V) +d¢(Z),2,), which
implies that p\(Z)) + p(Z;) < pZ, — Z2) + p2(Za — Z)). Let F| and F) denote
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the families obtained at the end of the procedure; then #{ and % are partitions of
some X" C X', and p™(X) < Yzes PI(Z)+ 2259’; pAZ). Moreover, F' + F) is
cross-free, which means that there is a partition X,...,X; of X”, such that for every
i either #| contains X; and %)} contains a partition of X;, or vice versa. But then
2265{ @)+ Eza.@‘; pA2Y < pM(X") € p™(X), a contradiction.

Proposition 4.3. The set function p satisfies
PX)+pN)S PP NYI+ PN X UY) (16)

for every pair (X,Y).

Proof. The inequality is obvious if one of p(X) and p(Y) is zero, or X and Y are
not intersecting. If X U ¥ =¥, then, using the definition of p(V), p(X)+ p(¥) <
2max { p(X), p(Y)} € pX UY) < X N Y)Y+ pMXUY).

By Proposition 4.2 it suffices to prove that if p(X), p(¥}> 0 and X and Y are
crossing, then

PX)+ p(Y) < PR AY) + ppX N )+ pPXUT) + pj(X UT).
Using the definition of p and the crossing supermodularity of pf* and pf,
XY+ p(Y) < pHX) + p(X) + pr(¥) + pi(Y)
S prXNYY+ pp XYY+ pMX UY)+ pRXUT). O

This property turns out to be sufficient for the supermodularity of p":

Lemma 4.4. If a set function p (with p(@) = 0) satisfies (16) for every pair (X, Y),
then p" is fully supermodular.

Proof. For a set X C V, let #x denote a partition of X for which p"(X) =3,
P(Z). Let XY C ¥V be an arbitrary pair. Starting from the family & = % + Fy,
repeat the following operation as many times as possible:

» If there is an intersecting pair Z; and Z; in the family, remove both of them, and
add the sets of #F 5z and of Fzz to the family.

The operation does not change dg, and does not decrease 3, p(Z), since p has
property (16). Since the operation either increases the cardinality of the family, or
increases Y, 5 |Z|* without changing the cardinality, after a finite number of steps
we get a laminar family #’ for which }-,.5 p(Z)> Y ;.5 p(Z). Such a family
decomposes into a partition of X MY and a partition of X U ¥, hence p*(X) +
<X+ pMNXUY). O

Lemma 4.4 and Proposition 4.3 imply that p” is fully supermodular, and it is obvi-
ously monotone increasing, hence C is a contra-polymatroid defined by p*.
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It is known that in this case the minimum cardinality of an integral element of the
contra-polymatroid C is p"(V). Thus, for a fixed y, there exists an integral element
m of C with m(¥)=2y if and only if p"(¥) < 2y. But this inequality clearly follows
from conditions (11) and (12): if p™(V)= p(V), then it corresponds to (11); if the
value of p"(V) is attained on a partition #*, then it follows from (12), the set X
being the union of the members of #* where p is positive. This concludes the proof
of Theorem 4.1. O

Remark. The following example shows that (11) itself is not sufficient in Theorem
4.1. Let ¥V = {v,02, 03,04}, E= {0102, 0103, 0104}. Let k=1 on the scts {12}, {va}, {va}
and on their complement; let 2 =0 on all other sets. We need at least two new edges
for a feasible orientation (two edges suffice, since after adding v,v3 and vsv, the graph
has a strong orientation) but (11) requires only y = 1, since the only deficient partitions
are {{v;}, ¥V —u;} (i=2,3,4).

Remark. A cost function ¢ : E — Ry is called node induced if c(uv) = c'(u) + ¢'(v)
where ¢/ : V —» R, is a linear cost function on the nodes. To solve the minimum
cost angmentation problem for node induced cost functions, one can find a minimum
cost element with even co-ordinate sum of the contra-polymatroid C according to the
cost function ¢/, using the greedy algorithm. Then this vector can be used as a degree
specification to find a minimum cost augmentation.

For general edge costs the problem is NP-complete: let G be the empty graph,
and let c(e) =1 on the edges of a fixed graph G*, ¢(e) =2 on the other edges. Let
hX)=1if X #4,V; thus & is crossing supermodular, Now the minimum cost of the
augmentation is |V| if and only if G* contains a Hamiltonian cycle.

5. (k, N-edge-connected orientations

In the introduction we defined (&, 7)-edge-connectivity for non-negative integers k = I,
and mentioned that the (&, I)}-edge-connectivity orientation problem is a common gener-
alization of k-edge-connectivity orientation (when /=4) and rooted k-edge-connectivity
orientation (when / =0). Recently, it was shown in [6} that the case / =k — 1 plays
an important role in orientation problems with both connectivity and parity constraints.
As for the corresponding augmentation problems, both the degree-specified and the
minimum cardinality augmentation of a graph to have a k-edge-connected orientation
are already solved, but the minimum cost augmentation is NP-complete even for k=1.
On the other hand, for rooted k-edge-connected orientations, the minimum cost aug-
mentation is known to be solvable by matroid techniques, while no solution has been
proposed so far for degree-specified augmentation.

To show how the results of the previous section can be used to solve degree-specified
and minimum cardinality augmentation of a graph so that the new graph has a (k,1)-
edge-connected orientation, fix a node s€ ¥, and introduce the following family of
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set functions:

() k if s€X
X):= 17

" I if sex. un
Menger's theorem implies that an orientation is (%, /)-edge-connected from root s if
and only if it covers Ay. The set function Ay is crossing G-super modular for any G.
Note that if a digraph is (k, I)-edge-connected from root s, and for some s’ €V — s
we take k edge-disjoint paths from s to s* and reverse the orientation of the edges on
k& — I of them, then we get a digraph that is (£, I)-edge-connected from root s/, Thus
the root can be selected arbitrarily in orientation problems.

Theorem 5.1. Let G=(V,E) be a graph, m : V — Z a degree-specification with m(V')
even, and k = I non-negative integers. There exists an undirected graph H = (V,F)
such that G+H has a (k, 1)-edge-connected orientation and dy(v)=m(v) for allveV
if and only if the following hold for every partition & = {X,,...,X;} of V:
@;(:-1)“1—%(?), (18)

minm(%) > (¢ — 1k +1 - eg(%). (19)

Proof. Since the set function hy; defined in (17) is monotone decreasing, the claim
follows from Corollary 3.5. O

Theorem 5.2. Let G=(V,E) be a graph, and k = | non-negative integers. There is a
graph H with y edges such that G + H has a (k, I}-edge-connected orientation if and
only if the following two conditions are met:

(1) y =2 — Dk +1— eg(F) for every partition & with t members.

(2) 2y 2 ik + 0l —eg(F) for every fomily F =5+ F, where F) is a partition of
some X with {; members, %, is a co-partition of X with &, members, and every
member of F, is the complement of the union of some members of % .

Proof. As in the proof of Theorem 5.1, we demand that G + H should have an
orientation covering k. Going back to the proof of Theorem 4.1, the set function p
defined in (13) can be defined in this case as

(PPX) + P X)) if X v,
2maxycy (p(Y)+ pAY))" if X =V

As it was proved in Theorem 4.1, a feasible angmentation with y edges exists if
and only if p"(¥) < 2y; by the above characterization of p, this is equivalent to the
conditions of the theorem. O

pX) = { (20)

Remark. The graph in Fig. 1 shows that the second condition in Theorem 5.2 cannot
be simplified. We need to add at least two edges to the graph to have a (3,1)-edge-
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Fig. 1.

connected orientation from root s, but the simplest evidence for this is the family
indicated on the figure (consisting of the round sets and the complements of the square
sets), whose deficiency is 3, while a new edge can enter at most two sets. The figure
on the right shows that the addition of two edges is sufficient (to see that the digraph
is (3,1)-edge-connected, observe that it contains 3 edge-disjoint out-arborescences from
5, and also an in-arborescence to s).

There are other equivalent characterizations of graphs that have a (k, I)-edge-
connected orientation. For given non-negative integers & and /, a graph G =(V,E) is
called (&, I)-tree-connected if any graph obtained by deleting / edges from G contains
k edge-disjoint spanning trees; it is called (k, [}-partition-connected if eg(F) = k(t —
1) + 1 for every partition % with ¢+ members. Tutte [13] proved that a graph is
(k, 0)-tree-connected if and only if it is (%, 0)-partition-connected. This immediately im-
plies that a graph is (k I)-tree-connected if and only if it is (&, I)-partition-
connected.

Simple calculation shows that for k </, a graph G is (%, /)-tree-connected if and only
if it is (k + /)-edge-connected. Thus, the (k, I)-tree-connectivity augmentation problem
is interesting only for & > I, and, by the following proposition, this is exactly what
was solved in Theorems 5.1 and 5.2

Proposition 5.3. For k > I, a graph G = (V,E) is (k I)-tree-connected if and only
if it has a (k, }-edge-connected orientation.

Proof. It follows from the orientation theorem in [3] (or Theorem 3.1) that for k& = 7,
a graph has a (% /)-edge-connected orientation if and only if it is (k, /)-partition-
connected. [

Note that Theorem 5.1 has some interest even in the very special case when G == ).
A result of Edmonds [2] states that a degree-sequence m,,...,m, is realizable by a
k-edge-connected graph if and only if 37 _; m; is even, and m; > k for every i. Theo-
rem 5.1 implies the following similar result: a degree-sequence my, ..., m, is realizable
by a (k, I)-tree-connected graph if and only if 3} | m; is at least 2k(n — 1) + 2/, it is
even, and m; = k + ! for every i.

When /=0, this implies the following tiny result (which is not difficult to prove
directly either): If a degree-sequence is realizable by a k-edge-connected graph with



414 A. Frank, T. Kiralyl Discrete Applied Mathematics 131 (2003) 401 -419

at least k(n — 1) edges, then it is also realizable by a graph containing & edge-disjoint
spanning trees.

Remark. The problems discussed in this section are in some sense about packing trees;
one may ask whether a similar angmentation result can be obtained related to covering
with trees. This question is not considered here in detail; we remark only that the most
basic problem, i.e. the augmentation of a graph such that the resulting graph can still
be covered by & forests, is solvable rather easily. The maximum cardinality {or, more
generally, maximum weight) augmentation is a standard matroid problem, while the
following is true on degree-specified augmentation:

Theorem 5.4. Let G =(V,E} be a graph, m : V — Z, a degree specification with
m(V) even, and k a positive integer. There exists an undirected graph H = (V,F)
such that G+ H can be covered by k forests and dy(v)=m(v) for every ve V if and

only if

+
(m(X)——”—z%V—z) SE(X| = 1) —ic(X) for every @# X C V. 21)

Proof. We prove the theorem by induction on m(¥). By a well-known theorem of
Nash-Williams [12], a graph can be covered by k forests if and only if ic(X) < k(| X|—
1) for every non-empty subset X of V; hence we can assume that m(V) = 2. Letve V
be an arbitrary node with m(v) > 0.

A set X is called tight if (21) holds with equality. Let %, be the family that consists
of the tight sets X' for which m(X) < m(V)/2 and v€X, and let &, be the family
of tight sets X for which m(X) = m(¥)/2 and v ¢ X. The union of two members
of #) is also in &, since otherwise the intersection would violate (21); similarly,
the intersection of two sets in %, is in &5, since otherwise their union would violate
(21), Let X be the maximal member of %, and X the minimal member of %#,. Then
v€X) —X; and m(X;) < m(X3), so there is a node v €X; — X; with m{(u) > 0.

Let m’ be defined by decreasing m(u) and m(v) by 1, and G’ defined by adding an
edge uv to G. The node u was chosen such that no member of % contains both u and
v, and every member of %, contains «. From this it is easy to see that {21) holds for m'
and G', therefore G' can be angmented by adding a graph H' with degree-specification
m' such that G’ + H’ can be covered by k forests. This means that H' + {uv} is a
good augmenting graph for G. O

6. Positively crossing G-supermodular set functions

Let M =(V;E, 4) be a mixed graph, where E is the set of undirected edges and 4 is
the set of directed edges. Then the task of finding a (k, I)-edge-connected orientation of
M for a fixed root s is equivalent to finding an orientation of the edges in E that covers
the set function (A — @4 )t, where hy, is defined in (17). This requirement function is
not crossing G-supermodular anymore, but it is positively crossing G-supermodular for
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any G, This motivates the study of the h-orientation problem for positively crossing
G-supermodular set functions, and the corresponding augmentation problems. In [5], the
h-orientation problem was solved for crossing G-supermodular & with possible negative
values, which includes the mixed graph problem mentioned above (for such an &, (h)*
is positively crossing G-supermodular).

The characterizations in this section involve set families more complicated than
partitions and co-partitions. It is known that every cross-free family & has a tree-
representation (T, @), where T = (W, B) is a directed tree, and ¢ : ¥ — W is a map-
ping such that {¢~!(W,)|e€ B} = &, where W, is the component of T — ¢ entered
by e. A tree-composition of @ # X C ¥V is a cross-free composition of X which has a
tree-representation (T=(, B), ¢) such that ¢~ '(w) # @ for every w € W. Equivalently,
a tree-composition of X is a cross-free composition of X that contains no partitions
and co-partitions of ¥. For technical reasons, a partition or a co-partition of ¥ will be
regarded as a tree-composition of the empty set.

In this section, we give a characterization for the degree-specified augmentation
problem, by mainly the same methods as in Section 3, but instead of relying on the
properties of base polyhedra, we use the following extension of the classical result on
the TDI-ness of the intersection of base polyhedra:

Lemma 6.1. Ler g, : 2" — Z U {—oo} be fully supermodular, and let q, : 2V —
Z U {—oco} be a set function that is supermodular on the crossing pairs (X,Y) for
which gi(X) < q2(X) and ¢i(Y) < q2(Y). Then the system

xeR” | x(M)=q(V), x(¥) 2 q(¥), A¥) = q(¥) VY C ¥V} (22)
is TDF, it has a feasible solution if and only if
a(X)+ Y @(Z) < (a+ Da(V) (23)
ZeF

SJor every X C ¥V (including the empty set) and every tree-composition & of X with
covering number a.

Proof. To prove TDI-ness, we have to show that the dual system

max {y1g1 + y2q2 — Bqi(¥): (m+ M —Pl=c, yi, .62 0}

has an integral optimal solution for every integral ¢, where yi,y; : 2V — Q. are
dual vaniables on the subsets of ¥, y; corresponding to the inequalities featuring g,
¥2 corresponding to those featuring ¢», € Qy is the dual variable for the inequality
x(V) < q1(V'), and A is the incidence matrix of all subsets of V. The main observation
is that we can assume that y; is positive on a chain and y; is positive on a cross-free
family in an optimal dual solution: this can be achieved by a slight modification of
the usual uncrossing technique, Consider the following operations:

o If p1(X), »1(¥Y)>0and neither X C ¥, nor ¥ C X, decrease y; on X and on ¥ by
min { ¥1(X), »1(¥)}, and increase y, by the same amount on X MY and on XU Y.
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o If yo(X), »2(Y) > 0, gi(X) < q2(X), qi(Y) < g2(¥) and X, Y are crossing, then de-
crease y; on X and on ¥ by min{»(X), »:(Y)}, and increase y; by the same
amount on X NY and on X U Y.

o If »(X) >0 and ¢)(X) = q2(X), then decrease y, on X to 0 and increase y; on
X by the same amount.

Because of the properties of g, and g3, these operations do not decrease yq; + yogo —
Bq(V'), and they maintain (y; + y2)4 — f1 =c. We show that by repeatedly applying
these operations (in any order), in a finite number of steps we get an optimal dual
solution (¥}, y3, ) such that y| is positive on a chain and y} is positive on a cross-free
family.

Since yi, y2 € Wy, there is a positive integer v such that vy, and vy, are integral.
The sum w(2 Y oycy yi(X)X [P+ ycp »2(X)|X|?) increases by at least 1 during any
of the above operations, and it is bounded from above by 2v|V|2 (B + max,cy c(v)).
Thus the procedure terminates after a finite number of steps.

We proved that there is an optimal dual solution (3], ¥}, §) where y{ is positive on
a chain and ¥} is positive on a cross-free family; but this means that this is also an
optimal solution of the dual of the system we get if we restrict g, to the sets where
¥} is positive, and restrict g, to the sets where y} is positive (changing their value to
~—oo on all other sets). This system is the intersection of two base polyhedra, so it has
an integral optimal dual solution, which is in turn optimal for the dual of system (22);
therefore system (22) is TDI.

The proof of the non-emptiness condition (23) is similar: the infeasibility of the
system is equivalent to the feasibility of its dual according to the Farkas lemma. A
feasible dual solution (1, y;) can be uncrossed in the same way as above, yielding
(¥}, ;) where ¥ is positive on a chain and y} is positive on a cross-free family. This
means that dual feasibility implies the emptiness of the intersection of the two base
polyhedra given by ¢; and g restricted to the sets where y| and y} are positive. Thus
the non-emptiness condition for the intersection of base polyhedra (which is of form
{23)) is sufficient for the feasibility of the original system. O

Theorem 6.2. Let G=(V,E) be a graph, h:2¥ — 7, a positively crossing G-super-
modular set function on V, and m : V — Z, a degree specification with m(V) even;
let

+
An(X) 1= R(X) + (m(X) - M) .

2

There exists an undirected graph H = (V,F) such that G -+ H has an orientation
covering h and dp(v)=m(v) for all veV if and only if

. 23 14
S h(Z)+ (m(X) - T-z—)) < ea(®)+ @+ )2 24)

2
zeF

Jor every X C V and every tree-composition & of X with covering number «.
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Proof. The necessity follows from the fact that if #’ is a regular family with cov-
ering number « + 1, then Y, . 0z(Z) < eg(F') for any orientation G of G, and
Yozes 0gZ) <(a+ Dm(V)2 =3 ;.5 (m(Z) — m(V)/2)* for any orientation H of
a graph H satisfying the degree-specification. Note that if we consider (24) only for
partitions and co-partitions (that is, X =), then it corresponds to (6)~9).

The sufficiency can be proved in essentially the same way as in the proof of Theorem
3.1: define G’ and K similarly, and for X C V, let

+
@(X) = ie(X) + (m(X)— @) ,

.
g20X) = h(X) + i6(X) + (m(X - 3(2'"—)) .

In this case Lemma 3.2 implies that an orientation of G’ covering 4’ exists if and only
if the polyhedron

E V=R x(M=q(V); x(Y) 2 q(Y), x(Y) 2 q(Y) VY C ¥V}
has an integral point.

Claim 6.3. The set function q is fully supermodular, and the set function q, is su- .
permodular on the crossing pairs (X, Y) for which q1(X) < q2(X) and :(Y) < ga2(Y).

Proof. The sct function ¢; is the sum of two fully supermodular functions (see the
proof of Claim 3.3), so it is fully supermodular. Since 4 is positively crossing G-super-
modular, g; is supermodular on the crossing pairs (X,Y) for which A(X),k(¥)> 0,
and these are exactly the crossing pairs for which ¢;(X) < ¢2(X) and ¢:(Y) < ¢:(¥).
a

Lemma 6.1 implies that an orientation of G’ covering A’ exists if and only if

2+ Y @2) < @+ Do)
ZeF
for every X C ¥ and every tree-composition # of X with covering number «. Using
(5) and the fact that eg(F) = ec(F + {X}), this is equivalent to the condition of the
theorem.

From here we can follow the line of the proof of Theorem 3.1. Let G’ be the
orientation of G’ covering ', and let G denote the digraph obtained from G' by
deleting the node z. Let m;(v) be the multiplicity of the edge zv in G, and m,(v) the
multiplicity of the edge vz in G'. Define the set function PX) = (AX) — ea(X )
p is positively crossing supermodular. As in the proof of Theorem 3.1, we can apply
Theorem 2.3 (with the m;, m, and p defined above) to obtain a dlgraph D whose
underlying undirected graph H is a good augmentation of G. This concludes the proof
of Theorem 6.2. (O

As it was shown in Section 4, the minimum cardinality augmentation problem is
tractable for the non-negative crossing supermodular case, thanks to the polymatroidal
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structure of good degree specifications. However, we were not able to devise similar
methods for the positively crossing supermodular case; indeed, in this more general
setting, it remains an open question if a good min—max formula can be found for the
minimum cardinality augmentation problem.

Remark. The appearance of tree-compositions in condition (24) may seem unfriendly,
but it is unavoidable, even in the special case when the problem is to find an ori-
entation of the undirected edges of a mixed graph such that the resulting digraph
is k-edge-connected. This orientation problem was already considered in [5], where
crossing G-supermodular set functions with possible negative values were studied.
The following example shows that the positively G-supermodular case is more gen-
eral, i.e. not every positively crossing G-supermodular set function & can be made
crossing G-supermodular by decreasing the value of 5 on some of the sets where
it is 0.

Let X1,X5, X3 be three subsets of a ground set V, in general situation. Let 4(X;)=1,
WX UX;)=2 (i # J), M(X1UX,UX;3)=4, and #(X)=0 on the remaining sets; this is a
positively crossing supermodular function. The value of A(X; N.X;) cannot be decreased
since

X1 NX2) 2 WX) + h(X) — h(XG UX,) =0.
Therefore it is impossible to correctly modify » so as to satisfy

R NXG) <M NXNXG) AN UXG) —hXG) < — 1.
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