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Abstract

We give a constructive characterization of undirected graphs which contain spanning trees
after adding any new edge. This is a generalization of a theorem of Henneberg and Laman who
gave the characterization for £=2. We also give a constructive characterization of graphs which
have k edge-disjoint spanning trees after deleting any edge of them.
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1. Introduction

By a constructive characterization of a graph property, we mean a building pro-
cedure consisting of some simple steps so that the graphs obtained from a specified
initial graph are precisely those having the property. For example, a graph is con-
nected if and only if it can be obtained from a node by the operation: add a new edge
connecting an existing node with either an existing node or a new one. A slightly less
trivial known result is the so called eardecomposition of 2-connected graphs, while
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Tutte’s [15] constructive characterization of 3-connected graphs is much deeper. Note
that no constructive characterization is known for general k-connectivity. As far as
edge-connectivity is concerned, the situation is much better. A graph is said to be
k-edge-connected if the deletion of at most X — 1 edges leaves a connected graph.
From now on, adding an edge means adding a new edge connecting two existing
nodes. This new edge can be parallel to existing ones, but it cannot be a loop unless
otherwise stated. In 1976 Lovasz [9] proved the following result.

Theorem 1.1 (Lovasz [9]). An undirected graph G=(V,E) is 2k-edge-connected if and
only if G can be obtained from a single node by the following two
operations:

(i) add a new edge (possibly a loop),

(1) add a new node z, subdivide k existing edges by new nodes, and identify the k
subdividing nodes with z.

A directed counterpart of this result is due to Mader [10]. A digraph is said to be
k-edge-connected if the deletion of at most k& — 1 edges leaves a strongly connected
digraph.

Theorem 1.2 (Mader [10]). 4 directed graph G = (V,E) is k-edge-connected if and
only if G can be obtained from a single node by the following two operations:

(1) add a new edge (possibly a loop),

(ii) add a new node z, subdivide k existing edges by new nodes and identify the k
subdividing nodes with z.

We call the operation (ii) in these theorems pinching k edges (with z).

This kind of characterizations can be very useful. For example, Lovasz used his result
to derive Nash-Williams® theorem [11] on k-edge-connected orientations of graphs,
while Mader used his result to derive Edmonds’ theorem [1] on disjoint arborescences.

k-edge-connectivity is the usual way to formulate one’s intuitive feeling for high
‘edge-connection” of an undirected graph but there may be other possibilities, as well.
We cail an undirected graph k-tree-connected if it contains k edge-disjoint spanning
trees. In 1961 Tutte found the following characterization [14].

Theorem 1.3 (Tutte [14]). An undirected graph G = (V,E) is k-tree-connected if and
only if
elF)=k(t—1) 48]

for every partition ¥ ={X,,X,...,X;} of V with non-empty subsets and t = 2, where
e(F) denotes the number of edges connecting distinct classes of F.

By the definition itself, it is straightforward to construct all k-tree-connected graphs:
take k edge-disjoint spanning trees and add some extra edges. In the spirit of Lovasz’
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theorem, however, it would be desirable to find an operation which constructs a
k-tree-connected graph from one which has one less node or edge. This is indeed
possible as was pointed out in [4] by observing that a combination of Mader’s Theo-
rem 1.2 and Tutte’s Theorem 1.3 gives rise to the following. For a direct proof, see
Tay [13].

Theorem 1.4. An undirected graph G = (V,E) is k-tree-connected if and only if G
can be built from a single node by the following two operations:

(i) add a new edge,
(ii) add a new node z and k new edges ending at z,
(iii) pinch i (1 <i<k — 1) existing edges with a new node z, and add k — i new
edges connecting z with existing nodes.

Nash-Williams [12] proved the following counterpart of Tutte’s theorem concerning
coverings of trees rather than packing. For a graph G = (V,E), yg(X) denotes the
number of the edges of G with both end-nodes in X C V.

Theorem 1.5 (Nash-Williams [12]). A graph G=(V,E) is the union of k edge-disjoint
Jorests if and only if yo(X) < k|X| — k for all nonempty X C V.

One has the following constructive characterization for these graphs.

Theorem 1.6. An undirected graph G = (V,E) is the union of k edge-disjoint Jforests
if and only if G can be built from a single node by the following two operations:

(1) add a new node z and at most k new edges ending at z,
(ii) pinch i (1 <i < k—1) existing edges with a new node z, and add k —i new edges
connecting z with existing nodes,

The proof of this theorem easily follows by a proof of Theorem 1.4. (Sketch: It
is clear that a graph G which can be obtained by the operations is the union of &
edge-disjoint forests. The other direction: if there is no node of degree at most k, then
consider a node z of degree at most 2k — 1. We can add edges to G not incident to
z so that G becomes k-tree-connected. Since the inverse of operation (ii1) in Theorem
1.4 can be applied at any node of degree at most 2k — 1 so that it results in a
k-tree-connected graph, we are done.)

In this paper we consider two variants of the notion of k-tree-cotnectivity. We call
a graph G (with at least 2 nodes) nearly k-tree-connected if G is not k-tree-connected
but adding any new edge to G results in a k-tree-connected graph.

A nearly k-tree-connected graph has a partition & = {X,X,..., X} violating (1).
In such a partition each set X; must be a singleton for otherwise F would violate
(1) even after adding an edge connecting two distinct elements of X;. Hence a nearly
k-tree-connected graph has exactly one partition # violating (1) and & consists of
singletons. Therefore such a graph G = (¥,E) has exactly k(J¥V] — 1) — 1 edges.
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Nearly 2-tree-connected graphs arose in connection with rigidity properties.
Henneberg [6] described a way to generate all minimally rigid plane structures, while
Laman {8] found a characterization of so-called minimally generically rigid graphs. By
combining these results, one obtains the following.

Theorem 1.7 (Henneberg [6] and Laman [8]). A graph G is nearly 2-tree- connected

if and only if G can be constructed from one (non-loop) edge by the Jollowing two
operations:;

(1) add a new node z and connect z to two distinct existing nodes,

(ii) subdivide an existing edge uv by a node z and connect z to an existing node
distinct from u and v.

We are going to extend this result for arbitrary & > 2. Let Ké“l denote the graph
on two nodes with & — 1 parallel edges.

Theorem 1.8. An undirected graph G = (V,E) is nearly k-tree-connected if and only
if G can be built from Ké‘" by applying the following operations:

(O1’) add a new node z and k new edges ending at z so that no k parallel edges can
arise, .

(02') choose a subset F of i existing edges (1 <i <k — 1), pinch the elements of F
with a new node z, and add k — i new edges connecting z with other nodes so
that there are no k parallel edges in the resulting graph.

Actually, we will prove this result in a slightly more general form. A graph G=(V,E )
is said to be k-sparse if y6(X) < k[X|—(k+1) forall X C ¥, |X| = 2. (By convention
the graph with a single node is k-sparse.) By Theorem 1.5 of Nash-Williams, a graph
G =(V,E} with |E| =k|V| — (k + 1) is nearly k-tree-connected if and only if G is
k-sparse. Therefore the following constructive characterization of k-sparse graphs is
indeed a generalization of Theorem 1.8.

Theorem 1.9. An undirected graph G = (V,E) is k-sparse if and only if G can be
built from a single node by applying the following operations:

(O1) add a new node z and at most k new edges ending at z so that no k parallel
edges can arise,

(02) choose a subset F of i existing edges (1 <i <k — 1), pinch the elements of F
with a new node z, and add k — i new edges connecting z with other nodes so
that there are no k parallel edges in the resulting graph.

We call a graph highly k-tree-connected if the deletion of any existing edge leaves
a k-tree-connected graph. In [5] a constructive characterization was given (among

others) for highly 2-tree-connected graphs. Here we extend this for arbitrary
k=2
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Theorem 1.10. An undirected graph G=(V,E) is highly k-tree-connected if and only
if G can be built up from a node by the following two operations:

(i) add a new edge (possibly a loop),
(ii) pinch i (1 <i<k—1) existing edges with a new node z, and add k—i new edges
connecting z with existing nodes.

Section 2 includes some further notation and notions along with an important remark
on why the proof of Theorem 1.9 is significantly more difficult than that of apparently
similar results. We provide then some basic lemmas for proving Theorem 1.9 which
already give rise to Theorem 1.7 of Henneberg and Laman.

Section 3 provides a necessary and sufficient condition for a given node to admit
the inverse of the operation in Theorem 1.9, while Section 4 serves to prove that
there always exists a node satisfying this condition, completing this way the proof of
Theorem 1.9. In Section 5 we prove Theorem 1.10. An interesting feature of this proof
is that first a constructive characterization is proved for so-called (£, 1)-edge-connected
digraphs which is used then, via an earlier orientation theorem, for proving Theorem
1.10.

We will use the following common notations. d(X, Y) denotes the number of edges
with one end-node in X — Y and other end-node in ¥ —X. For a node z€ ¥, dg(z) =
dg(z, ¥V —z). For a graph G=(V,E), y5(X) denotes the number of the cdges of G with
both end-nodes in X C ¥. Let I'g(x) denote the neighbour set of a node u in G.
UZ = [Jycp X for a set-system 2.

2. Splittings

In an undirected graph G=(¥, E) splitting off a pair of edges e=zu, f=zv (u # v) at
a node z € ¥ means the operation of replacing e and f by a new edge connecting ¥ and
v. The edge uv, which may be parallel to existing ones, will be called a splif edge. When
the degree of z is even, by a complete splitting at z we mean the following operation:
pair the edges incident to z and split off all these pairs. Complete splitting may be
viewed as the inverse of operation (ii) in Theorem 1.1 and hence Lovasz’ Theorem
1.1 can be formulated in terms of splittings. To this end, we call a K-edge-connected
graph G = (¥,E) minimal if G — ¢ is not K-edge-connected for each edge ecE. It
is a known and easily provable property of minimally K-edge-connected graphs with
|V| = 2 that

they always contain a node of degree K. (2)
Now (the non-trivial part of) Lovasz’ theorem is equivalent to the following.

Theorem 2.1. A minimally 2k-edge-connected graph G=(V,E) with V| =2 contains a
node z of degree 2k which admits a complete splitting preserving 2k-edge-connectivity.

That is, in order to prove Theorem 1.1 one has to show that, among the nodes of
degree 2k guaranteed by property (2), there is at least one admitting a complete
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splitting preserving 2k-edge-connectivity. Lovész’ original proof however showed that,
quite ‘luckily’, every node of degree 2k admits such a complete splitting.

It turned out that the situation is similar in Theorems 1.4 and 1.6. Every node of
suitable degree admits the inverse of the operations preserving the graph property in
question.

It will also turn out that the situation is again the same in Theorem 1.7 of Heoncberg
and Laman (which is the special case k¥ =2 of Theorem 1.8): every node of degree
2 or 3 admits the corresponding inverse operation preserving near 2-tree-connectivity,
But in Theorem 1.8 for &£ > 3 a node with suitable degree does not necessarily admit
the corresponding inverse operation preserving near k-trec-connectivity, as shown by
an example of Kiraly. This is why the proof of Theorem 1.9 for & > 3 is significantly
more difficult than that for £ = 2.

In the remaining part of this section we give the basic tools for proving Theorem
1.9.

Let k 2 2. A splitting off in G is admissible if the resulting graph on node set ¥ —z
is k-sparse.

Definition 2.2. Let b denote the following function on the subsets of V with cardi-
nality at least 2:

bo(X) := k|X| — (k + 1} — y6(X).

By this definition a graph G = (V,E) is k-sparse if and only if bg(X) > 0 for all
subsets X C ¥, [X| > 2. If b6(X)=0 and X # V, then X is said to be a G-tight set.
Furthermore G is nearly k-tree-connected if and only if G is k-sparse and ba(V)=0.
We will abbreviate b by b.

Observation 2.3. Splitting off zu and zv at node z is non-admissible (that is, adding
the edge uv to the induced subgraph of G on ¥ — z does not result in an k-sparse
graph) if and only if there exists a tight subset in ¥ — z containing # and v.

We say that splitting off j disjoint pairs of edges (1 <j <k — 1) at node z is
admissible if it consists of admissible splittings. Obviously the order of the pairs in a
splitting sequence is irrelevant. The length of a splitting sequence % is the number of
its pairs and it is denoted by |#|. Gy denotes the graph obtained after applying the
splitting sequence %

In proving Theorem 1.9 our goal will be to find a node at which applying the
inverse of operation (O1) or (02) results in a k-sparse graph. That is why an admissible
splitting sequence at z of length d(z)—k =: i is called a full splitting for do(z) = k+1.
For the sake of convenience, at a node z with degree at most & the inverse of operation
(O1) (that is, the deletion of z and all of its adjacent edges) is also called a full
splitting.

Note, that b;(X) is an upper bound for the number of split edges induced by X C
V —z provided by an admissible sequence of splittings at some node z.

The next four claims are about k-sparse graphs and will be crucial in the proof of
Theorem 1.9.
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Claim24. If XY CV and (X Y| 2 2, then

B +b(Y)=bBXNY)+bX UY)+dXT).

Proof. H(X)+(Y)=kX|—(k+1)—yo(X)+k|Y|— (k+ 1) = ye(¥) =k(}X| + | ¥]) -
A+ 1)~ (X NY)+ 96X UY)—da(N V) =kX NY| —(k+ 1) —y(X N Y) +
KXUY| —(k+ 1)~ 16X UY)+de(X,Y)=b(X N Y) + X UY) +d(X,Y). 01

Claim 25. If XY CV and |X N Y|=1, then

KXY+ HY)=bXUY)—1+d(X,Y).

Proof. b(X)+H¥)=k|X| - (k+ 1) — ya(X )+ kY| —(k+1)—ye(Y)=k()X|+|¥] -
D=k +1)~1- (o) +y(X)=kIXUY| - (k+1)— 1 - (ya(XUY)— dg(X, Y)) =
HXUY)-1+dX,Y). O

Claim 2.6. If X1, X5, Xs C V and I)(jﬂXf'=1f0r 1<j<i<3and [X1ﬂXzﬂX3|=0,

then
3 3
b X | <
j=1 =1

Proof. B(Uj_; X;) = k| Ui, %I — (k+ 1) — ve (UL, X) < KT, 1% - 3) — (k +
1= 3 76) =L - (k+ D)= y6(X) —k+2=32, BX)—k+2. O

bX;) ~ k+2.

Remark. Especially, all of X, X,X; cannot be tight at the same time for & =3.

Claim 2.7. Let X C V be a maximal tight set containing the distinct nodes 1,6,
Let d be a node in V — X. If there is a tight set containing ¢ and d, then there is
no tight set containing c; and d.

. Proof. According to Claim 2.4, PNX = {c,} since X is maximal. By Claims 2.4 and
2.6 we obtain that there is no tight set containing ¢, and . O

Let G be a k-sparse graph. Since Y, dg(v) = 2|E| < 2k|V| — 2(k + 1) < 2k|V|,
it follows that there is a node z of G with dg(z) < 2k — 1.

Claim 2.8. Let G =(V,E) be a k-sparse graph. dg(u,v) <k — 1 Jor any two nodes
u,v.

Proof. By the definition of k-sparse graphs, yo({u,v}) <k|[{u,0}| —(k + )=k — 1
for set {u,0}. O
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3. Full splitting

The main task in proving Theorem 1.9 will be to show the existence of a node
admitting a full splitting. This will be done in two steps. In this section we derive
a necessary and sufficient condition for an arbitrary specified node to admit a full
splitting, while in the next section we show that a k-sparse graph always has a node
satisfying this condition.

Let G be a k-sparse graph.

Proposition 3.1. If a node z of G has degree at most k + 1, then z admits a full
splitting.

Proof. If dg(z) is at most k, then if we delete z with its adjacent edges, then we
obviously get a k-sparse graph, that is, z admits a full splitting.

We claim that there always exists a full splitting at a node z with degree £ + 1. We
will find a pair of edges zu and zv with u # v such that G~z +uv is a k-sparse graph.

There is no tight set X C ¥ — z which contains all the neighbours of z because,
if there was one, then bo(X +z)=bg(X) +k — dg(z) =0+ k — (k + 1) < 0 which
contradicts that G is k-sparsc. Since there are no edges with multiplicity greater than
k — 1 by Claim 2.8, the neighbour-set of z in G has at least two elements, hence by
Claim 2.7 there is an admissible splitting off at z, which is full at the same time for
a node with degree k+1. O

If G is nearly 2-tree-connected, then |E|=2|V|—3 and hence there exists a node of
degree 2 or 3. Therefore Proposition 3.1 immediately gives the proof of the Theorem
1.7 of Henneberg and Laman: every node with degree 2 or 3 admits a full splitting.
Similarly, a 2-sparse graph has a node of degree at most 3, hence Theorem 1.9 follows
for £=2. 1t is not true that a k-sparse graph always contain a node of degree at most
k+1, there is a graph (on 8 nodes) showing that such a node z does not necessarily
exist. Hence Proposition 3.1 does not prove Theorem 1.9. From now on let & > 3. For
k=3 Z. Kirdly observed [7] that a node z with degree k +2 =5 does not necessarily
admit a full splitting. His example is shown in Fig, 1.

Call a node z small if k+2 < dg(z) < 2k — 1. For a node z, let i denote dg(z)— k.

Theorem 3.2. A small node z of G does not admit a full splitting if and only if z has

a neighbour t and there is a family P, of subsets of V —z with at least two elements
such thar:

XNY={t} forXYe?, (3a)
D" bX) <dglz,t) - (k ~ i) — dg(z V — 2 — UP,). (3b)
Xe?,

Remark. In the graph of Fig. 1, X; := {t,a;} for j=1,2,3.
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Z

Fig. 1. £ =3, z does not admit a full splitting,

Proof. Suppose first that ¢ and 2, satisfy (3a), (3b) and let & be an admissible
splitting sequence. The number of split edges incident to ¢ with other end-nodes outside
of UZ; is at most dg(z, V — z — U2,). The number of split edges incident to ¢ with
their other end-nodes in U#, is at most ereﬂ, b(X). In a full splitting we would
have at least dg(z,¢) — (k — i) split edges incident to ¢ which implies by (3b) that &
is not full.

To see the other direction, let & be a longest admissible splitting sequence at z for
which the following pair is lexicographically maximal: (|Ig, (z)|, |Puax|) Where Py
denotes a maximal tight set in G which includes I'g,(z) but does not contain z. If
there is no such a tight set, then let Pp,y := 8. Since z does not admit a full splitting,
|| < i. From now on Gg-tight is abbreviated by tight.

Case 1: |I'g,(z)| = 2.

Claim 3.3. There exists a maximal tight subset Py, of V — z containing all the
neighbours of z.

Proof. Let za and zb denote two non-parallel edges in Gy. Since (za,zb) is not an
admissible splitting off, there is a tight set X C ¥ — z containing @ and b. According
to Claim 2.4, there is a maximal tight set Py, C V —z containing a and b.

If there is another neighbour ¢ of z which is not in Py, then there is a tight set
Y CV —z containing ¢ and c, since (za,zc) is not an admissible splitting off. Since
Prax is maximal, ¥ NP = {a}. By Claim 2.7 (zb,zc) is an admissible splitting off, a
contradiction, that is, Py, contains all the neighbours of z. O

Claim 3.4. There exists a split edge which is disjoint from the nodes of Puay.
Proof. Since there is no admissible splitting off at z in G, according to Claim 3.3

there exists a maximal tight set Py,x & V —z. Let j, h,m denote the number of split
edges with exactly, respectively, 2, 1, 0 end-node in Pugy. j+k +m = %] < i since
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& is not full.

F{Prax + 2| — (k + 1) 2 y6(Prax + 2) = Y6, (Puax} + j + k + d, (2, Prnax)
= V6 (Pman) +j+h+(k+i—2(j +h+m))
=76, (Pmax) + & + (i — (G + b +m)) —m > k[P
—(k+1)+k-—m
= k|Pmax + 2|~ (k+ 1) = m,

which implies m > 0. O
Claim 3.5. |I',.(z)|=2.

Proof. Suppose indirectly that |I'g,(z)| > 3 and let a\,ap,a; denote three of these
neighbours. By Claim 3.4, there is a split edge uv disjoint from Pyy. Let J = {1,2,3}.

By Claim 2.7, & — (zu,20) U (zu,za;) is an admissible splitting sequence for at
least two elements j of J. We may suppose that &' := & — (zu,zv}U {(zu,za,) is an
admissible splitting sequence. But then the maximal G -tight set containing all the

remaining neighbours of z in Gy contains v and includes Poa, that is, &' contradicts
the choice of &#. [J

Let s and ¢ denote the two neighbours of z in G. Since & is not a full splitting:
d6,(2) 2 dg(z)~2(i—1)=k+i—2(i—1)=k —i+2 > 3. Therefore one of the nodes
t and s, say f, is connected to z by at least two parallel edges.

Claim 3.6. dg,(z,5) = 1.

Proof. Let us suppose indirectly that dG,(z,5) 2 2. By Claim 34, there is a split
edge uv disjoint from Pp,y. According to Claim 27, % =% — (zu,zv) U (zu, 2t) or
&' = F —(zu,2v)U(zu, z5) is an admissible splitting sequence. But then |T6,(2)| =3,
a contradiction. [J

An edge not incident to ! is called t-disjoint. Let u€ ¥ —f — s be an arbitrary node
for which there is a ¢-disjoint split edge uv. There is a tight set X C ¥ —z containing
u and ¢, otherwise & := & — (zu,zv) U (zu,zt) is an other longest admissible splitting
sequence for which if v # s, then [I'g, (z}|=3, if v=s, then dG,(z,t) 2 dg, (2,5) = 2,
which contradicts the choice of & by Claims 3.5 and 3.6, respectively. Let P, be such
a tight set containing minimal number of ¢-disjoint split edges which is inclusionwise
maximal. Similarly, there is a tight set X C ¥V — z containing s and ¢, otherwise
& U(zs,zt) is a longer admissible splitting sequence than &. Let P; be such a tight set
containing minimal number of ¢-disjoint split edges which is inclusionwise maximal.

Let #, .= {X C ¥V —z: 3u€eV incident to a t-disjoint split edge such that X =P,
ot X = Ps}. For nodes u # v, P, can be equal to P,, but there is only one copy of
them in 2, (se¢ Fig. 2). Now we prove some essential properties of 2,.
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2

X,
Fig. 2. A set-system #,.
Proposition 3.7. There is no t-disjoint split edge in a member X of P,.

Proof. First let us assume that X =P;. Let us suppose indirectly that there is a t-disjoint
split edge ab in P,. &' := & — (za,zb) U (zt,z5) is an admissible splitting sequence
with three remaining neighbours of z in G, which contradicts the choice of & by
Claim 3.5.

Now let us assume X =P, and u # s. By the definition of P, we have a t-disjoint
split edge uv. Let us suppose indirectly that there is a t-disjoint split edge ab in P,.
We may suppose that b # u.

If v#s, then 0 ¢ P, (if vE P, then & ~ (zu,z0) U (2t,z1) is an admissible splitting
sequence with the same length but with one more remaining neighbour of z). Py N
P, ={t} according to Claim 2.4. & ~ (za,2b) — (2u,z0) U (zt, zu) U (zv,za) is an other
longest splitting sequence with one more remaining neighbour of z, so it cannot be
admissible, that is, there isaset Y C ¥V —z containing a,u,v,1, which is tight in G.
Y does not contain b, hence the tight set ¥ N P, contains a smaller number of split
edges than P,, a contradiction. If v =5 and v & P,, then the proof is the same.

Suppose that v=s and v € P,. Let us consider a split edge cd which is disjoint from
Pryx and hence from P, (such an edge exists according to Claim 3.4). By the previous
paragraph tight sets P and P, do not contain -disjoint split edges. According to Claim
2.4, P, N Py = {t}.

According to Claim 2.7, &' := & - (zc,2d) U (z¢,2s) is an admissible splitting
sequence. For & := &' — (zu,zv) U (2t,zu), the cardinality of I" Gy = {t,5,d} is 3,
hence & cannot be admissible, that is, there is a tight set ¥ C ¥ — z containing
¢,5u,t in Gg. ¥ U Ppyy contradicts the maximality of Py, O

Now it follows that (3b) holds for #,.
Claim 3.8. Let X,Y be two distinct members of #,. X NY = {1}.

Proof. Let us suppose X = P, and ¥ = P, for some u,v€ V. By Proposition 3.7,
P, ¢ P, If |P,NP,| 22, then by Claim 2.4 dG, (P, P,)=0 and P, UP, is tight.
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Since it does not contain any r-disjoint split edge, it contradicts the maximal choice
of P,. [

Hence (3a) holds for #,.
Case 2: |I',(z)| = 1. Let ¢ denote the only neighbour of z in G..

Claim 3.9. There exists a t-disjoint split edge.

Proof. Let / and m be the number of split edges incident to, tespectively, not incident
to ¢. Since & is not full, { + m =|#| < i. In the original graph G by Claim 2.8:

k—1zde(z,ty=ds(z)—1 -2m=k+i—1-2m

=k+(i-l-m—m>k—m,
which implies that m > 1. [0

Since & is not a full splitting: dg(z) > k+i—2(i—1)=k—i+2 > 3. Now we define
Z.. Let u € ¥~ be an arbitrary node for which there is a ¢-disjoint split edge uv. There
is a tight set X C ¥ —z containing u and ¢, otherwise &' := & —(zu, zv)\U(zu,2¢) is an
other longest admissible splitting sequence for which |I 6, (2)| =2, which contradicts
the choice of &. Let P, be such a tight set containing minimal number of t-digjoint
split edges which is inclusionwise maximal. Let &, := {X CV ~2z 3ueV incident
to a f-disjoint split edge such that X = P,}. (The only difference to the case above is
that there is no set P; here.)

Proposition 3.10. There is no t-disjoint split edge in an arbitrary element of #,.

Proof. Assume X =P,. By the definition of P, we have a t-disjoint split edge uv. Let
us suppose indirectly that there is a ¢-disjoint split edge ab in P,. We may suppose that
b #u, v ¢ P, otherwise & — (zu,zv)U (2¢, zu) is an admissible splitting sequence with
the same length but with one more remaining neighbour of z. P, N P, = {¢} according
to Claim 24. & — (za,zb) — (zu,zv) U (zt,2u) U (zv,za) is an other longest splitting
sequence with one more remaining neighbour of z, so it cannot be admissible, that
is, there is a set ¥ C V — z containing a,u,v,¢, which is tight in G». ¥ does not
contain b, hence the tight set ¥ NP, contains a smaller number of split edges than P,,
a contradiction.

Now it follows that (3b) holds for #,.

Claim 3.11. Ler X,Y be two distinct members of #,. X NY = {1}.

Proof. Let us suppose X =P, and ¥ = P, for some w,ve V. By Proposition 3.7,
Py, ¢ P, If [P, N P,| 22, then by Claim 2.4 dg,(P,,P,)=0 and P, UP, is tight.
Since it does not contain any r-disjoint split edge, it contradicts the maximal choice
of P,, O

Hence (3a) holds for 2,.
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We have showed that if a small node z does not admit a full splitting, then the
neighbour ¢ of z and set-system %, satisfy both (3a) and (3b). [J

4. Construction of X-sparse graphs

Proof of Theorem 1.9. It is easy to see that any application of operation (O1) or (02)
in a k-sparse graph results in a k-sparse graph. Now we want to prove that a k-sparse
graph G always can be built up in the way described in Theorem 1.9. By induction it
suffices to show that there is a k-sparse graph G' =(¥",E’') so that G arises from G’
by one application of operation (O1) or (02).

The existence of such a G’ is clearly equivalent to the following statement. There
i5 a node z of G for which

(«) de(z) < 2k — 1, and

(B) there is a full splitting at z (that is, dg(z) < k or there are i := dg(z) — k disjoint
pairs of edges incident to z so that after splitting off these i pairs and deleting the
remaining k — i edges at z we obtain a &-sparse graph G’ = (V — z,E")).

As was shown in Section 3, if £ =2, then any node satisfying (a) will automatically
satisfy (B). The main ingredient of proving the existence of a node z satisfying both
{2} and (B} is Theorem 3.2.

Let G be a k-sparse graph with at least two nodes. If there is a node z with degree
at most k + 1, then we are done by Proposition 3.1. Therefore we may assume that
every node of G has degree at least k + 2. Furthermore let us suppose indirectly that
there is no small node admitting a full splitting. Recall the definition of a small nod
in Section 3. i

By Theorem 3.2, for any small node z there exists a set-sestem 2., Let (2,) 1=
do(z,t) —(k—)—ds(z,V ~z —UP,) — > xep, BX). Note that (2,) + (k+1) is a
lower bound for the number of parallel edges between z and ¢ remaining after some
admissible splittings. Property (3b) in Theorem 3.2 is equivalent to @(%,) > 0.

Let us choose 2, to be lexicographically maximal with respect to the following

triple: (@(#;), — |2;|, |U 2.|). Let 1(z) denote the node ¢ in Theorem 3.2 for a small
node z, which is called the blocking node of z.

We will show that the degree of a blocking node is big, and by |E| < k|V|—(k+1)
there must be a small node without a blocking node. First we prove two lemmas which
will be useful for proving that the degree of a blocking node is big. Recall, that for a
small node z, i := dg(z) — k. From now on d is abbreviated by d.

Lemma 4.1. {2.| > 3 for any small node z not admitting a full splitting.

Proof. Suppose first that 2, = {X}.
BX +2) = b(X)+k—d(z,X) (by the definition of b)
= b(X) +k — (d(z) — d(z,V — z — X))
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=bX)+k—(k+i-d(zV -z-X))
=(BX)+dEzV -z~ X)+(k—-i)—k
<d(z,t)—k (by (3b) of Theorem 3.2)
<0 (by Claim 2.8),

a contradiction.
Second, let 2, = {X1,X;}. Since ¢(2;) > p({X; UX)),

d(z,0) = (k—i)—d(z,V -z — (X] UX)) — (B(X1) + b(X2))
> d(z,t) — (k= i) ~d(zV —z — (X, UXy) — B(X; UXy)),

hence b(X; UX;) > b(X)) + b(X,). By Lemma 2.5, this implies &(X; UX,) = b(X,) +
HX2)+ 1 and d(X,,Xz) = 0. By the definition of b we have

0 < b(X, UXy +2)=b(X; UK,) + k — d(z,X, UXy)
= (b(X1) + b(Xa) + 1) + k — d(z,X; UX>)
=bX) +b(Xz) + 1 +k— (d(2) - d(z,V —z — (f; UX:)))
= b(X1) + b(X2) +d(z,V -z — (X, UX2)) + (k— i) +i — d(z) + 1
<dz)—d@) +i+1<k—1)—(k+D)+i+1=0,
by (3b) and Claim 2.8,

a contradiction. O

Lemma 4.2. If P € 2, contains a small node z' such that tW(z)=1(z")=t and P' e &,
and P/ — P # 0, then zc P,

Proof. Let us suppose indirectly that z ¢ P'. Let i := d(z) -k and i/ :=d(z') - k.
Case I: |[PNP'| > 2.
By the lexicographically maximal choice of #,, o(#) < o(#;) holds for #, :=
#; — P+ (PUP'). By the definition of ¢, we have d(z,t) —(k— i)~ d(z,V —z —

ngg; X)- ZXG.?; b(X) < d(z,t)— (k- i)—d@zV —z— Uxey, X)— ers', bX),
and hence

_d(z,y_z- UX) -

Xe®! Xed!

<—a‘(z,V—z-— UX)— > bx).

Xe®, Xe#,
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By the definition of #;, we obtain —d(z,V ~z—Jycp X)+d(z,P'—P)- yep, HX)
+B(P)— BPUP) < ~d(z,V — 2~ Uyep, X) = S xca, HX), from which d(z, P’
P)+b(P) — B(PUP') <0, and

KP) < B(PUP')—d(z,P' — P) < b(PU P') (4)

follows.

On the other hand by the lexicographically maximal choice of 2., ¢(#.,) < (%)
holds for 2, := 2, — P' + (PN P’). By the definition of ¢ we have d(z',1) — (k —
Iy ~d(@\V =2 = Ugegr, X) = Zyeq, MX)<d(Z ) - (k- i)~ d(Z,V -2 —
Uxey,, X)- erg',f b(X), and hence

—d (z',V—z'— U X) - > bX)

Xed, Xew,

<-d|ZVv-7- |Jx|- ) sx).
Xed, xXe#,
By the definition of 2., we obtain —d(z',V — z' — UXG% X)-d( P - P) -
Lxes, MX)+HP)—BPOP) < ~d(\V =2' = Uyep, X)~ Lyes, HX), from
which —d(z/, P’ — P) + b(P') — B(P N P') < 0, and

HP)<BPNP)+d( P - P) (5)

follows,
By adding up (4) and (5) we have

WP)+b(P') < B(PNP)+BPUP)+d(Z,P - P)
<SBPNOP)Y+BPUP)+ d(P —P,P —P),

which contradicts Claim 2.4.

Case 2: |[PNP'|=1.

By the lexicographically maximal choice of #,, for #, .= &, — P + (P U P')
we also have (4). On the other hand by the lexicographically maximal choice of
Py, o(P,) < o(Z;) holds for #;, := P,, — P'. By the definition of ¢ we have
diZ\ty—(k—-i")Y-d(z,V -2 — Uxes';, X))~ Yoxew, BX) <d(Z,t) — (k- i) -
d(@\ ¥V =2 = Uyeo, X) - Exeazw b(X), and hence ’

—a’(z’,V— UX)— Zb(X)<~_d(z’,V— UX)— > b(x).

Xe#, Xed, Xed, Xe#,
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Fig. 3. Set-systems &, and #,/.

By the definition of #},, we obtain ~d(z', ¥ ~ Uy, X)~d(@,P'~P)~ Tyep, HX)

+b(P'y < —d(z',V — UXes',r X)_ZXEQ',r b(X), from which —d(z', P'—P)+-b(P'} < 0,
and

WP)<d(zZ,P-P)-1 (6)

follows.
By adding up (4) and (6) we have:

b(P)+B(P'Yy < B(PUP)+d(z,P ~ P)— 1
<HPUPY+ d(P—-P P - P)—1,
which contradicts Claim 2.5 (Fig. 3). 0O

Claim 4.3. For a node v in a set X C V,

d(0,X —v) = (k — 1) — b(X).

Proof. If |X| > 3, then 0 < (X — v) = b(X) — k + d(0,X — v). If |X| =2, then by
Claim 2.8 we are done. 0O

Proposition 4.4. Let t be a blocking node. Let I; (2 <i <k - 1) denote the number
of small nodes with degree k + i whose blocking node is t. Then

k-1
do(t) > > (k—i+ 1) +3(k - 1),
i=2
Proof. For every node z* with blocking node ¢ (i* := d(z*) — k), according to (3b):
do(z*, ) =k —i* + 1. (7

Let 2 be a small node with degree k + i whose blocking node is £. Let m := 12|
Let I denote the number of the members X, X5,...,X; of 2, containing no small node
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with blocking node ¢, then by (3b): 0 <dg(z,t) —(k — i) ~dg(zV —z — U;."=1 X;) -
Yo BX) <dg(z0) — (k—iy— 37| B(X;), that is,

! m
k=it D+Y b)Y <k~i+ 1)+ > bX;) <dolz,t). (8)
i=l =l
By Claim 4.3,
i i
D (-1 - bx) < dg (:, X,-—z). (9)
i=1 =1

By adding up (8) and (9):
!
Hk—1)+(k—i+1)<dg(z,t) +dg (I,U.X}—t). (10}
j=l

Let L denote the set of small nodes with blocking node .

Claim 4.5. If X € P, contains at least one small node with blocking node t, then
there exists a small node zo € X with blocking node t such that d(zo,t) + da(t, X —
L-t)z(k—ig+1)+(k-1)

To prove the claim, let zp be a small node in X with blocking node ¢ such that the
minimum member ¥p € X of 2, is minimal. Such a set and node exist by Lemmas 4.1
and 4.2, furthermore Y, does not contain any node of L. By (3b), 0 < dg(zo,1) — (k —
io)=de(a, ¥ ~20~Uyes, ¥)= res, HY) < dol0, )~ (k—io)~ Ly co KT,
that is,

(k—io+ 1)+ 6(X) < (k—io + D)+ D ME) < dolzo,0). an
Yieds,
By Claim 4.3,
(k—1)=b(Yo) <da(t, Yo —t) <dg(t,X — L —1). (12)

By adding up (11} and (12) we get the equality of the claim.
Now we have

da(t) > Y dolt,v) +da (r, X —t- L)
1

vEL j=

vEL =1 j=lt1

{ m
=Y de(tv) +dg (:, UX}—t—L) +dg (z, U X,-—:—L)
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k-1
2 D (k—i+ D+ Ik — 1)+ (m— Dk — 1)
i=2
(by (7), (10) and Claim 4.5)
k—1
=Y (k= i+ Dl +m(k - 1),

i=2

by Lemma 41, m=3. O

It follows that a blocking node is not small because its degree is at least k—1)=

3k~ 3. Let Lyy; denote the subset of small nodes of degree k 4+ whose blocking node
is f.

Claim 4.6. The average degree in W := Uf:ll Ly +t is greater than 2k,
Proof. By Proposition 4.4, the sum of the degrees in W is the following.

k—1 k—1
fi=de®)+ Y (k+D)|Lenl > Y (k= i+ 1)Ly | + 3k — 1)
i=2

i=2

k—1

+ 3 (k+i)| Less|

=2

k—1
=3k =3+ Qk+1)> | Leys .

i=2

Hence the average degree in W is

kf L =342k 1) T [
L+ 28 (L] 1+ 505 Kl
_ k=44 @+ DA+ T L)
1+ 505 e
k-4 .
= —=7  — +@k+1)>2 since k >3. O
l + Zi=2 |Lk+l'|

In a k-sparse graph G the average degree is

21E| _ 20k¥] - (k+1))
vl = Vi

< 2k,

So there must be a small node z with no blocking node, that is, z admits a full splitting,
End of proof of Theorem 1.9. 0O
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With the same technique a bit stronger result can also be proved.

Theorem 4.7. If G is k-sparse with at least two nodes, then there are at least two
nodes admitting a full splitting.

Proof. According to Theorem 1.9 there is a node s admitting a full splitting. 0 is
a lower bound on the degree of 5. Let us suppose indirectly that there is no other
node admitting a full splitting, hence the degree of any other node is at least & + 2
by Proposition 3.1. Let n,; denote the number of nodes distinct from s of degree
k+i(@2<i<k—1) Let T C ¥ be the set of the blocking nodes.

Now we have:

2V = (k+ 1)
=2k|V| — 2k — 2 = 2|E|
k—1 k—1
204 Y do(t)+ Y (k+Dngys + 2k (IVI —1-17} - an)
teT i=2 =2

(by Proposition 4.4)

k—1 k-1
ZCE=3)TI+ ) k=it Dmpi+ Y (k+ idmes
i=2 i=2

k—1
+2k (IVI -1-|T| -~ ZnH,-)
i=2

k-1
=2%|V| + (k= 3)T| + ) misi— 2k

i=2

> 2k|V| + (k — 2)|T| — 2k > 2k|V| — 2k.

S5 My = |7 holds obviously. We arrived at a contradiction and hence there exists
another node admitting a full splitting. 0

The following theorem can be proved by a slight modification of the above compu-
tation.

Theorem 4.8. If G is nearly k-tree-connected and differs from Ké“l, then there are
at least three nodes admitting a full splitting.

The following theorem characterizes the connected k-sparse graphs, which are the

union of k forests afier adding an arbitrary edge, according to Nash—Williams’
Theorem 1.5.
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Theorem 4.9. 4 graph G is the union of k spanning trees after adding an arbitrary
edge if and only if it is a connected subgraph of a nearly k-tree-connected graph.

Proof. It is straightforward that any connected subgraph of a nearly k-tree-connected
graph has this property.

By the theorem of Nash-Williams, G = (V,E) is the union of k (not necessarily
edge-disjoint) spanning trees afier adding an arbitrary edge if and only if it is connected
and yo(X) < k|X|—(k+1) for all X C ¥, [X| > 2. We claim that if [E] < k|V'|—(k+1),
then we can add an edge e such that G + e is also the union of k forests after adding
an arbitrary edge. This will prove the theorem.

Let us consider a maximal tight set X and node ¥ €X and other node v & X. If we
cannot add edge uv, then there exists a tight set ¥ containing # and ». According to
Claim 2.6, for any node a in X — Y and any node b in ¥ — X, G +ab is k-sparse. [

5. Construction of (k, 1)-edge-connected digraphs and (k, 1)-partition-connected
graphs

In a directed graph by splitting off a pair of edges e = uz, f =zv we mean the
operation of replacing ¢ and f by a new directed edge from u to v. Suppose that
the in-degree and the out-degree of z is the same, that is, g(z) = 8(z). By a complete
splitting at z we mean the following operation: pair the edges entering and leaving z
and split off all these pairs.

For non-negative integers ! < k, we call a digraph D (k, I)-edge-connected (in short,
(K, I)-ec) if D has a node s so that there are k (resp., /) edge-disjoint paths from s to
every other node (there are / edge-disjoint paths from every node to s5). If there is an
exceptional node z for which the existence of these edge-disjoint paths is not required,
we say that D is (k, /)-edge-connected apart from z. When the role of 5 is empha-
sized, we say that D is (k,/)-ec with respect to root-node s. (k, k)-edge-connectivity
is abbreviated by k-edge-connectivity and (k,0)-edge-connectivity is sometimes called
rooted k-edge-connectivity. Note that by Menger’s theorem a digraph is (%, I)-ec if and
only if

e(X)=k foreverysubset C X CV -5 (13)

and
HX)=1 forevery subset BCX CV —5 (14)

where o(X) := gp(X) and 8(X) := dp(X) denote the number of cdges entering and
leaving the subset X, respectively.

We say an undirected graph G = (V,E) is (k, I)-partition-connected if there are at
least k(¢ — 1)+ edges connecting distinct classes of every partition of ¥ into ¢ (z > 2)
non-empty subsets. Note that (, 1)-partition-connectivity and highly k-tree-connectivity
are equivalent notions.

The following result exhibits a link between the two concepts. It is a special case
of a general orientation theorem appeared in [2].
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Theorem 5.1. Let 0 <1 < k be integers. An undirected graph G=(V,E) has a (k, 1)-
edge-connected orientation if and only if G is (k, |)-partition-connected.

Mader’s directed splitting off theorem [10] is as follows.

Theorem 5.2. Let D=(U +z,E) be a digraph which is k-edge-connected apart from

z. If o(z) = 8(z), then there is a complete splitting at z resulting in a k-ec digraph
on node-set U.

This result has been extended in [3] as follows.

Theorem 5.3. Let D = (U + z,E) be a digraph which is (k,1)-edge-connected apart
from z. If o(z) = 8(z), then there is a complete splitting at z resulting in a (k,1)-ec
digraph on node-set U,

We need the following corollary of Theorem 5.2.
Theorem 5.4. Let D= (U +z,E) be a digraph which is
(k,0)-ec apart from z (k = 1) with respect to a root node s U, (15)

If 0(z) > 8(z), then there are g(z) — &(z) edges entering z so that (15) continues
to hold after discarding these edges. If o(z) = 8(z), then there is a complete splitting
at z preserving (15).

Proof. For ¢cvery node v€ U +z for which g(v) > &(v), add o(v) — 8(v) parallel edges
from v to 5. In the resulting digraph D' clearly o'(v) < &'(v) holds for every node
€U —s. Hence 8"(X) = ¢'(X) = o(X) = k holds for every subset X C U —s, X #
{z}, that is, ¥ is k-ec apart from z.

By Theorem 5.2 there is a complete splitting at z resulting in a k-cc digraph. It
follows that in case g(z) = &(z) this complete splitting, when applied to D, preserves
(15). If o(z) > &(z), then there are ¢(z) — 8(z) edges entering z such that their pairs at
the complete splitting are necessarily newly added edges from z to 5. Therefore these
edges can be deleted from D without destroying (15). O

W Mader used Theorem 5.2 to derive Theorem 1.2 on the constructive characteriza-
tion of k-ec digraphs. Analogously, Theorem 5.4 may be used to derive the following.

Theorem 5.5. A directed graph D = (V,E) is (k,0)-edge-connected if and only if D
can be obtained from a single node by the following two operations:

(1)} add a new edge,
(i) add a new node z and add k edges entering z,
(iii) pinch j (1 < j <k — 1) existing edges with a new node z, and add k ~ j new
edges entering z.
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Given these constructive characterizations of (k,k)-ec and (k,0)-ec digraphs, one
may formulate the following general conjecture.

Conjecture 5.6. A directed graph D is (k,I)-edge-connected O<iI<k-1)if and
only if it can be built up from a node by the following two operations:

(i) add a new edge,
(ii) pinch i (I <i <k—1) existing edges with a new node z, and add k —i new edges
entering z and leaving existing nodes.

Pinching 0 edge with new node z simply means adding a new node z.

Conjecture 5.7. An undirected graph G is (k,1)-partition-connected if and only if it
can be built up from a node by the following two operations:

(1) add a new edge,
(i) pinch i (! <i < k—1) existing edges with a new node z, and add k —i new edges
connecting z with existing nodes.

By Theorem 5.1 the second conjecture follows from the first one. Theorem $.5
asserts the truth of this conjecture for / = 0. The conjecture was proved for [ =k — 1
in [5]. Here we verify the conjecture for / = 1. Note that the special case | =1 of
Conjecture 5.7 is Theorem 1.10. The proof relies on the following lemma,

Lemma 5.8. Let D=(V,E) be a (k, 1)-edge-connected digraph which is minimal in the
sense that the deletion of any edge destroys (k,1)-edge-connectivity (k = 2,|V| = 2).
Then D has a node z with k = g(z) > 8(z) for which there is a set F of o(z) — é(2)
edges entering z so that D — F is (k, 1)-edge-connected apart from z.

Proof, We claim that there is a node z for which k = ¢(z) > #(z). Indeed, by (14),
there is an edge e entering s. Since (13) cannot break down by deleting e, it follows
from the minimality of D that e leaves a subset X C ¥ — s for which #X)=1. Since
e(X) =k 2 2, there must be a node z in X for which ¢(z) > 6(z). _

Let us choose such a node z so that the distance of s from z is as large as possible.

Claim 5.9. Let F be a subset of at most k — 1 edges entering z. Then ) =D — F
satisfies (14).

Proof. Assume indirectly that there is a subset X € ¥ — s for which dp (X} = 0.
As 8(X) > 1, the elements of set of edges of D leaving X are all in F. Therefore
O(X) < {F| <k and, by o(X) > k, X must contain a node z' for which oz') > 8(z').
Since the head of each edge leaving X is z, we obtain that each path from z' to s
must go through z contradicting the maximal-distance choice of z. [J

Claim 5.10. o(z) = k.
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Proof. By Claim 5.9 property (14) cannot break down when an edge entering z is
left out. Hence the minimality of D implies that every edge entering z enters a subset
X CV —s for which g(X)=k. If X and Y are two subsets of ¥ — s containing z for
which & =g(X)=g(Y), then g(X)+o(Y) = o(X NY)+o(X UY) = k+ k from which
e(X NY)=k follows. This implies that there is a unique smallest subset Z containing
z for which o(Z) = k such that every edge entering z enters Z as well. But then the
in-degree of z cannot exceed & and hence o(z) =k as D is (k,1)-ec. O

By Theorem 5.4 there is a subset F' of edges of D entering z for which |F|=g(z) ~
&(z) <k and the digraph D — F is (k,0)-ec. Now Claim 5.9 implies that D — F is
actually (%,1)-ec, completing the proof of the lemma. [

Theorem 5.11. 4 digraph Dy = (V,E) is (k, 1)-edge-connected if and only if Dy can
be built up from a node by the following two operations:

(i) add a new edge,
(ii) pinch i (1 i < k—1) existing edges with a new node z, and add k — i new edges
entering z and leaving existing nodes.

Proof. It is straightforward to see that the two operations preserve (k, 1)-edge-
connectivity. To prove the reverse direction we use induction on the number of edges.
If there is an edge e whose deletion preserves (k, 1)-edge-connectivity, then Dy — e has
a required construction by the inductive hypothesis from which the construction of Dy
can be obtained by giving back e (operation (j)).

Therefore we may assume that Dy is minimally (k, 1)-edge-connected with respect
to edge deletion. We are done if |V| =1 so assume that |V| > 2.

By Lemma 5.8 there is a node z with £ = g(z) > &(z) for which there is a subset
F of ¢(z) — d(z) edges entering z so that the digraph Dy — F is (k,1)-ec apart from
z. By Theorem 5.3 there is a complete splitting at z so that the resulting digraph
Dy =(V -z,Ey) is (k,1)-ec. By the inductive hypothesis Dy can be constructed from
a node by the two given operations. But then Dy is also constructible this way as Dy
arises from D; by operation (ii). O

By combining this result with Theorem 5.1 we obtain Theorem 1.10, which is a
special case of Conjecture 5.7.

6. Conclusion: Algorithmic aspects

Inspired by earlier results of Lovasz and Mader, which indicated that construc-
tive characterizations of graph properties may serve as a powerful proof technique,
we have described constructive characterizations for several variants of the notion of
higher graph connections. One of these results extends a theorem of Henneberg and
Laman while another onc generalizes a theorem of the first named author and Kiraly.
We also formulated some natural conjecture concerning further connectivity properties.
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Beyond these it remains an interesting research area to find applications of the present
characterizations.

As far as algorithmic aspects are concemed, the proofs of the two main theorems
(Theorems 1.9 and 1.10) give rise to polynomial algorithms. We should, however,
einphasize a significant difference between these algorithms and the ones suggested by
Lovasz (or Mader’s) splitting theorems.

Lovasz’ theorem asserts that if G=(¥ +z,E) is a graph which is k-edge-connected
(apart from z) and d(z) is even, then there exists a pair of edges incident to z whose
splitting preserves these properties. To check algorithmically whether the splitting of
an arbitrarily chosen pair of edges at z preserves k-edge-connectivity needs some (at
most #*) max-flow-min-cut computations which is doable in polynomial time. That is,
Lovasz” theorem itself, without relying on any proof of it, gives rise to an algorithm to
find a full splitting at z. In order to find algorithmically the constructive characterization
of a k-sparse graph, as described in Theorem 1.9, one must find a small node admitting
a full splitting. This can be done by trying each small node separately. To decide
whether a particular small node admits a full splitting one may apply the procedure
described in Theorem 3.2. Note that even if a node z is known to have a full splitting,
this fact itself, unlike the situation in Lovisz’ theorem, does not give any clue of how
one can find algorithmically such a full splitting.
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