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Abstract

By applying the matroid partition theorem of J. Edmonds (J. Res. Nat. Bur. Standards Sect.
B 69 (1965) 67) to a hypergraphic generalization of graphic matroids, due to Lorea (Cahiers
Centre Etudes Rech. Oper. 17 (1975) 289), we obtain a generalization of Tutte’s disjoint trees
theorem for hypergraphs. As a corollary, we prove for positive integers & and ¢ that every
{kq)-edge-connected hypergraph of rank ¢ can be decomposed into k connected sub-hypergraphs,
a well-known result for ¢ =2. Another by-product is a connectivity-type sufficient condition for
the existence of k edge-disjoint Steiner trees in a bipartite graph.
© 2003 Elsevier B.V. All rights reserved.

1. Introduction

Anundirected graph G = (V,E) is called connected if there is an edge connecting
X and ¥V — X for every non-empty, proper subset X' of ¥. Connectivity of a graph is
equivalent to the existence of a spanning tree. As a connected graph on ¢ nodes contains
at least £ — 1 edges, one has the following alternative characterization of connectivity.
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Proposition 1.1. 4 graph G =(V,E) is connected if and only if the number of edges
connecting distinct classes of 2 is at least t—1 for every partition # := {V\,Vs,...,V;}
of V into non-empty subsets.

In [7] Tutte investigated the problem of decomposing a graph into a given num-
ber of connected subgraphs (spanning V'), which problem is equivalent to that of

finding & edge-disjoint spanning trees of G. He proved the following fundamental
result.

Theorem 1.2 (Tutte). An undirected graph G = (V,E) contains k edge-disjoint span-
ning trees (or G can be decomposed into k connected spanning subgraphs) if and
only if

ec(P) = k(t — 1) (1)

holds for every partition P = {V\,Va,...,V;} of V into non-empty subsets where
ec(P) denotes the number of edges connecting distinct classes of 2.

The goal of this note is to investigate possible generalizations of this result to hy-
pergraphs. By a hypergraph we mean a pair H = (V,£) where ¥ is the node-set
of H and & is a collection of not necessarily distinct non-empty subsets of V. The
usual way to define a hypergraph H connected is to require the existence of a hy-
peredge of H intersecting both X' and ¥ — X for every non-empty proper subset X
of V. But the property formulated in Proposition 1.1 may also serve as a basis of
an alternative concept of hypergraph connection. We say H to be partition-connected
if eg(#) = |#| — 1 holds for every partition 2 = {V),...,¥;} of ¥ into non-empty
classes where eg(#) denotes the number of hyperedges intersecting at least two
classes.

Partition-connectivity of hypergraphs clearly implies connectivity, and Proposition
1.1 states their equivalence for graphs. For general hypergraphs, however, a connected
hypergraph need not be partition-connected since a partition-connected hypergraph must
have at least |V|—1 hyperedges while the hypergraph consisting of the single hyperedge
{¥V} is connected.

Therefore in an attempt to generalize Tutte’s Theorem 1.2 for hypergraphs, there are
(at least) two possibilities. We will show that the problem of decomposing a hypergraph
into k (spanning) connected sub-hypergraphs is NP-complete for every integer £ = 2.
On the other hand, as a direct generalization of Tutte’s theorem, a good characterization
will be derived for hypergraphs which can be decomposed into k partition-connected
sub-hypergraphs.

The problem of finding & disjoint spanning trees in a graph is a special case of that
of finding k disjoint bases of a matroid and therefore Tutte’s theorem may easily be
derived from Edmonds’ matroid partition theorem [1):

Theorem 1.3 (Edmonds). Let M;=(S, #;} be matroids on a common groundset S for
i=1,....k Then the family $5 .= {liUhU---Uly: ;€ #;} forms the family of
independent sets of a matroid My whose rank-function ry is given by the following
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SJormula:

k
rz(Z)=min{Zr,-(X)+|Z—X!:X_QZ}. (2)

i=1

The matroid My defined in the theorem is called the swm of matroids M,...,M;.
Our approach also makes use of this resuit and is based on an observation that the
notion of circuit-matroids of graphs can be generalized to hypergraphs. This was done
by Lorea [3].

In matroid theory a prime example is the class of graphic matroids and in this light it
is a bit strange that Lorea’s pretty extension did not get any attention in the literature.
Having not been aware of his construction, we also introduced hypergraphic matroids
in the first version of the present work. It was Andris Recski who kindly drew our
attention to Lorea’s result, and hereby his help is gratefully acknowledged.

We close this introductory section by listing some definitions and notation. By a
subpartition & of U we mean a set of disjoint non-empty subsets of U/. The members
of # are called its classes. If the union of the classes is the ground-set U, we speak
of a partition of U.

It will be convenient to associate a bipartite graph Gy = (¥, Us; F) with every
hypergraph H = (¥, &) as follows. The elements of Us correspond to the hyperedges
of H (the clements of &) so that a node ux € Uy corresponding to a hyperedge K € &
is adjacent to € ¥ in Gy if and only if v€K. We will abbreviate Uy by U and
sometimes will not distinguish between the set & of hyperedges and the corresponding
set U =Uy,. Clearly, |K| is the degree of ux in Gy and |U|=|&|. For a subset # C &
of hyperedges, let Uy denote the subset of nodes corresponding to the elements of &
(in particular, Us = U). For a subset X C U, the subset of hyperedges corresponding
to the elements of X is denoted by &y.

For X C U let I'(X) := {v€¥: v is adjacent in Gy to an element of X}. The
union of the hyperedges in # is denoted by | J(#). (Therefore I'(X) = |J(£x).) For
a partition 2 of V, let ex(#) denote the number of elements of X having neighbours
in at least two classes of #. Similarly, for # C & let es (%) denote the number of
hyperedges in F intersecting at least two classes of 2. A hyperedge Z of H is induced
by a subset X of V if Z C X. The number of hyperedges induced by X is denoted by
ie(X).

It is well known (and easy to sce anyway) that the set-function |I'(X)| is fully
submodular. We say that the strong Hall condition holds for U in bipartite graph
Gy if

|[F(X)| 2 1X|+1 for every non-empty subset X C U. 3)

A hypergraph H = (¥, &) is said to satisfy the strong Hall condition if the cardinality
of the union of any j > 1 distinct hyperedges of H is at least j + 1.

We say that a sub-hypergraph (¥, &) of a hypergraph H = (V,&) is spanning if
V=|X&"). For a positive integer k, a hypergraph H=(V, &) is called k-edge-connected
(in short, k-ec) if dg(X) 2 k holds for every non-empty proper subset X C ¥ where
dp(X') denotes the number of hyperedges intersecting both X and ¥V — X. H is called
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k-partition-connected if eg(?) = k(|| — 1) holds for every partition 2= {V},..., ¥}
of V. It is an easy exercise to show that /A is k-partition-connected if and only if the
deletion of at most j hyperedges results in at most j/k + 1 components.

A bipartite graph G=(V, U; E) is called elementary if G is connected, [F|=|U| > 1,
and I'(X') > |X|+ 1 holds for every non-empty proper subset X of ¥ (which is equiv-
alent to requiring the inequality for non-empty proper subsets of U). By a hypercircuit
we mean a hypergraph the associated bipartite graph of which is elementary. Note that
in the special case when the hypergraph is a graph, this notion coincides with the usual
notion of a graph circuit. By a hyperforest we mean a hypergraph H = (¥, #) so that
there is no subset ¢ C & for which (| (¥),¥) is a hypercircuit. This is equivalent
to saying that #f satisfies the strong Hall condition, or that there are at most |X| — 1
bhyperedges of H included in X for every non-empty subset X of ¥. A hyperforest
H =(V,#) is a spanning hypertree if V =|J(#) and |#]=|V| - 1.

Finally, we call a hypergraph H forest representable or wooded if it is possible to
select two distinct elements from each hyperedge of H so that the chosen pairs, as
graph edges, form a forest. If the representing forest may be chosen to be connected,
then H is called tree representable.

2. Hypergraph connectivity and matroids
We start this section with a negative result.

Theorem 2.1. The problem whether a hypergraph H =(V, &) can be decomposed into
k connected spanning sub-hypergraphs is NP-complete for every integer k > 2.

Proof. Assume first that £=2. Recall that the problem of colouring the nodes of a hy-
pergraph by two colours so that no uni-coloured hyperedge arises is NP-complete. This
implies that colouring the hyperedges of a hypergraph H' = (V’,&’) by red and blue
so that every node belongs to a red and to a blue hyperedge is also NP-complete (that
is, both the red and the blue hyperedges cover V). We show that this latter problem
is polynomially solvable if there is a polynomial algorithm to decide decomposability
of a hypergraph into two connected spamning sub-hypergraphs. To this end, let ¢ be
a new clement, let V' := V' +1, & := {X +1: X € &'} and H = (¥, ). Note that a
sub-hypergraph (¥, #) of H is connected and spans ¥ if and only if the corresponding
sub-hypergraph (V’,#') of H' covers the elements of V. Therefore, H can be decom-
posed into 2 connected spanning sub-hypergraphs if and only if H' can be decomposed
into two sub-hypergraph each covering the ground-set.

The NP-completeness of the problem for k > 3 easily reduces to the special case
k=2. Let H =(¥, &) be a hypergraph and let H* denote the hypergraph arising from
H by adding k — 2 copies of V' as new hyperedges. As a hypergraph on ground-set ¥
consisting of a single hyperedge ¥ is connected, H* can be decomposed into & con-
nected spanning sub-hypergraphs if and only if H can be decomposed into 2 connected
spanning sub-hypergraphs, [J
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Let us turn our attention to decomposition of hypergraphs into partition-connected
sub-hypergraphs. A basic fact in matroid theory is that the subforests of an undirected
graph G = (V,E) form the family of independent sets of a matroid on ground-set E,
called the circuit-matroid of Lorea [3] extended this notion to hypergraphs.

Erdds had conjectured and Lovasz [4] proved that the node set ¥ of a hypergraph
H = (V,&) satisfying the strong Hall condition (that is, a hyperforest) can always
be coloured by two colours so that there is no uni-coloured hyperedge. What Lovisz
actually proved (in a more general form) was the following result (which can also be
derived from Edmonds’ matroid intersection theorem).

Theorem 2.2, A hypergraph H is a hyperforest if and only if it is wooded (or in other
words, H meets the strong Hall condition if and only if H is forest representable).

(Lovasz’ theorem may be formulated in terms of bipartite graphs: a bipartite graph
(V,U;E) contains a subforest F C E so that dp(v) =2 for every ve U if and only
if the strong Hall condition holds for U.)

This result clearly implies Erdés’ conjecture since a forest is bipartite and a two-
colouring of its nodes forms a required two-colouring of the hypergraph. (Note that
the word wooded in Hungarian translates to erdds.)

Theorem 2.3 (Lorea). Given a hypergraph H=(V, 8), the sub-hypergraphs of H which
are hyperforests (or equivalently, the wooded sub-hypergraphs of H) form the family
of independent sets of a matroid on ground-set £,

For completeness, we include here a proof.

Proof. We prove that hypercircuits satisfy the circuit axioms, that is, (a) no circuit
may include another one and (b) the union of any two circuits remains dependent (that
is, contains a circuit) even after discarding any element of their intersection.

The first axiom clearly holds. To derive the second one, let C; and C; be two subsets
of Us in the associated bipartite graph corresponding to two distinct hypercircuits €,
and %; of H which has an element Z in common. We have |Cy| 4 |C;| = |I(Cy)| +
IT{(C2) 2 I NG + [T(CLU G| 2 |G N Cof + 1+ |F(Cy U G)| from which
|F(C1 UC;)l < |C|§+ |C2| - |C1 ﬂCz! -1 =]C| UCZI —1 and hence €,U%; — {Z} cannot
satisfy the strong Hall condition. Thus € U%, — {Z} must contain a hypercircuit. [l

A matroid arising this way will be called the circuit-matroid of the hypergraph H and
denoted by My. We call a matroid which is the circuit-matroid of a hypergraph a Ay-
pergraphic matroid. By choosing H to be the hypergraph consisting of a three-element
groundset ¥ and of four copies of ¥ as hyperedges, we observe that the uniform
matroid Uy, (the smallest non-binary matroid) is hypergraphic. We note that, unlike
graphic matroids, hypergraphic matroids are not necessarily closed under contraction.

Let us recall another result of Edmonds. A set-function 5:2Y — Z is called inter-
secting submodular if

BX)+b(Y) 2 BXNY)+BXUY) )
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holds for every pair of subsets X,Y C U with non-empty intersection. If (4) holds for
disjoint subsets X and ¥, as well, then b is called fully submodular. A set-function b is
called monotone non-decreasing if 5(X') > b(Y) whenever X O Y. Throughout we will
assume that a set-function is zero on the empty set. The other theorem of Edmonds
{2] we need is as follows,

Theorem 2.4, Let b be a non-negative, integer-valued, intersecting submodular set-
Sfunction on a ground-set U, Then
Fp={{CU: H(Y)2|¥YNI| for every Y C U} (5)

Jorms the family of independent sets of a matroid M = (U, %) whose rank-function
is given by

ro(Z)y=min {37 B +1Z = (G UK U+ UX)]: {Xi,..., X}

a subpartition of U}. (6)
Furthermore, if b is monotone non-decreasing, then
Fp={ICU: (Y)2 Y| for every Y CI} )]
and

#(Z) = min {Zb()(})+ 12— (X UX U UX): (X, X}
a subpartition of Z}. (®)

In order to determine the rank-function of the circuit matroid My, we need the
following:

Alternative proof of Theorem 2.3. Let us define a set-function by :2Y — Z. as fol-
lows. For a non-empty subset X C U let

bp(X) =)} -1 9)

and let by () := 0. Since |I'(X)| is a fully submodular function, by is intersecting sub-
modular. Obviously, by is monotone non-decreasing. Let us consider the matroid Mj,
defined in Theorem 2.4. In this a subset J C U is independent if |X| < by (X) holds
for every subset X' C U. This is equivalent to requiring that the sub-hypergraph (¥, .#)
meets the strong Hall condition, that is, by Lovasz’ theorem, (¥,.#) is wooded. O

Theorem 2.5. The rank function ry of the circuit-matroid of a hypergraph H is given
by the following formula:

rp(Z) =min{|V| — |2| + ez(P). P a partition of V}. (10)
Proof. It suffices to prove the formula for the special case Z = U since the value of

ez(?) does not change if the nodes in U —Z are deleted from the representing bipartite
graph Gy.
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Let H' = (V,£") be a wooded sub-hypergraph of H (that is, Uss an independent
subset of matroid My ). Then, for every partition 2 of ¥, there are at most |V| — ||
hyperedges in H' which are subsets of a class of 2. Therefore |£’| cannot be bigger
than |¥|—| 2P| +es/(P), that is, rg(&) < |V]|—|P|+ee(2). The proof will be completed
by proving the existence of a partition for which equality holds,

By (8) we have

() =min {ZbH(Z,-)—i— U — U Zi|: {Z\,...,Z;} a subpartition of U}.

(11)

A subpartition where the minimum is attained will be called a minimizer of (11). Let
F = {Z,...,Z;} be a minimizer of (11) so that |#| is as small as possible.

We claim that I'(Z) N I'(Z;) = @ holds whenever | </ < j < /. Indeed, as subset
Z; and Z; are disjoint, |I'(Z; U Z;)| = |I'(Z;)| + |T(Z;)| — |T(Z:) N T(Z;)|. Therefore
I(Z;)NI(Z;) # 0 implies [I'(Z; U Zy)| < |I(Z)| + [I'(Z;)| — 1, and hence by(Z; U
Z;} € bp(Z:)+br(Z;). This is however impossible since by replacing Z; and Z; in & by
their union we obtain another minimizer subpartition #’ of U, for which |[#'| < |#|.

We claim furthermore that I'(x) & I'(Z;) for every node u € Us — |, Z;. Indeed, if
we had I'(u) C I'(Z;), then for Z] := Z; + u we would have I'(Z]) = I'(Z;) and then
by replacing Z; by Z! := Z; + u we would obtain a subpartition #’ of U, for which
Yozes bH(Z) U —Uzeg Z| < 3 5c5 bu(Z)+|U — ) e e Z| contradicting that &
is a minimizer of (11).

Let & be the following pattition of V. For each member Z; of #, let I'(Z;)} be a
member of 2, and for each element ze V — | J, I'(Z;), let {z} be a member of 2.
By the claims above eg(#) = |U — |JZ|. Since |2|=|F|+ |V — U, I'(Z})| we have
ra(&)= X, ba(Z)+|U ~UZI= S (0@ ~ )+ ee(P)= 5, (2] - |#| +es(@)=
|¥| — |P| + es(P), as required. O

Corollary 2.6. The rank of the circuit matroid of a hypergraph H=(V,&) is |V|—1
if and only if H is partition-connected.

Proof. By definition rg(&£) <|V]| — 1 and it follows from (10) that equality holds
precisely if |[F| — || + eg,(#) 2 |V| — 1 holds for every partition & of ¥, that
is, e£;,(?)>|#|) — 1, which in turn is equivalent to the partition connectivity
of H. O

For a positive integer k let M,y denote the sum of k copies of matroid M. This ma-
troid is also defined on the set of hyperedges and a subset of hyperedges is independent
by definition if it can be decomposed into & wooded sub-hypergraphs.

Theorem 2.7. The rank-function ry; of matroid My is given by the following
Jormula:

ri(Z) = min{k(|V'| ~ |?|) + es,(P): P a partition of V1. (12)
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Proof. Again, it suffices to prove the formula for the special case Z = U. Also, as
Theorem 2.5 contained the special case k = 1, we may assume that k > 2. As an
independent set of Mgy may contain at most k(|¥;| ~ 1) hyperedges which are subsets
of some partition class ¥; € 2, we see that riy(U) is at most k([V| — |2|) + es(P).

To see the reverse inequality we must find a partition 2 of ¥ for which rg(U) =
K(|V|~|2|}+-es(2). Combining (2) and (10) we obtain that ri (U )=mingcy [kry(F)+
|U ~ F|] = minpcy [k(min{|V| — |#| + er(P): 2 a pattition of ¥})+ |U — F|]. Let
F be a set for which the minimum is attained and let 2 be a partition of ¥ for which
the inner minimum is attained.

We claim that ep(#) = 0. Indeed, if there were indirectly an element z € F which
has neighbours in at least two classes of 2, then we would have k ep(2)+|U — F'|=
kler(P)— 11+ [|[U ~F|+ 1) =kep(P)+ U —F| — (k= 1) for F' := Z —z and, as
k > 2, this would contradict the assumption that F is a minimizer.

We also claim that there is no element x€ U — F with e,(#?) = 0 for otherwise
ep(P) = ep(P) would hold for F' := F + x which would contradict, by |U — Z'| =
JU -- F] — 1, the assumption that F is a minimizer.

We can conclude that U — F consists of exactly those elements of I/ which have
neighbours in at least two classes of 2, that is, |U — F|=ey(#). Hence we obtain that
re(U)=k[|[V| — |2+ ep(P)] +|U — F|=k[|V| — | 2| + 0] + ey(P), as required. O

The following result is a direct generalization of Theorem 1.2 of Tutte.

Theorem 2.8. 4 hypergraph H = (V, &) is k-partition-connected if and only if H can
be decomposed into k sub-hypergraphs each of which is partition-connected,

Proof. If the decomposition exists, the hypergraph is clearly &-partition-connected. To
see the other direction, observe first that, by Theorem 2.5, a sub-hypergraph H'=(V, &")
of H is partition-connected if and only if ry(&')=|V{— 1.

Suppose now that H is k-partition-connected, that is, es(®) = k(|2| — 1) holds
for every partition & of V. This is equivalent to requiring that k(|V| — |2|f) +
es(P) 2 k(|V|—1) that is, by Theorem 2.7, rigy =k({V'| — 1). Therefore the cardinality
of every basis of matroid My is £(}V'| — 1) and every basis is the union of & bases of
My . Tt follows that the rank of My is [V| — 1 and that My admits k pairwise disjoint
bases. By Corollary 2.6, a sub-hypergraph H' = (¥, &) of H is partition-connected if
and only if ry(&") = |V| — 1, the existence of & disjoint bases of M;; means that H
can be decomposed into k partition-connected sub-hypergraphs. [J

By the rank of a hypergraph we mean the cardinality of its largest hyperedge.
A well-known corollary of Theorem 1.2 of Tutte is that a (2k)-edge-connected graph
always contains & disjoint spanning trees. As a direct extension of this result we derive
the following.

Corollary 2.9. A (gk)-edge-connected hypergraph H of rank at most g can be decom-
posed into k partition-connected sub-hypergraphs and hence into k connected spanning
sub-hypergraphs.
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Proof. By Theorem 2.8 it suffices to show that H is k-partition-connected. Let &
be a partition of V. By the (gk)-edge-connectivity, there are at least gk hyperedges
of H intersecting both ¥; and ¥ — V; for each class ¥; of #. Since one hyper-
edge may intersect at most ¢ classes, we obtain that the total number of hyperedges
intersecting more than one class is at least (gk)|?|/q > k(|| — 1), that is, H is
indeed k-partition-connected, and therefore, by Theorem 2.8, H decomposes into &
partition-connected sub-hypergraphs. O

We close this section by mentioning another corollary of Theorem 2.7. This is a
direct generalization of Nash-Williams’s well-known theorem on partitioning a graph
into k forests [6].

Theorem 2.10. The edge-set & of a hypergraph H = (¥, &) can be decomposed into
k hyperforests if and only if for the number of hyperedges induced by X we have

i£(X) < K(X| 1) (13)
Jor every non-empty subset X of V.

Proof. Since one hyperforest may contain at most |X| — I hyperedges induced by X,
(13) is necessary.

To see the sufficiency, let 2 = {F1,...,¥;} be a partition of V' into non-empty
classes. By (13) each class F; includes at most k(|V;| — 1) hyperedges, so the number
es(#) of hyperedges intersecting at least two classes of 2 is at least |£]| —E:,.:, k(V;l—
D=|&|—k(|V|—1). Therefore k(|V|—|2|)+es(P) = | &) holds for every partition 2 of
V and hence & is independent in matroid Myy by formula (12), that is, & decomposes
into £ hyperforests. O

3. Disjoint Steiner trees

Let G =(Vy,E) be an undirected graph with a so-called terminal set ¥ C V. By
a Steiner tree of G (spanning V') we mean a subtree (V’, E') for which E' C E and
V C V' C ¥y (No assumption is made on the minimality of |E’|.) The disjoint Steiner
frees problem consists of finding k£ edge-disjoint Steiner trees of G. When V = ¥y
we are interested in the existence of & disjoint spanning trees of G and in this case
Theorem 1.2 of Tutte provides a characterization. When |¥| = 2, a Steiner tree is a
path connecting the two terminal nodes, and the edge-disjoint, undirected version of
Menger’s theorem gives an answer. For general ¥, however, the problem is known to
be NP-complete, so deriving sufficient conditions for the existence of & disjoint Steiner
trees may be of some interest. We say that G is k-edge-connected in V if every
cut of G separating two elements of ¥ has at least £ edges. By Menger’s theorem
this is equivalent to requiring for every two elements ¥ and v of ¥ that there are k
edge-disjoint paths in G connecting u and v.
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Theorem 3.1. Let G = (Vo,E) be an undirected graph and V C Vy a subset of nodes
so that U := Vo — V is stable and G is (3k)-edge-connected in V. Then G contains
k edge-disjoint Steiner trees spanning V.

Proof. We use induction on the value g := )" (max(0,dg(v) — 3): v€ U). Suppose
first that ug is zero, that is, the degree of each node in U is at most 3. We may assume
that ¥ is also stable for otherwise each edge induced by ¥ can be subdivided by a
new node. Such an operation may add new nodes of degree two to the complement
of I but it does not affect {gk)-edge-connectivity in ¥ and % disjoint Steiner trees in
the new graph determine & disjoint Steiner trees in G.

Let # =(¥, &) be the hypergraph corresponding to G, that is, for each element u of
U, there is a corresponding hyperedge of H consisting of the neighbours of u in G.
As the degree of each element of U is at most 3, the rank of H is at most 3.

For any non-empty, proper subset X' of ¥ let X’ denote the set of those elements
of U which have at least one neighbour in X and at most one neighbour in ¥ — X in
the graph G. Since every degree in U is at most 3, we have dg(X UX')=dy(X) and
hence the (3k)-edge-connectivity of G implies the (3k)-edge-connectivity of H.

By Corollary 2.9, U can be partitioned into &k disjoint subsets [/,..., U so that
¥ U U; induces a connected subgraph G; =(V UU;, E;) of G for each i=1,...,k. By
choosing a spanning tree F; from each G;, we obtain the required edge-disjoint Steiner
trees of G.

Suppose now that ug is positive and that the theorem holds for each graph G/ with
He' < pg. Let s€ U be a node with dg(s) > 4. If there is a cut-edge e of G, then the
elements of V belong to the same component of G—e as G is at least k-edge-connected
in V and then we may discard the other component of G — e without destroying
(3% )-edge-connectivity in V. Therefore we may assume that G is 2-edge-connected.

By Mader’s undirected splitting theorem [5] there are two edges e=vs, f =25 in
E so that replacing e and f by a new edge vz the local edge-connectivities do not
drop. In particular, the resulting graph G’ continues to be (34)-edge-connected in V.
By induction there are & edge-disjoint Steiner trees in G'. If one of these trees contains
the split-off edge vz, we replace it by e and/or f in order to obtain a Steiner tree of
G. Therefore we have proved the existence of & edge-disjoint Steiner trees of G. O

In this proof we relied on the assumption made on the stability of U, It is not clear
whether this assumption could possibly be left out. We do not know either if the hy-
pothesis on (3k )-edge-connectivity can be weakened, perhaps to (2k )-edge-connectivity.
This is certainly so for graphs in which the degree of each node in I/ is even and,
in particular, for Eulerian graphs. The proof of this is almost identical to that of
Theorem 3.1.

As far as algorithmic aspects are concerned, Edmonds’ matroid partition algorithm
may be used to compute a decomposition of a hypergraph into & partition-connected
sub-hypergraphs or to compute a deficient partition to show that such a decomposition
does not exist. Therefore Theorem 3.1 can be used for an approximation algorithm to
compute the maximum number v of disjoint Steiner trees, V is clearly v edge-connected
in G so, by Theorem 3.1, one can compute v/3 disjoint Steiner trees.
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