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A common generalization of the theorems of Greene and Greene and Kleitman is
presented. This yields some insight into the relation of optimal chain and antichain
families of a partialty ordered set. The fundamental device is the minimal cost flow
algorithm of Ford and Fulkerson.

INTRODUCTION

Greene and Kleitman [6], while investigating generalizations of Dilworth’s
theorem, found a nice formula for the maximum cardinality of the union of
antichains in a partially ordered set. Previously, Greene [4] had proved a
similar min—max theorem concerning chains instead of antichains. Moreover,
he discovered a number of deep and interesting features of chains and an-
tichains. An excellent survey can be found in [5].

This paper has two purposes. A theorem will be proved which is a com-
mon generalization of the theorems of Greene and Kleitman [6] and Greene
[4] on the one hand, and an algorithm will be described for finding an op-
timal set of y chains and « antichains on the other.

In our procedure the basic idea is that the elegant proof of Dilworth’s
theorem given by Fulkerson {3] can be generalized. It will wurn out that the
problem of finding y chains of largest union is equivalent to a minimal cost
flow problem. To solve this we apply the method of Ford and Fulkerson |2
which solves not only the y chains problem but also the & antichains problem
at the same time. An analysis of the Ford—Fulkerson algorithm leads us to
the theorem in question. Some other results of Greene can also easily be es-
tablished in this framework.
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CHAIN AND ANTICHAIN FAMILIES 177
1. PRELIMINARIES AND THE MAIN RESuULT

Let P={p,.p, - p,} be a finite partially ordered set. A chain C is a
totally ordered subset of P; an antichain 4 is a set of mutually unrelated ele-
ments of P. Let ¢ and a be the cardinalitics of the largest chain and an-
tichain, respectively. Dilworth’s theorem [1] states that P can be partiticned
into a chains. A dual version of Dilworth’s theorem states that P can be par-
titioned into ¢ antichains.

If L is a collection of sets we set (JL={x:x €4 for some A€ L}. | X|
denotes the cardinality of the set X.

Let o and % be the sets of all unordered sets of pairwise disjoint non-
empty antichains and chains, respectively. We shall refer to a member
o, ={4,,Ay .. A,} of & and to a member of %, = {C,, C,,.., C,} of ¥ as
an antichain and a chain family, respectively.

Denote a, = max | .+, | and ¢, =max|{) %, |, where the maximum is
taken over all antichain families consisting of a antichains and chain families
consisting of p chains, respectively. (Note that a,=a and ¢, =¢.)

By Dilworth’s theorem ¢, = r and by its dual a = n, therefore 1 Ly a
and 1 € a < ¢ are assumed.

THEOREM la. (Greene and Kleitman [6]).
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where the first minimum runs over all chain partitions {C,, Cy,.., C,} of P.

THEOREM 2a (Greene [4]).
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where the first minimum runs over all antichain partitions {4,, A,,... A} of
P.

Before stating these theorems in another way we need the following.

DerFINITION.  We call a chain family %, ={C,,C,,....C,} and an an-
tichain family .« = {4,,4,,..,4,} orthogonal if
(a) P=(U.¥,)U(U¥,) and
(b) A;NC#0for I <iga 1 <fgy

It can easily be checked that if there exist collections .+, and &, which are
orthogonal then .+, is optimal, ie., | (&, |=a, and Theorem la is true for
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this @, and, similarly, %, is optimal, ie., ||J %, |= ¢, and Theorem 2a is true
for this . Hence the next two theorems imply the above-mentioned results:

TueoreEM b, For each a, | < a < ¢, there exist an antichain family <7,
and a chain family ,, for some y, which are orthogonal,

THEOREM 2b. For each y, | y<a, there exist a chain family %, and
an antichain family s, , for some a, which are orthogonal.

Now we are in the position to state our main result.

THEOREM 3. There exists a sequence

NT&_, ..&M,..;..&LQ—l_.@Tu.:cﬂnl:_.\&_t L&Lﬂnl:i @\-

Ib_

which arises as a combination of two sequences G E 1o &, and
My Ay 3, where E,€EF and o€ o7, with the property that any
member of the sequence (whether &, or /) is orthogonal to the last member
of other type preceeding it. (That is, =, 5,,..., 5¢; are orthogonal to Eos
and €,_,, %, 1., %,_; are orthogonal to s, and so on.)

Observe that the #'s are arranged by decreasing indices while s by in-
creasing ones. Thus the last member of the sequence is either %, or ..
Theorems 2a and 2b follow immediately from Theorem 3.

2. THE ALGORITHM OF FORD AND FULKERSON

In the proof we shall need the minimal cost flow algorithm of Ford and
Fulkerson {2, p. 113]; thus, before proving Theorem 3 we briefly summarize
this algorithm.

Assume given a network G = (V, E) having two specified vertices: a
source s and a sink ¢, Non-negative integral cost a(xy) and positive integral
capacity c(xy) are assigned to each arc (xy). The task is to look for a
minimal cost flow f(xy) from s to ¢, having a flow value v given in advance.

The algorithm solves this problem for all the possible flow values ». It in-
vokes dual variables n(x) assigned to the vertices of G. This so-called poten-
tial function (or briefly potential) is non-negative integer valued and n(s) =0
throughout the process. The current n{t) = p is called the porential value.

Suppose we have a flow f(xy) (satisfying the capacity restriction) of value
v, and a potential m(x) of value p. Then wusing the notation
a(xy) = a(xy) + n(x) — n(p), the following estimation holds for the flow cost:
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N aloy)f )

= M (@(p) ~ 7(x)S(xp) + . M. a(xy)f{xy)
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=pv+ 3 alxy)clxy),
(xy}eE
where E* is the set of edges (xy) having &(xy) >0 and E~ is defined
similarly.
From this we can see that the flow in question surely has minimal cost
among the flows of value v if the above inequality is fulfilled with equality.
This is equivalent to the next criteria:

a(y)— n(x) < a(xy) implies f(xy)=0 )
n(yy—mx) > alxy)  implies [f(xy)=c(xy) (2)

The algorithm begins with zero potential and zero flow. In a general step a
path, leading from s to ¢, is sought by a labeling process on the network G’
consisting of those edges (xp) for which (i} @(xy) =0 and f{xy) < ¢(xy) or
(i} @(yx) =0 and f(yx) > 0. This path either exists or not. Accordingly,
there are two types of steps:

a. If a path exists, a new flow can be obtained by means of this path, The
new flow value is greater by one than that of the preceeding one, while the
potential is unchanged.

b. In the other case a new potential can be obtained in such a way that
m(x) is increased by one on the set of those vertices which cannot be reached
by a path starting from s in G’. The new potential value is greater by one
than that of the preceeding one, while the flow is unchanged.

The algorithm consists of the repeated applications of the general step.

A fundamental feature of the algorithm is that optimality criteria (1) and
(2) are maintained throughout the computation. It is important to know that
the flow cost increases by the current potential value p when the flow value
is increased by ane, Furthermore 0 < m{x) < p during the whole process for
each xe V.

We shall refer to a stage of the algorithm by the pair (v, p) consisting of
the current flow and potential values.
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3. ProoF OF THEOREM 3.

Associate a network G = (V, E) with P as follows. Let ¥ = {5, £, x,, X, ey
Xpo Vis Vosws Vabs E={sx): 1= 1, 20 np O {(pt)0 i = 1, 2, mp W (X, 0)):
if p, 2 bl

All of the arc capacities c{e) are equal to one, while the costs a(e) are:

ale)

1 if e={x¥)
0 otherwise.

Now apply the procedure of Ford and Fulkerson for this network and con-
sider a stage of the computation.

Firstly we associate a chain family &,, where y = n — v, with the current
flow as follows. If the flow cost is d (d > 0) then the flow is one on 4 edges
of type (x;¥,), say f(x, ¥} = f(x;0:) = - =f(x,y2) = 1. The edges (x; y,}
(i # ), for which f(x;y;) = 1, form an independent set of edges. This defines
a chain partition of the subset P' = {p,,,.ps,, - P.} 8s in the proof of
Dilworth’s theorem given by Fulkerson (see [2, p. 62, Lemma8.1]). The
number of chains is | P'| — (v — d)= n — v = y. Let these chains be denoted
by €, C;,..,, €, and &, = {C,, C;,..., C,}. Note that %, does not depend on
the potential.

Secondly we associate an antichain family ., where a =p, with the
current potential. Let P, = {p;:n(x;) < a(p) =i} and let A, consist of the
maximal elements of P; for i=1,2,.., p. Let &, = {4,,4,,..., 4, }. Note that
., does not depend on the flow.

The following lemma is the key to our proof,

LEMMA. The above families %, and &, are orthogonal.

Progf. (a) Let p, & U%,; equivalently f(x;y,)=1. Then n(y,)>
1 +n(x;) by (1), i.e., p; € P;, where i = n( ;). If, indirectly, D; & A, then there
is a p, in P, greater than p,. Now n(y)=n(y,) =/ and m(x,,) <, thus
n(y;} — m(x,) > 0. Applying (2) to the edge (x,, ¥;) we get f(x,,»,) = L. This
is impossible since the capacity of the unique edge (y;t) starting from ¥, is
one, but f(x, »}=flx;y}=1.
(b) Let C;€ %, and let C; consist of vertices p,, , > Py, > - > Pa.s
{(621) Now we have flx;, ,_,¥aon)=1 for A=23.,b and
SxasnVasn)=0for h=1,2...b and f(y,, 1) = f(5x,.,)=0.

From f(y,,,0)=0 and =(t)=p we get n{y,,,)2p by (2) and thus
T Fq.1)=p. Similarly f(sx,, ,) =0 implies n{x,, ,)=0.

Furthermore f(x,,;¥,.,) =0 implies n(p,.,) < + afx,,,) by (2) and
finally f(xg, 4_ ¥q. o) = 1 implies 7(y,,,) 2 m(x,., ) by (1).

These statements show that there exists an element p, of C, for which
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n(y,) =i and n(x,) < i for each i=1, 2,..., p. Let p; denote the greatest ele-
ment of C; with this property for a fixed /i We show that P, € A;. By the
definition of p,, it is in P,. Assume, indirectly, that there exists a P, in P,
greater than p,. Then =(y)=n(y,}=i =n(x,)<i, and thus
7(y,) = n(x,,}) > 0. From this we get f(x, ¥, )=1 by (2). However, this
means p,, € C; contradicting the choice of p,. 1§

Now suppose that the Ford-Fulkerson algorithm has run as follows.
Starting with z(x) = 0 and f(xy) = 0 the flow value increases to kg, then
the potential value increases to i#,, then the flow value increases to k-
finally the potential value increases to i, and the flow value increases to k,
O<hky <l < <k, 0<i <y < o- <)

The algorithm terminates when the maximal flow value is attained. In our
case this value is equal to n, i.e, k;=n Leta=n—k; and j, = &, —k, for
i=12,..,s :

By the lemma, a chain family %, and an antichain family «#, which are
orthogonal, belong to the stage (v, p)= (k,, 1) of the aigorithm. Then the
potential value increases one by one to {,, as mentioned. Antichain families
Sy, 5., belonging to the intermediate stages are orthogonal to the un-
changed %,. Then the flow value increases one by one to k,. Chain families
#ae1» €y_10 F,_;, belonging to the intermediate stages are orthogonal to

a—1*

the unchanged 7, etc. 11

4, SOME CONSEQUENCES

It easy to check that the pairs (v, p) occuring in the course of the
algorithm, and thus the sequences ko, k,,..., k, and {,, i,,..., i,, depend only
on P itself and not on the run of the algorithm. Picture them as points of
coordinates v and p in a coordinate system,

For example, consider the poset illustrated in Fig. I.

FiGURE 1

r— g
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Applying the algorithm, we obtain the sequences {k;} and {i,} mentioned
above: ky=4, k=6, k, =8, k;=9(=n) and i, =1, i, =2, i, = 3. Pictur-
ing the points of coordinates (v, p), we get Fig. 2.

ip=2

v d;Houﬂ:\WnaT
i o o

FiGuRE 2

k =6 kom8 kgt

The sequence guaranteed by the theorem is:
LA EAL A AR AL A A
where

113,24, 5,68, 79}
112589}

{13, 24, 68, 79}
{13,456, 79}
{1267, 3489}

7 = {13, 456}

1456

{1267, 3489, 5.

li

RARRRNE R
[T

&
il

Hence we can see: a, =5,a,=8,a,=%and ¢, = 3, ¢, = 5, ¢, =7.¢,=8,
;=0

Domain D bounded by the heavy line gives more information about P. We
call D the kilter domain of P.

Form the difference sequences of sequences ¢; and a,. These are C =c,.
Ci=¢,—¢;_, for 2<j<aand A,=a,, A,;=a,—a, , for 2<i<ec. Ob
viously 3" C;=3"A;=n.
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The difference sequences have a quite transparent meaning in the kilter
domain. If one of the steps of the algorithm is a flow increasing from stage
(v.p) to (w+ L, p) {2k, then the flow cost increases by p. Hence
C,_.=p by the lemma. Since p never decreases during the algorithm, {C,}
forms a monotone decreasing sequence, furthermore the C/’s are the heights
of the columns of the kilter domain of P.

If one of the steps of the algorithm is a potential increasing from stage
(v.p) to (v,p + 1) then the common chain family #,_. belonging to these
stages is orthogonal to both &/, and .+, |, therefore A, =n—uv Since v
does not decrease in the course of the algorithm, the sequence {A,} is
monotone decreasing, furthermore the A/'s are just the length of the rows of
the kilter domain of P,

Thus we have obtained a theorem of Greene:

THEOREM 4 |4|. The sequences {C;} and {A;} are monotone decreasing
and form conjugate partitions of the number n.

Another interesting consequence of Theorem3 is the so-called #
phenomenon (transition phenomenon) for chains and antichains.

THEOREM 5 [5]. For a >0, there exists a chain partition C,,C, - C,
of P such that

&, =2

S min(| C,la)
i
and

8oy = N min(| C,fa+ 1).

Proof. Consider the antichain family .+, ,, in the sequence guaranteed
by Theorem 3. Let &, be the last chain family preceeding &, .. Then % is
orthogonal both .« , and &, (either .+, ,, preceeds #; or not). Therefore
the chain partition % satisfies the requirements where % consists of the
members of #; and some one element chains so that it should form a parti-
tion of 2. 1

The counterpart of Theorem 5 follows in a similar way:

THEOREM 6 |5|. For y>0, there exists an antichain partition
Ay A, A, of P such that

¢, =N min(| 4,1 y)
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and

¢, = min(4,|y+1).

pEL T
i
Hoffman and his co-workers gave some further interesting examples for
the ¢-phenomenon (and this name itself is also due to Hoffman) |7, 8],
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