On Chain and Antichain Families of a Partially Ordered Set

András Frank

Research Institute for Telecommunication, H-1026 Budapest, II Gábor Á.u. 65, Hungary; and József Attila University, Bolyai Institute, 6720 Szeged, Aradi v.t. 1, Hungary

Communicated by L. Lovász

Received September 22, 1978

A common generalization of the theorems of Greene and Greene and Kleitman is presented. This yields some insight into the relation of optimal chain and antichain families of a partially ordered set. The fundamental device is the minimal cost flow algorithm of Ford and Fulkerson.

INTRODUCTION

Greene and Kleitman [6], while investigating generalizations of Dilworth's theorem, found a nice formula for the maximum cardinality of the union of α antichains in a partially ordered set. Previously, Greene [4] had proved a similar min-max theorem concerning chains instead of antichains. Moreover, he discovered a number of deep and interesting features of chains and antichains. An excellent survey can be found in [5].

This paper has two purposes. A theorem will be proved which is a common generalization of the theorems of Greene and Kleitman [6] and Greene [4] on the one hand, and an algorithm will be described for finding an optimal set of γ chains and α antichains on the other.

In our procedure the basic idea is that the elegant proof of Dilworth's theorem given by Fulkerson [3] can be generalized. It will turn out that the problem of finding y chains of largest union is equivalent to a minimal cost flow problem. To solve this we apply the method of Ford and Fulkerson [2] which solves not only the y chains problem but also the α antichains problem at the same time. An analysis of the Ford-Fulkerson algorithm leads us to the theorem in question. Some other results of Greene can also easily be established in this framework.

176

PRELIMINARIES AND THE MAIN RESULT

Let $P = \{p_1, p_2 \cdots p_n\}$ be a finite partially ordered set. A *chain* C is a totally ordered subset of P; an *antichain* A is a set of mutually unrelated elements of P. Let \mathbf{c} and \mathbf{a} be the cardinalities of the largest chain and antichain, respectively. Dilworth's theorem [1] states that P can be partitioned into \mathbf{a} chains. A dual version of Dilworth's theorem states that P can be partitioned into \mathbf{c} antichains.

If L is a collection of sets we set $\bigcup L = \{x : x \in A \text{ for some } A \in L\}, |X|$ denotes the cardinality of the set X.

Let $\mathscr A$ and $\mathscr E$ be the sets of all unordered sets of pairwise disjoint non-empty antichains and chains, respectively. We shall refer to a member $\mathscr A_\alpha = \{A_1, A_2, ..., A_\alpha\}$ of $\mathscr A$ and to a member of $\mathscr E_\gamma = \{C_1, C_2, ..., C_\gamma\}$ of $\mathscr E$ as an antichain and a chain family, respectively.

Denote $\mathbf{a}_{\alpha} = \max | \bigcup \mathscr{A}_{\alpha}|$ and $\mathbf{c}_{\gamma} = \max | \bigcup \mathscr{C}_{\gamma}|$, where the maximum is taken over all antichain families consisting of α antichains and chain families consisting of γ chains, respectively. (Note that $\mathbf{a}_1 = \mathbf{a}$ and $\mathbf{c}_1 = \mathbf{c}$.)

By Dilworth's theorem $c_n = n$ and by its dual $a_c = n$, therefore $1 \le \gamma \le a$ and $1 \le a \le c$ are assumed.

THEOREM 1a. (Greene and Kleitman [6]).

$$\mathbf{a}_{\alpha} = \min \sum_{i=1}^{n} \min(|C_i|, \alpha),$$

where the first minimum runs over all chain partitions $\{C_1, C_2, ..., C_q\}$ of P.

THEOREM 2a (Greene [4]).

$$\mathbf{c}_p = \min \sum_{i=1}^q \min(|A_i|, \gamma),$$

where the first minimum runs over all antichain partitions $\{A_1,A_2,...,A_q\}$ of P.

Before stating these theorems in another way we need the following

Definition. We call a chain family $\mathscr{C}_p = \{C_1, C_2, ..., C_p\}$ and an antichain family $\mathscr{A}_a = \{A_1, A_2, ..., A_a\}$ orthogonal if

- (a) $P = (\bigcup \mathscr{A}_{\alpha}) \cup (\bigcup \mathscr{C}_{p})$ and
- (b) $A_i \cap C_j \neq 0$ for $1 \leqslant i \leqslant \alpha$, $1 \leqslant j \leqslant \gamma$.

It can easily be checked that if there exist collections \mathscr{A}_a and \mathscr{C}_p which are orthogonal then \mathscr{A}_a is optimal, i.e., $|\bigcup \mathscr{A}_a| = \mathbf{a}_a$ and Theorem 1a is true for

this α , and, similarly, \mathscr{C}_p is optimal, i.e., $|\bigcup \mathscr{C}_p| = c_p$ and Theorem 2a is true for this γ . Hence the next two theorems imply the above-mentioned results:

THEOREM 1b. For each α , $1 \le \alpha \le c$, there exist an antichain family \mathscr{A}_a and a chain family \mathscr{C}_p , for some γ , which are orthogonal.

THEOREM 2b. For each γ , $1 \leqslant \gamma \leqslant \mathbf{a}$, there exist a chain family \mathscr{C}_{γ} and an antichain family \mathscr{A}_{α} , for some α , which are orthogonal.

Now we are in the position to state our main result.

THEOREM 3. There exists a sequence

$$\mathscr{E}_{\mathbf{a}} | \mathscr{A}_{1}, \mathscr{A}_{2}, ..., \mathscr{A}_{i_{1}} | \mathscr{E}_{\mathbf{a}-1}, \mathscr{E}_{\mathbf{a}-2}, ..., \mathscr{E}_{\mathbf{a}-j_{1}} | \mathscr{A}_{i_{1}+1} ... \mathscr{A}_{i_{2}} | \mathscr{E}_{\mathbf{a}-j_{1}-1} ... \mathscr{E}_{\mathbf{a}-j_{1}} | ...$$

which arises as a combination of two sequences $\mathscr{C}_{\mathfrak{a}},\mathscr{C}_{\mathfrak{a}-1},...,\mathscr{C}_{\mathfrak{l}}$ and $\mathscr{A}_{1},\mathscr{A}_{2},...,\mathscr{A}_{\mathfrak{c}}$, where $\mathscr{C}_{j} \in \mathscr{C}$ and $\mathscr{A}_{i} \in \mathscr{A}$, with the property that any member of the sequence (whether \mathscr{C}_{j} or \mathscr{A}_{j}) is orthogonal to the last member of other type preceeding it. (That is, $\mathscr{A}_{1},\mathscr{A}_{2},...,\mathscr{A}_{l}$, are orthogonal to $\mathscr{C}_{\mathfrak{a}}$, and $\mathscr{C}_{\mathfrak{a}-1},\mathscr{C}_{\mathfrak{a}-2},...,\mathscr{C}_{\mathfrak{a}-j_{1}}$ are orthogonal to \mathscr{A}_{l} , and so on.)

Observe that the \mathscr{C}_i 's are arranged by decreasing indices while \mathscr{L}_i 's by increasing ones. Thus the last member of the sequence is either \mathscr{C}_i or \mathscr{L}_a . Theorems 2a and 2b follow immediately from Theorem 3.

2. THE ALGORITHM OF FORD AND FULKERSON

In the proof we shall need the minimal cost flow algorithm of Ford and Fulkerson [2, p. 113]; thus, before proving Theorem 3 we briefly summarize this algorithm.

Assume given a network G = (V, E) having two specified vertices: a source s and a sink t. Non-negative integral cost a(xy) and positive integral capacity c(xy) are assigned to each arc (xy). The task is to look for a minimal cost flow f(xy) from s to t, having a flow value v given in advance.

The algorithm solves this problem for all the possible flow values v. It invokes dual variables $\pi(x)$ assigned to the vertices of G. This so-called potential function (or briefly potential) is non-negative integer valued and $\pi(s) = 0$ throughout the process. The current $\pi(t) = p$ is called the potential value.

Suppose we have a flow f(xy) (satisfying the capacity restriction) of value v, and a potential $\pi(x)$ of value p. Then using the notation $\bar{a}(xy) = a(xy) + \pi(x) - \pi(y)$, the following estimation holds for the flow cost:

ANDRAS FRANK

180

$$= \sum_{(xy)\in E} (\pi(y) - \pi(x)) f(xy) + \sum_{(xy)\in E} \bar{a}(xy) f(xy)$$

$$pv + \sum_{(xy)\in E^-} \bar{a}(xy)f(xy) + \sum_{(xy)\in E^+} \bar{a}(xy)f(xy)$$

$$= pv + \sum_{(xy)\in E^{-}} \bar{a}(xy)f(xy) + \sum_{(xy)\in E^{+}} \bar{a}(xy)f(xy)$$

$$\geqslant pv + \sum_{(xy)\in E^{-}} \bar{a}(xy)c(xy) + \sum_{(xy)\in E^{+}} \bar{a}(xy)\cdot 0$$

$$=pv+\sum_{(xy)\in E^-}\bar{a}(xy)\,c(xy),$$

where E^+ is the set of edges (xy) having $\bar{a}(xy) > 0$ and E^- is defined

among the flows of value v if the above inequality is fulfilled with equality This is equivalent to the next criteria: From this we can see that the flow in question surely has minimal cost

$$\pi(y) - \pi(x) < a(xy) \qquad \text{implies} \quad f(xy) = 0 \tag{1}$$

$$\pi(y) - \pi(x) > a(xy) \qquad \text{implies} \quad f(xy) = c(xy) \tag{2}$$

implies f(xy) = c(xy)

 $\pi(y) - \pi(x) > a(xy)$

The algorithm begins with zero potential and zero flow. In a general step a th, leading from s to
$$t$$
, is sought by a labeling process on the network G'

there are two types of steps: (ii) $\bar{a}(yx) = 0$ and f(yx) > 0. This path either exists or not. Accordingly. consisting of those edges (xy) for which (i) $\tilde{a}(xy) = 0$ and f(xy) < c(xy) or path, leading from s to t, is sought by a labeling process on the network G'

- potential is unchanged. new flow value is greater by one than that of the preceeding one, while the a. If a path exists, a new flow can be obtained by means of this path. The
- than that of the preceeding one, while the flow is unchanged. by a path starting from s in G'. The new potential value is greater by one $\pi(x)$ is increased by one on the set of those vertices which cannot be reached b. In the other case a new potential can be obtained in such a way tha

The algorithm consists of the repeated applications of the general step.

each $x \in V$. is increased by one. Furthermore $0 \le \pi(x) \le p$ during the whole process for the flow cost increases by the current potential value p when the flow value (2) are maintained throughout the computation. It is important to know that A fundamental feature of the algorithm is that optimality criteria (1) and

the current flow and potential values. We shall refer to a stage of the algorithm by the pair (v, p) consisting of

3. Proof of Theorem 3.

 $x_n, y_1, y_2, ..., y_n$, $E = \{(sx_i): i = 1, 2, ..., n\} \cup \{(y_it): i = 1, 2, ..., n\} \cup \{(x_i, y_i): i = 1, 2, ..., n\}$ Associate a network G = (V, E) with P as follows. Let $V = \{s, t, x_1, x_2, ..., x_n\}$

All of the arc capacities c(e) are equal to one, while the costs a(e) are:

$$a(e) = 1$$
 if $e = (x_i y_i)$
= 0 otherwise.

sider a stage of the computation. Now apply the procedure of Ford and Fulkerson for this network and con-

number of chains is |P'| - (v - d) = n - v = y. Let these chains be denoted by C_1 , C_2 ,..., C_p and $\mathscr{E}_p = \{C_1, C_2,..., C_p\}$. Note that \mathscr{E}_p does not depend on a chain partition of the subset $P' = \{p_{d+1}, p_{d+2} \cdots p_n\}$ as in the proof of Dilworth's theorem given by Fulkerson (see [2, p. 62, Lemma 8.1]). The $(i \neq j)$, for which $f(x_i y_j) = 1$, form an independent set of edges. This defines of type $(x_i y_i)$, say $f(x_1 y_1) = f(x_2 y_2) = \cdots = f(x_d y_d) = 1$. The edges $(x_i y_i)$ the potential. flow as follows. If the flow cost is d $(d \geqslant 0)$ then the flow is one on d edges Firstly we associate a chain family \mathscr{C}_{ν} , where $\gamma = n - v$, with the current

current potential. Let $P_i = \{p_j : \pi(x_j) < \pi(y_j) = i\}$ and let A_i consist of the maximal elements of P_i for i = 1, 2, ..., p. Let $\mathscr{A}_a = \{A_1, A_2, ..., A_n\}$. Note that \mathcal{A}_{α} does not depend on the flow. Secondly we associate an antichain family \mathscr{A}_{α} , where $\alpha = p$, with the

The following lemma is the key to our proof

LEMMA. The above families \mathscr{C}_{p} and \mathscr{A}_{a} are orthogonal

one, but $f(x_m y_j) = f(x_j y_j) = 1$. is impossible since the capacity of the unique edge $(y_i t)$ starting from y_i is $\pi(y_j) - \pi(x_m) > 0$. Applying (2) to the edge $(x_m y_j)$ we get $f(x_m y_j) = 1$. This is a p_m in P_i , greater than p_i . Now $\pi(y_i) = \pi(y_m) = i$ and $\pi(x_m) < i$, thus $1 + \pi(x_i)$ by (1), i.e., $p_i \in P_i$, where $i = \pi(y_i)$. If, indirectly, $p_i \notin A_i$ then there *Proof.* (a) Let $p_j \notin \bigcup \mathscr{C}_p$; equivalently $f(x_i, y_j) = 1$. Then $\pi(y_j) \geqslant$

(b) Let $C_j \in \mathscr{C}_p$ and let C_j consist of vertices $p_{d+1} > p_{d+2} > \cdots > p_{d+b}$ $(b \ge 1)$. Now we have $f(x_{d+h-1}y_{d+h}) = 1$ for h = 2, 3, ..., b and $f(x_{d+h}y_{d+h}) = 0$ for h = 1, 2, ..., b and $f(y_{d+1}t) = f(sx_{d+b}) = 0$.

 $\pi(y_{d+1}) = p$. Similarly $f(sx_{d+b}) = 0$ implies $\pi(x_{d+b}) = 0$. From $f(y_{d+1}t) = 0$ and $\pi(t) = p$ we get $\pi(y_{d+1}) \ge p$ by (2) and thus

finally $f(x_{d+h-1}, y_{d+h}) = 1$ implies $\pi(y_{d+h}) \ge \pi(x_{d+h-1})$ by (1). Furthermore $f(x_{d+h}, y_{d+h}) = 0$ implies $\pi(y_{d+h}) \le 1 + \pi(x_{d+h})$ by (2) and

These statements show that there exists an element p_q of C_j for which

182

 $\pi(y_q) = i$ and $\pi(x_q) < i$ for each i = 1, 2, ..., p. Let p_q denote the greatest element of C_j with this property for a fixed i. We show that $p_q \in A_i$. By the definition of p_q , it is in P_i . Assume, indirectly, that there exists a p_m in P_i greater than p_q . Then $\pi(y_q) = \pi(y_m) = i$, $\pi(x_m) < i$, and thus $\pi(y_q) - \pi(x_m) > 0$. From this we get $f(x_m, y_q) = 1$ by (2). However, this means $p_m \in C_j$ contradicting the choice of p_q .

Now suppose that the Ford-Fulkerson algorithm has run as follows. Starting with $\pi(x) \equiv 0$ and $f(xy) \equiv 0$ the flow value increases to k_0 , then the potential value increases to i_1 , then the flow value increases to $k_1 \cdots$ finally the potential value increases to i_s and the flow value increases to k_s ($0 \le k_0 < k_1 < \cdots < k_s$, $0 < i_1 < i_2 < \cdots < i_s$).

The algorithm terminates when the maximal flow value is attained. In our case this value is equal to n, i.e., $k_s = n$. Let $\mathbf{a} = n - k_0$ and $j_i = k_i - k_0$ for i = 1, 2, ..., s.

By the lemma, a chain family $\mathscr{C}_{\mathbf{a}}$ and an antichain family \mathscr{A}_{i} , which are orthogonal, belong to the stage $(v,p)=(k_{0},1)$ of the algorithm. Then the potential value increases one by one to i_{1} , as mentioned. Antichain families $\mathscr{A}_{2}, \mathscr{A}_{3}, ..., \mathscr{A}_{i}$, belonging to the intermediate stages are orthogonal to the unchanged $\mathscr{C}_{\mathbf{a}}$. Then the flow value increases one by one to k_{1} . Chain families $\mathscr{C}_{\mathbf{a}-1}, \mathscr{C}_{\mathbf{a}-2}, ..., \mathscr{C}_{\mathbf{a}-j_{1}}$ belonging to the intermediate stages are orthogonal to the unchanged $\mathscr{A}_{i_{1}}$, etc.

4. Some Consequences

It easy to check that the pairs (v, p) occurring in the course of the algorithm, and thus the sequences $k_0, k_1,..., k_s$ and $i_1, i_2,..., i_s$, depend only on P itself and not on the run of the algorithm. Picture them as points of coordinates v and p in a coordinate system.

For example, consider the poset illustrated in Fig. 1.

FIGURE 1

Applying the algorithm, we obtain the sequences $\{k_j\}$ and $\{i_j\}$ mentioned above: $k_0 = 4$, $k_1 = 6$, $k_2 = 8$, $k_3 = 9$ (= n) and $i_1 = 1$, $i_2 = 2$, $i_3 = 3$. Picturing the points of coordinates (v, p), we get Fig. 2.

FIGURE 2

The sequence guaranteed by the theorem is:

where

$$\mathcal{C}_{5} = \{13, 24, 5, 68, 79\}$$
 $\mathcal{A}_{1} = \{12589\}$
 $\mathcal{C}_{4} = \{13, 24, 68, 79\}$
 $\mathcal{C}_{3} = \{13, 456, 79\}$
 $\mathcal{A}_{2} = \{1267, 3489\}$
 $\mathcal{A}_{2} = \{13, 456\}$
 $\mathcal{C}_{3} = \{456\}$
 $\mathcal{C}_{4} = \{456\}$

Hence we can see: $\mathbf{a}_1 = 5$, $\mathbf{a}_2 = 8$, $\mathbf{a}_3 = 9$ and $\mathbf{c}_1 = 3$, $\mathbf{c}_2 = 5$, $\mathbf{c}_3 = 7$, $\mathbf{c}_4 = 8$, $\mathbf{c}_5 = 9$.

Domain D bounded by the heavy line gives more information about P. We call D the kilter domain of P.

Form the difference sequences of sequences c_j and a_i . These are $C_1 = c_1$, $C_j = c_j - c_{j-1}$ for $2 \le j \le a$ and $A_1 = a_1$, $A_i = a_i - a_{j-1}$ for $2 \le i \le c$. Obviously $\sum C_j = \sum A_i = n$.

and

184

 $\mathbf{c}_{\gamma+1} = \frac{\nabla}{i} \min(|A_i|, \gamma+1).$

Hoffman and his co-workers gave some further interesting examples for the t-phenomenon (and this name itself is also due to Hoffman) [7, 8].

REFERENCES

- 1. R. P. DILWORTH, A decomposition theorem for partially ordered set, Ann. of Math. 51 (1950), 161-166.
- L. R. FORD AND D. R. FULKERSON, "Flows in Networks," Princeton Univ. Press, Princeton, N.J., 1962.
- D. R. FULKERSON, A note on Dilworth's theorem for partially ordered sets, Proc. Amer. Math. Soc. 7 (1956), 701.
- C. Greene, Some partitions associated with a partially ordered set, J. Combinatoria. Theory Ser. A 20 (1976), 69.
- C. Greene. Sperner families and partitions of a partially ordered set, in Advanced Study Institute Series C, Math. and Physical Sciences (M. Hall and J. H. van Lint, Eds.), Vol. 16, Breukelen, 1974.
- Breukelen, 1974.

 6. C. Greene and D. Kleitman, The structure of Sperner k-family, J. Combinatorial Theory. Ser. A 20 (1976), 80–88.
- 7. H. Gröflin and A. J. Hoffman, On matroid intersection, to appear.
- 8. A. J. HOFFMAN AND D. E. SCHWARTZ, On partitions of a partially ordered set, J. Combinatorial Theory Ser. B 23 (1977), 3-13.

The difference sequences have a quite transparent meaning in the kilter domain. If one of the steps of the algorithm is a flow increasing from stage (v,p) to (v+1,p) $(v\geqslant k_0)$ then the flow cost increases by p. Hence $\mathbf{C}_{n-c}=p$ by the lemma. Since p never decreases during the algorithm, $\{C_j\}$ forms a monotone decreasing sequence, furthermore the \mathbf{C}_j 's are the heights of the columns of the kilter domain of P.

If one of the steps of the algorithm is a potential increasing from stage (v,p) to (v,p+1) then the common chain family \mathscr{C}_{n-v} belonging to these stages is orthogonal to both \mathscr{A}_p and \mathscr{A}_{p+1} , therefore $\mathbf{A}_{p+1} = n-v$. Since v does not decrease in the course of the algorithm, the sequence $\{\mathbf{A}_i\}$ is monotone decreasing, furthermore the \mathbf{A}_i 's are just the length of the rows of the kilter domain of P.

Thus we have obtained a theorem of Greene:

THEOREM 4 [4]. The sequences $\{C_j\}$ and $\{A_i\}$ are monotone decreasing and form conjugate partitions of the number n.

Another interesting consequence of Theorem 3 is the so-called t-phenomenon (transition phenomenon) for chains and antichains.

THEOREM 5 [5]. For $a \ge 0$, there exists a chain partition $C_1, C_2 \cdots C_q$ of P such that

$$\mathbf{a}_{\alpha} = \sum_{i} \min(|C_{i}|, \alpha)$$

and

$$\mathbf{a}_{\alpha+1} = \sum_{i} \min(|C_i|, \alpha+1).$$

Proof. Consider the antichain family \mathscr{A}_{a+1} in the sequence guaranteed by Theorem 3. Let \mathscr{C}_j be the last chain family preceding \mathscr{A}_{a+1} . Then \mathscr{C}_j is orthogonal both \mathscr{A}_{a+1} and \mathscr{A}_a (either \mathscr{A}_{a+1} preceeds \mathscr{C}_j or not). Therefore the chain partition \mathscr{C}_j satisfies the requirements where \mathscr{C}_j consists of the members of \mathscr{C}_j and some one element chains so that it should form a partition of P.

The counterpart of Theorem 5 follows in a similar way:

THEOREM 6 [5]. For $\gamma \geqslant 0$, there exists an antichain partition $A_1, A_2 \cdots A_q$ of P such that

$$\mathbf{c}_{y} = \frac{\nabla}{i} \min(|A_{i}|, y)$$