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Abstract

In this note, we study a constrained independent set problem for matroids. The problem can be regarded as an ordered
version of the matroid parity problem. By a reduction of this problem to matroid intersection, we prove a min-max formula.
We show how earlier results of Hefner and Kleinschmidt on the so-called MS-matchings fit in our framework.
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1. Introduction

In this note, we shall study the following con-
strained independent set problem for matroids. Let
M = (¥, #) be a matroid with |¥| even and I7 be the
partition of ¥ into ordered pairs. An ideal indepen-
dent set is an independent set [ € .# that satisfies the
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Our basic problem, the ordered martroid parity prob-
fem is to find a maximum cardinality ideal indepen-
dent set. We shall show that the ordered matroid parity
problem can be reduced to matroid intersection, i.e.,
to the problem of maximizing the size of a common
independent set of two matroids.

The ordered matrotd parity problem looks similar to
the matroid parity problem, i.e., the problem of finding
a maximum size independent set / of M so that

if (s, )€ I, then uc ] if and only if v /. (2)

In contrast to our ordered version, the matroid parity
problem includes NP-hard problems. It is even known
to be intractable with an ordinary oracle model of ma-
troids, although it is solvable in polynomial time for
linearly represented matroids [5].

If M is the transversal matroid of some bipar-
tite graph G = (U, V', E), then the ordered matroid
parity problem is equivalent to the problem of
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finding a matching M of G that has the property that
for any (u, v) € I1, the vertex v is covered by M when-
ever u is covered by M. This is a special case of the
so-called MS-matching problem introduced by Hefner
and Kleinschmidt [4]. ,

The MS-matching problem involves a graph G and
a digraph D on the common vertex set I, The task that
was originated from a practical man-power scheduling
problem was to find a maximum cardinality matching
M of G so that no are of D leaves the set of vertices
that are covered by M. It was shown in [4] that an
NP-complete version of the satisfiability problem can
be reduced to a restricted MS-matching problem in
which each weak component of D has size at most
three. They also proved that if all weak components
of dependence graph D have size at most two, then
even the edge-weighted MS-matching problem can be
solved in polynomial time. Furthermore, for the above
bipartite special case, Hefiier 3] has found a min—
max formula. Our work is motivated by these latter
results and we shall generalize the min—max formula
of Hefner to the ordered matroid parity problem.

Andras Recski has pointed out to us an unexpected
application of the ordered matroid parity problem.
Recski [6] studied problems on electric networks.
Some of these problems are reduced to matroid parti-
tion, some others to Hnear matroid panty and the rest
to our ordered matroid parity. This third-type prob-
lem can be reduced to linear matroid parity, which
is attributed to Bland in [6]. Our result shows that it
“can also be reduced to the easier matroid intersection
problem.

Our work is organized as follows. In Section 2,
we prove a min—-max formula on the ordered matroid
parity problem. We also solve the weighted ordered
matroid parity problem in a special case. Then we
show that the min—max formula extends that of Hefner
in Section 3.

The original version of this note contains general-
izations of the main result to supermodular functions
and A-matroids as well as other related models that
are polynomially equivalent to matroid parity [2].

2. Ordered parity problem

Let us fix a matroid M and a set of ordered pairs
IT for the ordered matroid parity problem. Let S be
the set of all the second elements and R be the set of

all first elements in the pairs in 1. For any v€ S, let
¥ denote its mate, i.e., (7, r) is a pair in IT. For any
subset X of S, we denote {7 : r€ X} by X.

Let # denote the family of all the ideal independent
sets. The weighted ordered matroid parity problem is
to find for a given weight function w : V — R, an
ideal independent set [ that is of maximum weight,
i.e., we look for max{w(/). [€ #} where w(/) :=
Y oer e

A weight function w : ¥ — R, is called consis-
tent if w(u} < w(v) holds for any pair of #€ R and
v €S. Clearly, the ordered matroid parity problem is a
weighted ordered matroid parity problem for the con-
sistent weight function w=1.

Lemma 2.1. In the framework of the ordered
matroid parity problem, if the weight function w is
consistent, then there is an optimal solution I that
contains ¢ base of S.

Proof. Suppose I € # is a maximal optimal solution
that satisfies |/ N S| < r(S), and let J be an arbi-
trary base of S containing / N §. For any veJ \ [,
if I U {r}€.#, then J U {¢} € #, which contradicts
the optimality of /. Therefore, 7 U {v} is not indepen-
dent, and there exists an element u# €/ \ S such that
I"=1U{c}\ {u} € #. Since w is consistent, we have
w(I'y = w(I). Then I’ is another optimal solution
with |/’ NS]=|INS]+ L. Thus, we may assert there is
an optimal solution /¢ that satisfies |1°NS|=r(S). O

Let M - S denote the restriction of M to .S, and M/S
denote the contraction of M by S. Lemma 2.1 implies
that the ordered parity problem for M can be reduced
to an ordered parity problem for the direct sum M® =
M - 5 @ M/S. We now reduce this problem to the
matroid intersection problem.

Let J C § be an independent set in M - § such
that J is also independent in M/S. Let K be an ar-
bitrary base in M - S containing J. Then I =J UK
satisfies the ordered parity condition. Conversely, an
optimat solution J for M® must be in this form. Note
that [I| = r(S)+ |J| holds independently of the choice
of K. Therefore, an optimal solution I of the ordered
parity problem can be obtained by finding a maximum
cardinality J, which is the matroid intersection prob-
lem. The following min—max theorem follows from
the matroid intersection theorem of Edmonds [1].
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Theorem 2.2. For the ordered parity problem, we
have

max{|{{|: I« #}
:rnin{r(X)+r(V\X-'):X_QS}. 3

Proof. Let J be a maximum cardinality independent
set in M - § such that J is also independent in M/S,
The matroid intersection theorem implies

M =min{r(X)+ rs(R \X) X CS)
=min{r(X) +r(¥ \X). X C 5} - ~S),

where rg is the rank function of M/S. Since |I|=|J| +
#(S), we obtain (3). O

The weighted ordered matroid parity problem for
particular weight w = x% is exactly the NP-hard ma-
troid parity problem. But if weight w is consistent, then
by Lemma 2.1, the weighted ordered matroid parity
problem for M can be reduced to the weighted ordered
matroid parity problem for the above M®. In what fol-
lows, we reduce this latter problem to weighted ma-
troid intersection.

Lemma 2.3. Let M° be the direct sum of matroids
K on Rand L. on S. Then the weighted ordered parity
problem for M° is solvable in polynomial time.

Proof. Define matroid K°® := K @ Fs where Fs is the
free matroid on S, i.e., each element of S is a coloop in
KP®. Let L° be the matroid on ¥ so that elements v and
7 are parallel and L? - § = L. Define a weight function
w on ¥V by w(s) := w(s) and w/(§) 1= w{s) + w(F)
forall s€S.

Let K beabase ofK andJ C K. Clearly, if [ =JUK
is an independent set of M=K ® L, then I’ := I\J is
a common independent set of K® and L with w(/) =
w/(I"). On the other hand, if /' =J U L is a common
independent set of K® and L? for J,L C §, then J and
L are disjoint and I := I’ UJ is an independent set of
M0 satisfying (1) and w'(/*)=w([). That is, if I’ is a
maximum w'-weight common independent set of K°
and L°, then / is a maximum 1v-weight independent
set of M? with (1).

Thus, we reduce the weighted ordered parity prob-
lem for M to the weighted matroid intersection prob-
lem, which can be solved in polynomial time. D

Note that Lemma 2.3 is independent of the consis-
tency of w. Combining Lemmas 2.1 and 2.3, we have
the following theorem.

Theorem 2.4. The weighted ordered matroid parity
problem for consistent weight can be solved in poly-
nomial time.

3. MS-matchings

In this section, we derive the min—max theorem of
Hefner on bipartite MS-matchings from Theorem 2.2,

Let G==(U,V;E) be a bipartite graph with the ver-
tex set W = U U ¥V and the edge set E. Suppose the
vertex set F is of even cardinality and partitioned into
ordered pairs 7, and just like in Section 2, R and S
denote the set of first and second ¢lements of pairs
in 1, respectively, For a subset M C E, we denote
by dM the set of vertices covered by M. A matching
M in G is called an MS-matching if &€ éM implies
v € ¢M for every ordered pair (7)€ IT. The prob-
lem of finding a maximum cardinality MS-matching
in G is nothing but an ordered parity problem for the
transversal matroid on V.

An MS-cover is a vector y € Z¥ that satisfies

wu)+ ey =1 V(uwv)eE, veR, (4)

yay+ y(e)—wWF) =21 Y(u,v)EE, ves. (5)
The value of an MS-cover y is defined by
val(y)= D" w(u)+ ) ¥(v).

ueU pES

Summing up (4) and (5) for the edges of MS-matching
M shows that |M| < val(y) for any pair of an
MS-matching M and an MS-cover y. Hefner [3]
showed that the equality holds for an optimal pair of
M and y.

Theorem 3.1 (Hefner [3]). The maximum cardinal-
ity of an MS-matching is equal to the minimum value
of an MS-cover.

We prove this by applying Theorem 2.2 to the
transversal matroid. For ¥ C ¥V, let I'(Y) denote the
set of vertices in U/ adjacent to ¥. The rank function
1 of the transversal matroid is given by

o X)=min{|F (V)| - |¥]: ¥ € X} + |X]. (6)
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Let M be a maximum MS-matching. Theorem 2.2
asserts that there exists a subset X C S such that
IM]=1(X}+ (V' \ X). Since |M| < val(y) holds for
any MS-cover y, the following lemma completes the
proof of Theorem 3.1.

Lemma 3.2. For any X C S, there exists an
MS-cover y such that val(y) = (X ) + 7(V \ X).

Proof. Let Y be the unique minimal minimizer that
determines (X' ) in the right-hand side of (6). Simi-
larly, let Z be a minimizer that determines o(¥ \ .).
Then we claim that ¥ C Z,

Note that [I'(Y)| + [I(Z)| 2 |T(Y N Z)| + [F(Y U
Z) and |Y| 4+ |Z| = |Y N Z| + |¥ U Z| hold. Since
IF(Z) - 2| < [T (Y UZ)|~|Y UZ|, we have [T(Y N
Z)| - ¥ nZ| < |I(Y)| — |¥|, which implies ¥ C Z
by the minimality of Y.

We now construct an MS-cover y. For each u € U,
we assign

2 ifuel(Y),
wWuy=<{ 1 ifuel(Zy\I(Y),
0 ifueU\TI(2).

For each v € R, we also assign y(v) by
I ifveR\Z
W)= 0

if teRNZ.
Note that v already satisfies (4). For each v € S, we
assign y(v) = z(v) + y(¥), where z(r) is defined by
1 if reS\Z
Z(0)=¢ 0 if rezZ\¥,
-1 ifpey

By definition, z(u) + z(r) = 1 for any (u, 1) € I1. So
the resulting y € ZY is an MS-cover and its value is
given by

val(v)}=|I(Y) + [F(Z)| + [R\ Z| + |S\ Z]| - |¥|
=M+ F@)|+ |V \X|+ |X| - |Z| — Y]
=t X)+ 1V \ X).

Thus, we obtain an MS-cover y with val( y)I=tX)+
(V\X) O
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