Available online at www.sciencedirect.com

ocluucz@nln!cr.

Operations Research Letters 33 (2005) 221-230

Operations
Research
Letters

www.elsevier.com/locate/dsw

An algorithm for source location in directed graphs

Mihdly Bérész, Johanna Becker, Andrés Frank*:!

Department of Operations Research, Eotvos University, Pagmany Peter setany 1/C, H-1117 Budapest, Hungary

Received 11 March 2004; received in revised form 4 July 2004
Available online 12 September 2004

Abstract

A polynomial time solution algorithm is described to find a smallest subset R of nodes of a directed graph D=(V, A) such
that, for every node v € V — R, there are k edge-disjoint paths from R to v and there are { edge-disjoint paths from v to R.

© 2004 Elsevier B.V. All rights reserved.

Keywords: Source location; Edge-connectivity; Polynomial algorithm

1. Introduction

Discrete location problems are about finding an op-
timal placement of some facilities (shops, telecom-
munication centers, factories) in a network so as to
satisfy certain customer demands. Typically it is the
distance that matters in defining the constraints and
the objective functions. For an annotated bibliogra-
phy of the topic, see the work of Labbé and Louveaux
[8]. Source location is a new type of location problem
where the flow-amount or connectivity rather than the
distance between facilities and customers is taken into
consideration. Source location may serve as a useful
optimization framework for designing fauli-tolerant

* Corresponding author,

E-mail addresses: barasz@cs.elte.hu (M. Bérisz),
beckerjc@cs.elte.hu (J. Becker), frank@cs.elte.hu (A. Frank).

I Research supported by the Hungarian National Foundation for
Scientific Research, OTKA T037547 and by European MCRTN
Adonet, Contract Grant No. 504438. A. Frank is also supported
by Ericsson Hungary, Laborc u.1, Budapest, Hungary H-1037,

0167-6377/% - see front matter © 2004 Elsevier B.V. All rights reserved.

doi:10.1016/j.0r1.2004.07.005

telecommunication networks. For example, imagine
such a network in which a subset R of nodes is consid-
ered a suitable source-set if there are k edge-disjoint
paths from R to every node not in R and the objective
is to compute a smallesi source-set.

There are several versions of source location prob-
lems, depending on the type of connectivity used
in the constraints. Ito et al. {7] considered and ana-
lyzed the source location problem in directed graphs
constrained with edge-connectivity or maximum
flow-amounts. Their paper is a good overview of
other models and results, as well, and it is the starting
point of the present work. They proved a min—max
theorem for the minimum cardinality of a subset R of
nodes of an edge-capacitated digraph D = (V, A) so
that, for every node v € V — R, the maximum flow-
amount from R to v is at least k and from v to R is
at least /. Based on this, they described an algorithm
for computing such a minimum set R. The algo-
rithm is polynomial provided that k and / are fixed.
(That is, the running time of the algorithm depends’

222 M. Bdrdsz et al. / Operations Research Letters 33 (2005} 221-230

polynomially on the size of D but exponentially on &
and) Throughout we will refer to this problem as
the flow-constrained directed source location (FDSL)
problem. To simplify our notation and discussions,
we tipically work with the uncapacitated case (when
the capacity function is identically one). In this case
the maximum flow-amount from s to ¢ is the same as
the maximum number of edge-disjoint paths from s
to .

In the present paper, by developing further the
ideas of [7], we describe a strongly polynomial al-
gorithm for solving the FDSL problem. Around the
same time as we did, van den Heuvel and Johnson
[6] also developed a polynomial algorithm based on
completely different ideas. For a comparison, see
Section 5.

1.1. Preliminaries

Let D=(V, A) be a digraph. For elements s,t € V,
asubset X C Viscalledass-setiftre X CV —s5.In
D the in-degree o(X) = g (X) denotes the number of
edges entering X while the out-degree dp(X) = 6(X)
is the number of edges leaving X. If a nonnegative ca-
pacity function g is given on the edge set, ¢,(X) (re-
spectively, d¢ (X)) denotes the sum of capacity values
on the edges entering (resp., leaving) X.

Given nonnegative integers k& and [, a nonempty
proper subset X of nodes is called k-in-deficient or sim-
ply in-deficient if p(X) <k (or in the capacitated case
Qg(X) < k) and [-out-deficient ot simply out-deficient
if 3(X) <! (or in the capacitated case dg(X) <{). An
in- or out-deficient set is called deficient. A deficient
set Z is called minimal if no proper subset of Z is de-
ficient. The hypergraph of minimal deficient sets will
throughout be denoted by Hy;.

A digraph is called (k, I)-edge-connected with re-
spect to a root node r if there are k edge-disjoint di-
rected paths from r to every other node and there are
! edge-disjoint directed paths from every node to r. It
follows immediately from the directed edge-version of
Menger’s theorem that there are k edge-disjoint paths
from r to all other nodes of D (that is, D is (k, 0)-edge-
connected) if and only if the in-degree of all nonempty
subsets of V — r is at least k, and an analogous char-
acterization holds for (0, [) edge-connectivity. There-
fore (k,!)-edge-connectivity of a digraph is equiv-
alent to requiring that the in-degree and out-degree

of all nonempty subsets of V — r is at least k and
I, respectively. When k = [, this notion is equiva-
lent to the k-edge-connectivity of D, while the case
| = 0 corresponds to the rooted k-edge-connectivity
of D.

Call a subset R of nodes a (k, I)-source if the con-
traction of R into a single node r results in a (k, I}-
edge-connected digraph with respect to root node r.
Equivalently, there are k edge-disjoint directed paths
from R to every node and there are [edge-disjoint
directed paths from every node to R. Yet another
equivalent formulation is that R covers all deficient
sets.

In a hypergraph H = (V, &) a family of pairwise
disjoint hyperedges is called a matching. The largest
cardinality v(H) of a matching is the matching number
of H. A subset Z of nodes intersecting each hyperedge
is called a transversal of H. The smallest cardinality
t(H) of a transversal is the transversal number of H. A
hypergraph H is said to admit the Helly property or to
be of Helly-type if any subset of pairwise intersecting
hyperedges has a nonempty intersection. A hypergraph
is laminar if at least one of the sets X — Y, ¥ —
X, XNY is empty for every pair of hyperedges X, Y.
A subtree hypergraph (sometimes called an arboreal
hypergraph) is one for which there is a tree T on its
node set such that each hyperedge induces a subtree
of T. The tree is called a basic (or representative) tree
for the hypergraph.

The line graph L(H) of ahypergraph H is a graphin
which the nodes correspond to the hyperedges, two of
them being adjacent if the corresponding hyperedges
have a nonempty intersection. It follows from the def-
initions that ¥(H) is the stability number oc(L{H})) of
L(H) while t(H) is at least the clique-covering num-
ber of L(H) (which is, by definition, the chromatic
number of the complement of L{H)) with equality for
hypergraphs of Helly-type.

An undirected graph is called chordal if there is
no induced circuit of length at least four, or in other
words, every circuit of length at least four admits a
chord. Chordal graphs are known to be perfect, and
Gavril [4] constructed an algorithm that computes in
a chordal graph a maximum stable set and a minimum
clique-covering with the same cardinality.

The following simple theorem was discovered
independently by several authors (for references,
see [2]).

M, Bdrdsz et al. / Operations Research Letters 33 (2005) 221 -230 223

Theorem 1.1. A hypergraph H =(V, &) is a subtree
hypergraph if and only if H admits the Helly property
and the line graph L{H) of H is chordal.

It follows that the matchings of a subiree hyper-
graph H correspond to the stable sets of L(H) and the
transversals of H correspond to the clique-coverings
of L(H). Therefore v(H) = t(H) and Gavril's algo-
rithm may be used to compute a maximum matching
and a minimum transversal of H. This algorithm is
polynomial in |&].

1.1.1. Flows and cuts

In later sections we need some basic properties of
flows and cuts. For two disjoint nonempty sets § and T
of V, let A¢(S, T) denote the maximum flow-amount
from s to ¢ in the digraph arising from D by con-
tracting § and 7 into nodes s and ¢, respectively. By
the Max-flow Min-cut (MFMC) theorem, Ag(S,T)is
equal to the minimum in-capacity of sets Z with T C
Z € V — §. In the uncapacitated case A(S, T) is the
minimum in-degree of sets Zwith T € Z C V — §.
By the directed edge-version of Menger’s theorem,
A(S, T) is equal to the maximum number of edge-
disjoint paths from § to 7. It is known that the family
{Z:TCZCV -8, g(Z)=A(S, T} of minimizer
sets is closed under taking union and intersection.
(Indeed, by using the submodularity of g, one has
(S, T) + 2(5. T) = g (X) + g,(1)>,(X N
YY)+ 0 (X UY)2A,(8,T) + 1,(S, T) from which
Qe(XNY)=24,(8, T) =g (XUY))

Let Ziyin and Zpy,y denote the unique minimal and
maximal member of this family. With the help of an
MFMC computation one can compute not only a max-
imum flow {or the edge-disjoint paths) from Sto T
and a minimizer set but the set Z;,, as well. For ex-
ample, if x is a maximum flow, then Zy, is nothing
but the set of nodes from which T is reachable in the
auxiliary digraph defined by x in the Ford—Fulkerson
algorithm. That is, once a maximum flow x is already
computed, Znyin as well as Z,,, is computable by
a search algorithm in O(|A}) time. Note that a typi-
cal MFMC algorithm based on alternating-paths can
easily be modified so as to return Z,, as a min-
imizer set. The additional search for Zpyin or Zmax
may be needed if another MFMC algorithm is ap-
plied. We will use these facts without any further
reference.

2, Flow-constrained directed source location
(FDSL)

2.1. Known results

As mentioned above, Ito et al. [7] introduced and in-
vestigated the FDSL problem. While they pointed out
that several closely related problems are NP-complete,
they also showed, by proving a fundamental min—-max
theorem, that FDSL belongs to NPNco-NP. We for-
mulate the result for the uncapacitated case.

Theorem 2.1 (Ito et al. [7]). The hypergraph Hy of
minimal deficient sets form a subtree hypergraph and
(hence)

T(Hyr) = v(Hy). (1)

The minimum cardinality of a (k,I)-source is equal
to the maximum number of pairwise disjoint deficient
sets.

What Ito et al. actually proved was that the hyper-
graph Hy; admits the Helly property and its line graph
is chordal. This and Theorem 1.1 implied that Hy; is a
subtree hypergraph from which (1) foltowed. The sec-
ond part follows from the first one by observing that
in order to cover all deficient sets, it is sufficient to
cover only the minimal ones, that is, the hyperedges
of Hy. Note that the hypergraph of all deficient sets
is not necessarily a subtree hypergraph indicating the
value of working with the hypergraph of minimal de-
ficient sets.

The main concern of the FDSL problem is to con-
struct an efficient algorithm to compute a (&, [)-source
of smallest cardinality. In this respect, Theorem 2.1
may be viewed as a stopping rule since it can equiv-
alently be formulated as follows: A (k, I)-source R is
of minimum cardinality if and only if there is a fam-
ily M of |R| pairwise disjoint deficient sets. Such an
-# may serve as a certificate for the minimality of a
proposed (k, [)-source R.

By applying Gavril's algorithm to the line graph
of Hy, Ito et al. [7) obtained an algorithm that com-
putes both a minimum cardinality (k, I)-source and a
maximum matching .# of deficient sets. The running
time is polynomial in the size of D and of Hy,. Un-
fortunately, the number of minimal deficient sets may
be exponential in {V] even if I = 0 as shown by the

224 M. Bdrdsz et al. / Operations Research Letters 33 (2005) 221-230

following example of [7]. Define a digraph on n
nodes (n > k) with a special node s so that, for every
other node v, there is one edge from v to s and there
are k parallel edges from s to v. Then the minimal
in-deficient sets are precisely those containing s and
having n — k& + 1 elements.

Therefore the algorithm for the FDSL problem is
polynomial in the size of D but not necessarily in k and
l. For fixed k and {, however, the number of minimal
deficient sets depends polynomially on the size of D
since every deficient set Z is determined by the set
of edges entering (or leaving) Z and the number of
subsets of edges smaller than max |k, {} is polynomial
in |A]. That is, the algorithm of [7] outlined above is
polynomial for fixed &, /.

2.2, Strategy of a strongly polynomial algorithm

The goal of the present work is to describe an algo-
rithm that is polynomial for the FDSL problem in £ and
{ (and strongly polynomial in the capacitated casc). A
crucial idea is the introduction of the new concept of
solid sets (for a definition, see Section 3). This notion
depends only on D and not on & and [and it proves to
be a fortunate generalization of that of minimal defi-
cient sets. On one hand, Theorem 2.1 nicely extends
to solid sets (Theorem 3.3), on the other hand, serious
algorithmic difficulties with minimal deficient sets can
be overcome by working with solid sets,

Since the line graph of Hy; may be exponentially
large in the size of D, one must avoid its usage in an
algorithm. Ref. [3] described an algorithm for com-
puting a minimum transversal and a maximum match-
ing of an arbitrary subtree hypergraph H that works
directly on the basic tree T for H, rather than using the
line graph of H.

Therefore we must be able to compute a basic tree
for Hyy as well as to run the algorithm of [3] in a situa-
tion where the hypergraph Hy; cannot be given explic-
itly. This difficulty will be overcome by introducing a
‘ surrogate’ subtree hypergraph Hj, that has just a few
hyperedges (at most nZ, by a straightforward estima-
tion, and, in fact, at most 2n — 2, by a tricky one [1]).
Hj, will have the property that any tree basic for /J, s
automatically basic for Hy;. Details will be discussed
in Section 3. Once a basic tree for Hy; is available,
the algorithm of [3) can be mimicked with the help of
MFMC computations, see Section 4 for details.

3. Computing a basic tree for Hy,

In this section we show how to compute a basic tree
for Hy; without using an explicit list of the hyperedges
of Hy.

3.1. Computing a basic tree for a subtree hypergraph

How can one compute a basic tree for an arbitrary
subtree hypergraph H = (V, £)? Although the known
inductive proof of Theorem 1.1 may easily be turned
into an algorithm that is polynomial in |£], we outline
here another approach, based on the greedy algorithm,
for constructing a basic tree. We do so for complete-
ness and because we have not found in the literature
this pretty link to the well-known maximum weight
spanning tree problem. :

Define a weight function e{uv) on the edge-set of
the complete graph on V as follows. For every pair
{u, v} of nodes,

let c{uv) be the number of hyperedges containing
both u and v.

Theorem 3.1. A hypergraph H admits a basic tree
(that is, H is a subtree hypergraph) if and only if a
spanning tree of maximum c-weight is a basic tree for
H.

Proof. To see the non-trivial direction, let Z be a hy-
peredge and T an arbitrary spanning tree. Then Z in-
duces at most |Z| — 1 edges of T. Therefore

o(T): = Z c(uv)

wveE(T)

= Z Z{l 1 Ze & {u,v) C 7]
wvek(T)

<> (zl-n)
Ze&

and equality holds if and only if every hyperedge Z
induces precisely [Z| — 1 edges of T, that is, if T is
basic for H. [

It follows that Kruskal’s algorithm can be used to
compute a basic tree for a subtree hypergraph, Again,
this algorithm is polynomial in the number of hyper-
edges.

M. Bdrdsz et al. 7/ Operations Research Letters 33 (2005) 22[-230 225

3.2. Solid sets and partitions

In order to introduce the small surrogate hypergraph
for Hy; promised above, first we need to define a hy-
pergraph that is actually larger than Hy;. Given a di-
graph D = (V, A), we call a nonempty subset Z of
V in-solid (respectively, out-solid) if o(X) > o(Z) (re-
spectively, (X) > 6(Z)) for every nonempty proper
subset X of Z. An in- or out-solid set is called solid.
Singletons are always in- and out-solid, and a mini-
mal k-in-deficient set is in-solid (for any k). A k-in-
deficient in-solid set is not necessarily a minimal k-in-
deficient set. Let Hp=(V, & p) denote the hypergraph
of all solid sets. Note that the definition of deficient
sets depends on the parameters k and ! while that of
the solid sets does not. Since an in-solid set Z is a
minimal &'-in-deficient set with respect to the param-
eter k' : =p(Z) + 1, the set of in-solid sets is exactly
the union of all k-in-deficient sets (k = 1,2,...). An
analogous statement holds for out-solid and solid sets.
In other words, Hp may be viewed as the union of
hypergraphs Hy,; for all possible values of k and [.

‘We remark that an analogous notion for undirected
graphs, under the name of extreme sets, was iniro-
duced and successtully used to solve the undirected
edge-connectivity augmentation problem by Watan-
abe and Nakamura [10]. But the structure of extreme
sets of undirected graphs, as they are laminar, is much
simpler than that of the solid sets of digraphs.

As mentioned, [7] proved that minimal deficient sets
form a subtree hypergraph. We can use their proof-
technique almost word for word to show that the hy-
pergraph Hp of solid sets is also a subtree hypergraph.
Let us start with the following useful observation.

Lemma 3.2. If X is in-solid and Y is out-solid, then at
least one of the subsets A : =X-Y, B:=¥~X, C:
=X NY is empty.

Proof. Let «, f, y, ¥ denote, respectively, the number
of edges from C to A, from Bto C, from V — (X UY)
to C, and from Cto V — (X UY). If, indirectly, none of
A, B, C is empty, then g(A) > g(X) and §(B) > &(¥).
Therefore o> 4+ y and §> o + y from which the
impossible 0>y 4- 7" would follow. O

Theorem 3.3, The hypergraph Hp=(V, &€ p) of solid
sets is a subtree hypergraph, that is, for every directed

graph D = (V, A) there is a spanning tree on the
groundset V such that each solid set of D induces a
subtree.

Proof. We claim that the line graph of Hp is chordal.
If, indirectly, it induces a chordless circuit of length
at least 4, then there are solid sets X1,..., X, (h =4)
so that X; N X; # @ if and only if / and j are consec-
utive integers where we use the notational convention
Xp1=X,. Lemma 3.2 implies that either all X;’s are
in-solid or all X;’s are out-solid. By symmetry, we may
assume that the first case occurs. It follows that the %
intersections X; NX; | are pairwise disjoint and hence

h k
D eXiNXi)K Y o(X). 3)
i=1 i=1
Since X; is in-solid, ¢(X;}<e(X; N Xj4) for
i=1,...,hand hence) ;0(X;) <Y, 0(X; N Xi11),
contradicting (3).

We claim that Hp admits the Helly property. If it
does not, then there is a smallest number # >3 along
with 4 solid sets Xj,..., X; such that any two of
these sets intersect each other while the intersection
M=XN...NXy is empty. Again, by Lemma 3.2 either
the sets X1, ..., X}, are all in-solid or they are all out-
solid. By symmetry we may assume that each X; is
in-solid. Let ¥; =X ;NX2N.. .0X;_1NX; 11N, ..NX,
(i =1,..., h). By the minimal choice of &, ¥; # @,
while M =@ implies that ¥; N Y,=0{I<i<j<h).If
an edge enters one of the sets Y;, then it enters at least
one of the sets X ;. Therefore };0(¥;) < }_;0(X;). On
the other hand ¢(¥;) > ¢(X;) foreach i as X;, s in-
solidand ¥; C X;41. Hence 3~;0(Y;) > ¥, 0(Xit1)=
Y. ie(X;), a contradiction.

By Theorem 1.1 Hp is indeed a subtree
hypergraph. [

We call a basic tree for Hp a solid tree for D. In
order to be able to compute a solid tree, we need some
further properties of solid sets.

Lemma 3.4. If the intersection of two in-solid (out-
solid) sets X and Y is nonempty, then XUY is in-solid
(out-solid).

Proof. If indirectly X U Y is not in-solid, then there
is a maximal nonempty subset Z C X U Y with
e(D)<e(XVUY).

226 M. Beirdsz er al. / Operations Research Letters 33 (2005) 221-230

If Z includes one of X and ¥, say X, then ZNY C Y,
XUY=ZUY and hence o(ZNY) > o(Y), p(ZUY)=
g(X U Y)2pe(Z) from which o(Y) + ¢(Z) 2e(Z N
Y)+g(ZUY) > o(Y)+¢(Z) would follow. Therefore
Z can include neither X nor Y.

If Z is disjoint from X or ¥, say from X, thatis, Z &
Y — X, then ¢(Z) > ¢(¥) which is not possible since
e(X)+e(Y)ZeXNY)+e(XUY) > p(X)+o(X U
Y) implies g(¥) > (X U Y) from which we would
have g(Z) > g(X U Y), contradicting the assumption
o Z)< (X U Y). Therefore Z must intersect both X
and Y.

It follows that X NZ # P and XN Z C X from
which ¢(XNZ) > g(X) as X is in-solid. Since Z C XU
Z, the maximal choice of Z implies g(X U Z) = ¢(Z).
Therefore we have g(X) +g(Z)Zzo(X NZ)+p(X U
Z) > (X)) + ¢(Z), a contradiction. The proof for out-
solid sets is analogous. L[]

By an s-avoiding in-solid (out-solid) set Z we mean
an in-solid (out-solid) subset of V — 5. The adjec-
tive maximal is used if Z is not included in any other
s-avoiding in-solid (out-solid) subset of V — 5. By
Lemma 3.4 the maximal s-avoiding in-solid sets are
disjoint. Since each singleton is in-solid, the maximal
s-avoiding in-solid sets partition V — s. This will be
called the in-solid partition of V — s. The out-solid
partition of V — s is defined analogously. It follows
from Lemmas 3.4 and 3.2 that:

Corollary 3.5. The family of maximal s-avoiding
solid sets is a partition of V — 5.

We call this partition the solid partition of V — s.
3.3. Computing the solid partition of V — s

By Corollary 3.5 the members of the in-solid parti-
tion and the out-solid partition of V — s form a lami-
nar family .. Therefore the solid partition of V — s
consists of the maximal members of .%. Hence, in or-
der to compute the solid partition of V — s, it suffices
to compute separately the in-solid and the out-solid
partitions of V — s. Since the two computations are
analogous, we describe only the first one to compute
the in-solid partition of V — s.

As mentioned in the introduction, the maximum
number A(¢) : =A(s, ¢) of edge-disjoint paths from s

to anode t € V —s is equal to the minimum in-degree
of the t5-sets, and the minimizer sets are closed un-
der taking union and intersection. Let N, denote the
unique minimal member of this family.

Lemma 3.6. If N is a minimal member of the family
(N; :t € V — s}, then N is a maximal s-avoiding in-
solid set.

Proof. We claim that z € N, implies N; € N,
for any z,t € V — s. Indeed, if we had, indirectly,
N, — N; # @, then g(N; N N;) > g(N;) from which
o(N) + o(Ne) 2 (N U N;) + o(N, N Np) > Aty +
o(N;) 2 ¢(N;) + ¢(N;) would follow.

This and the minimality of & imply that N = N,
for every element t € N and hence N is in-solid.
Furthermore there are g(N) edge-disjoint paths from s
to ¢, therefore ¢(Z) 22 ¢{N) whenever N € Z € V —s,
that is, N is maximally in-solid in V —s. [

Based on this, the in-solid partition of V —s can be
computed as follows. First compute all sets N, (¢ €
V —s) and choose the smallest of these sets N, denoted
by Ni. By Lemma 3.6, N is a maximal s-avoiding in-
solid set. Second, contract s and N into a node 51 and
compute in a similar manner a maximal s;-avoiding
in-solid set N, in the contracted digraph. Since the
maximal s-avoiding in-solid sets in D are disjoint, N3
is 1 maximal s-avoiding in-solid set in D. At a general
step, contract s and the already computed maximal s-
avoiding in-solid sets Ny, ..., Ny into a node s, and
compute a maximal s,-avoiding in-solid set Ny of
the contracted digraph. The algorithm terminates when
the union of the current sets Ny, ..., Npis V — 5.

To describe the algorithm more formally, let A" de-
note the current family of maximal disjoint in-solid
subsets of V — s. Instead of carrying out the contrac-
tions we will maintain a subset S that is the union of
the members of A" plus s.

Algorithm for computing the in-solid partition of
V—s.

INPUT Digraph D ={(V.A)and anodes € V.

OUTPUT The in-solid partition 4" of V — 5.

(P1) Set A" : =@ and § : ={s}.
(P2) If V — S is empty, output .A4". STOP. (The algo-
rithm terminates.)

M. Bdrdsz et al. / Operations Research Letters 33 (2005) 221230 227

(P3) Foreacht &€ V — §, with the help of an MFMC
routine, compute A(S,) and the unique smali-
est set N; for whicht e N, C V — § and
o(Ny) = A(S,). Let N be a smallest member of
the family {N; : t € § — V}. Add {N} 10 A",
Set §: =5 UN. Go to (P2).

3.4. Computing a solid tree for D

Given the solid partition of V — s for every node
5 € V, let Hp, be the subhypergraph of Hp consist-
ing of those hyperedges which occur in the solid par-
tition of V — s for some s € V., Note that Hy, has at
most n? hyperedges, that is, Hy, is small even if Hp
has exponentially many hyperedges. (In fact, Bernath
[1] proved that H}, has at most 2n — 2 hyperedges.)
Therefore one can compute a basic tree T for H, as
described in Section 3.1 and this algorithm is polyno-
mial in the size of D. The nice thing is that T will au-
tomaticafly be a basic tree for Hp and hence for Hy;,
{00,

Theorem 3.7, If T is a basic tree for H,,, then T is
basic for the hypergraph Hp of all solid sets (and, in
particular, for its subhypergraph Hy of deficient sets).

Proof. Suppose indirectly that there is a solid set Z
that does not induce a subtree of 7. Then there are
two elements a, b of Z so that the unique path P in T
connecting a and b contains a node s not belonging to
Z. That is, Z is an s-avoiding solid set and hence there
is a maximal s-avoiding solid set Z’ including Z. But
T is basic for Hy, and hence the whole P must belong
to Z’, a contradiction. [J

4. Computing a minimum transversal and a
maximum matching

Let H = (V, &) be an arbitrary subtrec hypergraph
and T a basic tree for H. Ref. [3] describes an algo-
rithm for computing a minimum transversal R and a
maximum matching .# of H that works directly on
the basic tree T for H. (Actually, that algorithm set-
tles a weighted case as well but here we need only
the unweighted version.} First we exhibit and justify
the correctness of the generic form of the algorithm
whete it does not matter how the input hypergraph is

given. A more specific version is then described and
shown how it applies to the hypergraph Hy; of mini-
mal deficient sets.

We need some notation. Choose an arbitrary node
s of T as a root node. Let T denote the arborescence
arising from T by orienting ¢ach edge of T away from
s. Define the height of a node v to be the distance of v
from s in 7. A node v is said to be above a node u # v
if there is a path in T from u to v. For a hyperedge Z
of H, the bottom node b(Z) of Z is the (unique) lowest
node of Z. The height of Z is defined to be the height
of its bottom node. We say that a hyperedge Z of H is
independent from a matching .# if Z is disjoint from
the members of ., that is, if .4 U{Z} is a matching.

The generic algorithm starts with the empty match-
ing .#. In each step, it chooses any of the highest hy-
peredges that is independent from the current match-
ing .# and adds it to .#. The algorithm terminates
when no such hyperedge exists anymore, It returns the
final .# and the set R of bottom nodes of the mem-
bers of #. Clearly, |.#| = |R|. The correctness of the
algorithm as well as a proof of the min—max relation
v(H) = t(H) for subtree hypergraphs follow from the
following lemma.

Lemma 4.1 (Frank {3]). The set R of bottom nodes
output by the algorithm outlined above covers all hy-
peredges.

Proof. Suppose indirectly that there is a hyperedge
Y not covered by R. By the termination rule of the
algorithm ¥ must intersect a member of 4. Among
these members, let Z be the one which was added
earliest to .#. Then Y is disjoint from each member
of .# that has been added to .# prior to Z. Since
B(Z)isnotin Y but ZNY # @, it follows that &(Y)
is above b(Z) contradicting the ‘choose-the-highest’
rule of the algorithm. O

We describe now more specifically how a highest
hyperedge independent from .# can be found. Instead
of trying to find it directly, the algorithm considers
the nodes of H in a decreasing order according to
their height, and checks whether or not the current
node is the bottom node of a hyperedge Z which is
independent from .#. If it is, Z is added to .#.

Let A(X) denote, for a subset X C V, the set of
nodes reachable from X in T. For a singleton {v} we

228 M. Bdrdsz et al. / Operations Research Letters 33 (2005) 221-230

write A(v) and let B(v) : =V — A(v). Thenv € A(v)
and V = A(s). In addition to the matching .# and
the set R of the bottorn nodes of the members of .#,
the algorithm maintains a label assigned to each node.
The content of the label is ‘marked’ or ‘unmarked’.

Specific Algorithm for computing a maximum
matching and a minimum transversal of a subtree
hypergraph H.

INPUT: A subtree hypergraph H = (V, &) along
with a basic tree T for H.

OUTPUT: A matching .# and a transversal R of H
so that |.#| = |R|.

(SA1) Set .# and R to be empty, and set each node
unmarked.

(SA2) If there is no unmarked node, output .# and
R. STOP. (The algorithm terminates),

(SA3) Choose a highest unmarked node v and mark
it. Let S(v) : =B(v)U A(R).

(SA4) Find a hyperedge Z for whichv e ZC V —
S(v). If no such hyperedge exists, go to Step
(8A2).

(SA5) Add Z to .# and add b(Z) to R. Go to Step
(SA2).

The correctness of this algorithm follows from that
of the generic algorithm since a node v cannot get
marked as long as A(v} — v includes a hyperedge
disjoint from R. Hence we have:

PROPERTY (*} Every hyperedge included in
V — S(v) must contain v.

4.1. Realizing step (SA4) for Hy

Let us return to our initial problem of comput-
ing a minimum (&, I)-source set, that is, a minimum
transversal of the hypergraph Hy of minimal deficient
sets along with a maximum matching. In the preced-
ing section we showed how to compute a basic tree T
for Hy;. Now we want to apply the algorithm above to
Hy;, a situation where the list of hyperedges is not ex-
plicitly given. The only task is to realize Step (SA4).
To this end, let v be the node considered in Steps (SA3)
and (SA4).

(SA4.1) Compute A(S(v), v) along with the unique
minimal set Z’ for which v € Z/ € V — S(v) and
o(Z")=A(S(v), v). Compute A(v, S{v)) along with the
unique minimal set Z” for which v € Z" C V — S(v)
and HZ") = Aw, S(»).

(SA4.2) If A(S(v),v) =2k and A(v, S(v)) 21, then
(by Property (%)) a hyperedge for (S§A4) does not exist.
Go to Step (SA2).

(SA4.3) If A(S(v), v) <k and A(v, S(v)) <!, then
let Z be the smaller of Z' and Z”. If exactly one of
A(S(v), v) <k and A(v, S(v)) <! holds, then let Z be,
accordingly, Z’ or Z”. Turn to Step (SA5) with this Z.

The only property we have to check is that the subset
Z constructed this way is a hyperedge of Hy;.

Claim 4.2. The subset Z is minimal déficient, that is,
Z is a hyperedge of Hy,.

Proof. If A(S(v), v) <k and A(v, S(v)) </, then by
Property (), Z' is minimal in-deficient and Z” is mini-
mal out-deficient. By Lemima 3.2 one of them includes
the other, hence Z is minimally deficient. If exactly
one of A(S(v), v) <k and A(v, S(v)) <! holds, then
by Property () again, Z ts minimal deficient. [J

5. Running time and conclusions

In the following estimation of running times we
use the notation n ; =|V|, m : =|A|. The algorithm
outlined above for solving the FDSL problem consists
of three consecutive phases:

1. Computing the solid partition of V — s for each
seV.

2. Computing a basic tree T for Hp.

3. Computing a minimum (&, /)-source (and a maxi-
mum matching) using T.

Note that only the last step depends on k and [, so in
order to solve the FDSL problem on the same digraph
for several values of £ and /, only the third step should
be repeated.

Let F(n, m) denote the complexity of an MFMC
algorithm on a digraph with # nodes and m edges. As
we mentioned in Section 3, one member of the solid
partition of V — s may be obtained by running an
MFMC algorithm # times. Thus the in-solid partition

M. Bdrdsz et al. / Operations Research Letters 33 (2005) 221-230 229

of § — v, and analogously the out-solid partition as
well, can be computed in O(n?F (n, m)). Since we
need this for all nodes, the total time of Phase 1 is
O3 F(n, m)).

To compute a basic tree for Hp, we first have to
determine the weight function ¢ corresponding to Hp,,
and find then a maximum weight spanning tree 7. So
this phase can be bounded by O(n3).

The third phase of the algorithm applies the MEMC
algorithm twice for every node v (to get the maximum
flow-amount and the min-cut from v to S(v) and from
S(v) to v). Hence this is doable in O(nF (s, m)).

We can conclude that the bottleneck of the whole
algorithm is Phase 1, therefore we want to improve on
this.

5.1. Computing the solid partition via the algorithm
of Hao and Orlin

Hao and Orlin [5] invented an O(nm log(nz/m))
time algorithm to compute the minimum cuts in a di-
graph between a given node s and all the other nodes
t € V —s. With a slight modification of their algorithm
{which does not increase its complexity), one can ob-
tain the vnique minimal minimizer set N,. Namely,
the Hao—Orlin algorithm maintains a feasible preflow,
so when it finds a t5-set with Ag (s, #) in-capacity, then
one more search algorithm gives rise to N,. That is,
the additional time we need is O(mn) which does not
affect the totat complexity of the Hao—Orlin algorithm.

Summing up, when the algorithm of Hao and Orlin
is used in Phase 1, the total complexity of ocur algo-
rithm is O(n’m log(nz/m)).

Finally, we remark that the algorithm may be ap-
plied to the capacitated case without any change. Since
the time bound for the Hao—Orlin algorithm concerns
capacitated digraphs anyhow, the complexity bound
given before remains valid.

van den Heuvel and Johnson [6] also developed a
polynomial algorithm based on completely different
ideas. Actually, their algorithm can compute a smallest
transversal for any subtree hypergraph provided a sub-
routine is available for deciding whether a subset of
nodes is a transversal of H. On the other hand the algo-
rithm does not compute a maximum matching of Hy;.
The complexity of the algorithm of [6] is On38(n))
where S(n) denotes the complexity of the subroutine,
and such a subroutine is indeed available for Hy; via

a Hao-Orlin computation. Therefore the algorithm of
van den Heuvel and Johnson, when specialized to the
FDSL problem, is of complexity O(n* m log{n?/m)).

5.2. Conclusion

‘We developed a strongly polynomial time algorithm
for the FDSL problem introduced and analyzed in [7].
A useful feature of our approach is that it can be used
to solve the following inverse problem: given the di-
graph D and an integer C, what is the maximum value
k = k(C) so that there is a C-element subset of V
whose contraction to a node gives rise to a k-edge-
connected digraph (or in another version, to a (k, 0)-
edge-connected digraph). In the uncapacitated case
this question can be easily answered: simply run the
algorithm above for all possible values 1,2,..., M,
where M is the maximum of the in-degrees and the
out-degrees of the nodes, and choose the largest &
for which the resulting minimum (k, k)-source set has
at most C elements. This approach is certainly not
strongly polynomial in the capacitaied case but an
elegant idea of Megiddo [9] can be used to show
that k(C) can be computed by n applications of our
algorithm,

References

[1] A. Bemdth, A note on the directed source location algorithm,
Egerviry Rescarch Report, 2004-12,

{2] P. Duchet, Hypergraphs (Theorem 3.8), in: R. Graham, M.
Graitschel, L. Lovasz (Eds.), Handbook of Combinatorics,
Elsevier, Amsterdam, 1995, pp. 381432,

[31 A. Frank, Some polynomial algorithms for certain graphs
and hypergraphs, in: C. Nash-Williams, J. Shechan (Eds.),
Proceedings of the Fifth British Combinatorial Conference,
(1975) Congressus Numerantium XV, pp. 211-226.

[4] E. Gavril, Algorithms for minimum coloring, maximum
clique, minimum covering by cliques, and maximum
independent set of a chordal graph, SIAM J. Comput. 1
(1972) 180-187.

{5]). Hao, 1.B. Orlin, A faster algorithm for finding the minimurm
cut in a graph, J. Algorithms 17 (1994) 424-446.

[6]). van den Heuvel, M. Johnson, Transversals of subtree
hypergraphs and the source location problem in digraphs,
CDAM Research Report, LSE-CDAM-2004-10.

[7] Hiro Ito, Kazuhisa Makino, Kouji Arata, Shoji Honami,
Yuichiro Itatsu, Satoru Fujishige, Source location problem
with flow requirements in directed networks, Optimization
Methods and Software, Vol. 18, No. 4, August 2003, pp.
427-435.

230 M. Bdrdsz et al. / Operations Research Letters 33 (2005) 221 -230

[8] M. Labbé, FV. Louveaux, Location problems, in: M. [9] N. Megiddo, Combinatorial optirnization with rational
Dell’ Amico, F. Maffioli, S. Martello {Eds.), Annotated objective functions, Math. Oper. Res. 4 (1979) 414-424.
Bibliographies in Combinatorial Optimization, Wiley, 1997, f10] T. Watanabe, A. Nakamura, Edge-connectivity augmentation

pp- 261-281. problems, Comput. Syst. Sci. 35 (1) (1987) 96-144,

