Editorial: The Harold W. Kuhn Award

NRL has recently established a new “best paper award”
sponsored by IBM, General Motors, LogicTools, the MIT
Leaders for Manufacturing Program, ONR, SAP, and
Wiley. The purpose of the award is to recognize and reward
outstanding research published in NRL.

To inaugurate the award, a committee consisting of Pro-
fessors Egon Balas, Tom Magnanti, George Nemhauser,
and Dr. Alan J. Hoffrnan (chair) was established ro select
the best paper representing the journal from among all
papers published in the journal since its founding in 1954
and to name the award after the first recipient.

We are pleased to report that the committee selected the
paper “The Hungarian Method for the Assignment Prob-
lem” by Harold W. Kuhn (NRL, pp. 83-97, vol. 2, nos. 1
& 2, March—June 1955). According to the award citation:

“This pioneering paper set a style for both content and
exposition of many other algorithms in combinatorial
optimization, and also launched and inspired the pri-
mal—dual algorithm for more general linear optimiza-
tion problems. The journal is also pleased to recall
that the research was sponsored by the Office of Naval
Research Logistics Project at Princeton University.
Professor Kuhn’s enduring contributions to optimiza-
tion, discrete and continuous, linear and nonlinear,
Jfrom its earliest days in the 1950°s, are legendary. He
is a man who was in the right place, at the right time,
with the right stuff.”

The award was presented in the recent INFORMS meeting
during the general INFORMS Welcome and Award cere-
mony, Monday QOctober 25, 2004.

This issue of the journal is celebrating the establishment
of the award by publishing:

* A review article by Dr. Andras Frank. The article
relates Professor Kuhn's elegant method to earlier
work by two Hungarian mathematicians and identi-
fies the influence of Kuhn’s algorithm on the area of
Combinatorial Optimization.

e Comments from Professor Kuhn on the origin of the
research that led to the paper.

We are also pleased to republish the winning paper.
Starting in 2005, the annual Harold W. Kuhn award will
be presented for the best paper published in the journal in
the last three years. The prize includes a monetary award, as
well as a certificate acknowledging the award. Papers will
be recommended by members of the editorial board, and the
winning paper will be selected by a three-person committee.
We trust that the award will help NRL increase its rep-
utation and the quality of papers published in the journal.
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Abstract: Harold W. Kuhn, in his celebrated paper entitled “The Hungarian Method for the assignment problem” [Naval Res
Logist Quart 2 (1955), 83-97] described an algorithm for constructing a maximum weight perfect matching in a bipartite graph.
In his delightful reminescences ["On the origin of the Hungarian method,” History of mathematical programming—a collection
of personal reminiscences, J.K. Lenstra, A.H.G. Rinnooy Kan, and A. Schrijver (Editors), CWI, Amsterdam and North-Holland,
Amsterdam, 1991, pp. 77-81], Kuhn explained how the works (from 1931) of two Hungarian mathematicians, D, Kénig and E.
Egerviry, had contributed to the invention of his algorithm, the reason why he named it the Hungarian Method. (For citations from
Kuhn’s account as well as for other invaluable historical notes on the subject, see A. Schrijver’s monumental book [Combinatorial
optimization: Polyhedra and efficiency, Algorithms and Combinatories 24, Springer, New York, 2003].)  In this note [ wish to
pay tribute to Professor H-W. Kuhn by exhibiting the exact relationship between his Hungarian Method and the achievements of
Konig and Egervéry, and by outlining the fundamental influence of his algorithm on Combinatorial Optimization where it became
the prototype of a great number of algorithms in areas such as network flows, matroids, and matching theory. And finally, as a
Hungarian, I would also like to illustrate that not only did Kuhn make use of ideas of Hungarian mathematicians, but his extremely
elegant method has had a great impact on the work of a next generation of Hungarian researchers, © 2004 Wiley Periodicals, Inc.

Naval Research Logistics 52: 2-3, 2005.
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1. RELATIONSHIPS

A little technicality: Though both Egervdry and Kuhn
used matrix terminclogy, here I follow Konig by working
with the equivalent bipartite graph formulation.

Let us start with a quotation from Kuhn's paper [17, page
83]: “One interesting aspect of the algorithm is the fact that
it is latent in the work of D. Konig and E. Egerviry that
predates the birth of linear programming by more than 15
years (hence the name of Hungarian Method).” But what is
the exact relationship of the algorithm arising from Eger-
vary’s proof technique and Kuhn’s method? In a paper [11],
written in Hungarian, [ exhibited in detail the achievements
of Konig and Egervary and Kuhn. The following section is
an outline of some observations from [11].
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1.1. Kinig’s Theorem and Proof Method

The starting point is Kinig’s matching theorem [16].

THEOREM 1 (Kénig): In a bipartite graph G = (S, T;
E), the maximum cardinality v = v(G) of a matching is
equal to the minimum number T = 7(G) of nodes covering
all the edges.

It is useful to restate the theorem in an equivalent form.

THEOREM 2: In a bipartite graph G = (8, T; E), the
minimum number p = u(G, S} of elements of § exposed
by a matching is equal to the maximum of the deficit £(X)
over the subsets of S, where A(X) := |X| — |[['(X)| and
I'(X) denotes the set of elements of T having a neighbor in
X. In particular, there is a matching covering § if and only
if [T'(X)| = |X] holds for every subset X C §.

The outline (in modern terms) of Konig's constructive
proof for the nontrivial v = 7 direction is as follows. By
starting with any matching M, orient the edges in M from T
to § and all other edges from § to 7. Let R and R, denote
the set of nodes of § and of T, respectively, exposed by M.
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Let Z denote the set of nodes of the resulting directed graph
which can be reached from R by a directed path. If Ry N
Z # {J, then we have a path P from R to R, that alternates
in M and then the symmetric difference of M and P is a
matching M’ with {M’| = |M| + 1. (Technically, one must
simply reorient the edges of P in order to obtain the digraph
corresponding to M' YIf R, N Z = D, then L := (T N Z)
U (S — Z) is a set of nodes covering all edges and |M| =
|L|. In the alternative version of Konig’s theorem above, Z
M S is a subset of § with maximum deficiency.

The following observation will be useful in estimating the
efficiency of Egervary’s method. We call a subset X C §
deficient if #(X) > 0. Let ¥ := (X C §: h(X) = w(G,
53}, that is, ¥ denotes the family of the subsets of § with
maximum deficit. The members of % are called max-defi-
cient sets. It can be shown that ¥ is closed under union and
intersection. Therefore, if % is not empty, there is a unique
smaliest max-deficient set, and in the constructive proof of
Konig's theorem above, the max-deficient set Z N S,
provided by the algorithm, itself is this unique smallest set.

1.2. Egervary’s Theorem and Proof Method

In 1931 Egervary [6] extended Konig's results to
weighted bipartite matchings. His fundamental min-max
result is as follows.

THEOREM 3: Let G = (8, T; E) be a complete bipartite
graph with [S| = |T] and let ¢ : E — Z, be a nonnegative
integer-valued weight function. The maximum weight of a
perfect matching of G is equal to the minimum weight of a
nonnegative, integer-valued, weighted-covering of ¢ where
a weighted-covering is a function 7 : § U 7' — R for which
w(u) + w(v) = c(uv) for every edge uv € E and the
weight of 7 is defined to be Z[m(v) : v & § U T].

This theorem seems to be the first appearance of the
linear programming duality theorem for the case when the
constraint matrix is the incidence matrix of a bipartite graph.
The outline of Egerviry’s proof is as follows. Let 7 be a
nonnegative integer-valued weighted-covering of ¢ with
minimum weight. If there is a perfect matching M in the
subgraph G, of tight edges, where an edge wv is called tight
if w(u) + () = c(uv), then M is a maximum weight
perfect matching of G whose weight is equal to the weight
of .

If there is no perfect matching in G, then Kénig’s
theorem implies that there is a deficient set X C S in G .
Increase the #r-value of each node in FG,(X) by 1 and
decrease the m-value of each node in X by 1. This way, one
obtains another weighted-covering 7' of ¢ whose weight is
smaller than that of 7. In case 7' has negative (that is, — 1)
values, increase the 7'-values on the elements of S by 1 and

decrease the w'-values on the elements of T by 1. Since G
is complete bipartite and ¢ = 0, the resulting #" is a
nonnegative weighted-covering of ¢ whose weight is
smaller than that of w, in a contradiction with the minirnum
choice of .

Egervdry noted that his theorem easity extends to rational
weights (in the sense that the integrality of the weighted-
covering is not required anymore), and, by continuity argu-
ments, the theorem holds for real weight functions as well.

Egerviry, in his paper, did not speak on algorithms at all.
But his proof above can easily be turned into an algorithm
since it finds, starting with an arbitrary weighted-covering
w, either a better weighted-covering or else a maximum
weight perfect matching. A natural observation is that the
revision of the current potential, as described in the proof
above, may be done by min{ w(u) + w(v) — cluv) 1 u €
X, v €T~ I'cg(X)}, a value possibly larger than 1.
Perhaps it is not unfair to call the algorithm described this
way Egervary’s algorithm. This is clearly finite for integer
or rational c. Jittner [15], however, observed that Eger-
véry's algorithm in this generic form is not polynomial for
integer-valued ¢ and not necessarily finite for real-valued ¢,
even if max-deficient sets are used throughout the run of the
algorithm for the revision of the current 7. It should be
noted, however, that by appropriately specifying the choice
of the deficient sets used for revising the current m, the
algorithm can be made strongly polynommial. Narmely, this
is the case if the unique smallest max-deficient set is used
throughout. This was proved in [11] directly, but I am
almost sure that a proof had appeared earlier in the litera-
ture. As mentioned above, the deficient set found by
Kénig’s algorithm is the unique smallest max-deficient set.
Therefore, the specific version of Egervary’s algorithm,
when the deficient set found by Konig's alternating path
technique, rather than just taking an arbitrary deficient set, is
strongly polynomial.

This situation is analogous to the well-known case of
maximum flows: for integer or rational capacities the max-
flow min-cut algorithm of Ford and Fulkerson [7] is finite
though not polynomial, while for real capacities it is not
even finite. On the other hand, if a shortest augmenting path
is used at every augmentation step, which is actually auto-
matic when breadth-first-search is applied to find an aug-
menting path, then the algorithm is strongly polynomial, as
was proved by Edmonds and Karp [5] and by Dinits [1]. We
stress, however, that in the maximum weight matching
problem as well as in the maximum flow problem the proof
of strong polynomiality is not at all trivial and certainly
needs some work.

1.3. Kuhn’s Hungarian Method

In light of Egerviry’s proof technique, let us see the
novelty of Kuhn’s Hungarian Method. Egerviry used
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Konig’s theorem as a black box or subroutine, and therefore
the algorithm read off from his proof is not polynomial. The
striking advantage of Kuhn’s algorithm is that it is strongly
polynomial; moreover, this immediately follows from the
description of the algorithm. The main idea of Kuhn's
algorithm is that the two separate parts in Egerviry’s proof
(computing a deficient set and revising the current ) are
combined into one.

In a general step, Kuhn's algorithm also has a weighted-
covering # and considers the subgraph G of tight edges
(on node set S U T). Let M be a matching in G .. Orient the
elements of M from T to § while all other edges of G, from
StoT. Let Rg € § and Ry C T denote the set of nodes
exposed by M in § and in T, respectively. Let Z denote the
set of nodes reachable in the resulting digraph from R by
a directed path (that can be computed by a breadth-first
search, for example).

If Ry N Z is nonempty, then we have obtained a path P
consisting of tight edges that alternates in M. The symmet-
ric difference of P and M is a matching M’ of G consisting
of one more edge than M does. The procedure is then
iterated with this M", If Ry N Z is empty, then revise 7 as
follows. Let A := min{w{(x) + m(z) — c(uv) :u €Z N
S, v € T — Z}. Decrease (increase, respectively) the
m-value of the elements of § M Z (of T N Z, resp.) by A.
The resulting 7’ is also a weighted-covering. Construct the
subgraph of (5. and iterate the procedure with #' and with
the unchanged M.

The wonderful thing is that Kuhn's algorithm can be seen
with no effort to be strongly polynomial. Indeed, observe
first that there may be at most |§| cases of matching aug-
mentation. Second, in a phase when the current matching M
is unchanged, the set of nodes reachable from R in (7 is
preperly included in the set of nodes reachable from Ry in
G.,... Hence, this situation may occur at most }§| times, that
is, after at most |§| consecutive changes of the weighted-
covering, a matching augmentation must follow. Since a
breadth-first-search needs O(|E|) steps, the overall com-
plexity of Kuhn's Hungarian Method may be bounded hy
O(E|IS).

At that time, complexity consideration was not an issue
beyond finiteness and therefore it is not surprising that Kuhn
was content with proving the finiteness of his algorithm. We
stress that the foregoing proof of strong polynomiality is
basically automatic.

2. INFLUENCE

The main merit of Kuhn’s Hungarian Method is that in
the past half a century it has became the starting point of a
fast developing area of efficient combinatorial algorithms,
now called Combinatorial Optimization. Its seminal ideas,
developed originally for the weighted bipartite matching

problem (that is, the assignment problem) have been applied
by Ford and Fulkerson to the transportation problem and,
more generally, to minimum cost flows, as well (see [7]). In
all of these cases, as Hoffman and Kruskal [14] discovered,
the integrality of the oplimal solutions is due to the total
unimodularity of the underlying constraint matrix: the inci-
dence matrix of a bipartite graph or a digraph. In 1965,
Edmonds [2] was able to generalize the approach of the
Hungarian Method to nonbipartite matchings, as well, a
much more complex situation where the constraint matrix is
not totally unimodular. Edmonds’ weighted matroid inter-
section algorithm [3] was another fundamental break-
through of a similar vein where the spirit of the Hungarian
Method was used and extended.

Harold Kuhn could use ideas of Hungarian mathemati-
cians. A next generation of Hungarian researchers, in turn,
highly profited from his method and achieved important
results in Combinatorial Optimization. For example, Tardos
[22] was the first to construct a strongly polynomial algo-
rithm for the minimum cost circulation problem. Sebd [21]
found fundamental structural results on edge-weighted un-
directed graphs with no negative cycles. Lovisz's deep
theory on matroid parity {19] was also affected by the
Hungarian Method,

Finally, I would like to make some personal remarks. The
Hungarian Method caught my heart and imagination very
early. I have been teaching it in regular courses for decades,
and I am still fascinated at every occasion by its clean
elegance and beauty. The method has had a great impact on
my research, too. For example, [9] describes a weighted
matroid intersection algorithm that may be considered as a
straight extension of the original algorithm of Kuhn be-
cause, instead of working with dual variables assigned to
subsets of the ground-set, as earlier matroid intersection
algorithms did, it uses only node-numbers, just as Kuhn’s
algorithmn does. The same idea could be carried over in [10]
to submodular flows, a wonderfully general and flexible
framework, due to Edmonds and Giles [4]. The theoretical
and practical efficiency and the wide range of applicability
of the Hungarian Method are only one side of ifs far-
reaching effect. Another one is that the method is an effec-
tive proof technique. For example, the version of Kuhn’s
Hungarian Method developed by Ford and Fulkerson (see
[7]) for solving the min-cost flow problem couid be used in
[8] to prove a common generalization of a theorem of
Greene [12] and a theorem of Greene and Kleitman [13] on
maximum chain and antichain families of a partially ordered
set. These theorems are deep generalizations of Dilworth’s
classical chain-covering theorem. Based on ideas of the
Hungarian Method, one can compute a maximum cardinal-
ity subset of a poset that is the union of k chains (or k
antichains).
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In 2001, encouraged by these precedents, young and
senior researchers in Budapest, the city of Konig and Eger-
viéry, felt obliged to establish the Egervary Research Group,
supported by the Hungarian Academy of Sciences. (For its
homepage, see http:/fwww.cs.elte.hu/egres). Our main goal
has been to work on combinatorial algorithms and structures
in the spirit of Kuhn's Hungarian Method and of the min-
max theorems of Konig and Egervdry.
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I am extremely pleased that “The Hungarian Method for
the Assignment Problem” has been selected as a paper
representing the best of Naval Research Logistics in its first
50 years, This paper has always been one of my favorite
“children,” combining as it does elements of the duality of
linear programming and combinatorial tools from graph
theory. It may be of some value to tell the story of its
origin.!

I spent the summer of 1953 at the Institute for Numerical
Analysis housed on the U.C.L.A. campus. This Institute was
the home of the SWAC (Standards Western Automatic
Computer), which had been designed by John von Neumann
and had a memory composed of 256 Williamson (cathode
ray) tubes. The formulation of the assignment problem as a
linear program was well known, but a 10 by 10 assignment
problem has 108 variables in its primal statement and 100
constraints in the dual and so was too large for the SWAC.
The SEAC (Standard Eastern Automatic Computer), housed

' After writing this acceptance statement, I looked up an account
written 14 years ago:

“On the origin of the Hungarian Method,” History of
mathematical programming; a collection of personal
reminiscences, Jan Karel Lenstra, Aexander H. G. Rin-
nooy Kan, and Alexander Schrijver (Editors), North
Holland, Amsterdam, 1991, pp. 77-81.

This account is substantially the same as the statement that I have
Just written but contains more detail. Large sections are reproduced
in the book by Alexander Schrijver:

Combinatortal optimization: polyhedra and efficiency,
Vol. A. Paths, Flows, Matchings, Springer, Berlin, 2003,

Schrijver’s account places the Hungarian Method in the mathematical

context of combinatorial optimization and rephrases the concepts in graph-
theoretical language.
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in the National Bureau of Standards, could solve linear
programs with about 25 variables and 25 constraints.

During that summer, while working on a number of
problems including the Traveling Salesman Problem, I was
reading Konig's book on graph theory. I recognized the
following theorem of Kénig to be a pre-linear programming
example of duality:

if the numbers of a matrix are 0’s and 1's, then the
minimum number of rows and columns that will contain
all of the 1’s is equal to the maximum number of 1’s that
can be chosen, with no two in the same row or column.

Indeed, the primal problem is the special case of an assign-
ment problem in which the ratings of the individuals in the
jobs are only 0’s and 1's. In a footnote, Kénig refers to a
paper of E. Egerviry (in Hungarian), which seemed to
contain the treatment of a more general case.

When I returned to Bryn Mawr, where [ was on the faculty
in 1953, I took out a Hungarian grammar and a large Hungari-
an—English dictionary and taught myself enough Hungarian, to
translate Egervéry’s paper. I then realized that Egervary's
paper gave a computationally trivial method for reducing the
general assignment problem to a 0~1 problem. Thus, by put-
ting the two ideas together, the Hungarian Method was born.

I tested the algorithm by solving 12 by 12 problems with
random 3-digit ratings by hand. I could do any such problem,
with pencil and paper, in no more than 2 hours. This seemed to
be much better than any other method known at the time.

The paper was published in Naval Research Logistics Quar-
terly. This was a natural choice since the project in Game
‘Theory, Linear and Nonlinear Programming, and Combinato-
rics at Princeton, with which Al Tucker and I were associated
from 1948 to 1972, was supported by the Office of Navai
Research Logistics Branch. Many mathematicians were bene-
ficiaries of the wise stewardship of Mina Rees as head of the
ONR and Fred Rigby as chief of the Logistics branch. We
were also fortunate to have Jack Laderman, the first editor of
the journal, as our project supervisor. They share the credit for
this award for creating a congenial framework in which such
research could be done.



