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Abstract
Elementary proofs are presented for two graph theoretic results, originally proved by H. Shirazi and J. Verstraéte using the

combinatorial Nullstellensatz.
© 2007 Elsevier B.V, All rights reserved.
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In an undirected graph G = (V, E) we denote by dg(v) the degree of v € V. If F(v) € N is a set of forbidden
degrees for every v € V, then a subgraph G’ = (V, E') of G is called F-avoiding ifdg'(v)¢ F(v) forallv e V.

Theorem 1 (Shirazi and Verstraéte [5]). If G = (V, E) is an undirected graph and
[F)|<dg(v)/2 for every node v, (1)

then G has an F-avoiding subgraph.

Theorem 1 appeared first under the name Louigi’s conjecture in [1]. A version with dg (v)/2 replaced by dg (v) /12
was given in [1], while dg (v)/8 was proved in [2]. Louigi’s conjecture was first settled in the affirmative by Shirazi
and Verstraéte [5]. Their proof is based on the combinatorial Nullstellensatz of Alon [3]. We give an elementary proof,
which uses Theorem 2 below. In a directed graph D = (V, f) we denote by g, (v) the in-degree of v € V.

Theorem 2. If G =(V, E) is an undirected graph and it has an onentattan D for which g, (v) 22| F (v)| for every node
v, then G has an F-avoiding subgraph.

Proof. Foran undirected edge e, let @ denote the corresponding directed edge of D. We use induction on the number of
edges. If 0 is not a forbidden degree at any node, then the empty subgraph (V, @) is F-avoiding. Suppose that 0 € F(r)
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for a node . Then gp(t) 2| F(¢)] 221 and hence there is an edge e = st of G for which @ is directed toward r. Let
G~ =G—eand D" =D—"¢ . Define F~ asfollows. Let F~(t)={i—1:i € F(O\{0}}, F~(s)={i—1: i € F(s)\{0}},
and forz € V — {5, t} let F~(z) = F(z). Since |F~ ()| = |F(£)| — 1, op-(v) = {F~(v)| holds for every node v. By
induction, there is an F~-avoiding subgraph G” of G~ By the construction of F~, the subgraph G’ := G” + e of G
is F-avoiding. (O '

Proof of Theorem 1. It is well-known that every undirected graph G has an orientation D in which
ep(v) 2 |dg(v)/2] for every node v. : (3]

Indeed, by adding a new node z to G and joining z to every node of G with odd degree, we obtain a graph G in which -
every degree is even. Hence G* decomposes into edge-disjoint circuits and therefore it has an orientation in which the
in-degree of every node equals its out-degree. The restriction of this orientation to G satisfies (2). (An orientation with
property (2) is also used in [5).) Therefore Theorem 2 implies Theorem 1. O

Hakimi (4] proved that, givenafunction f : V — Z, anundirected graph G has an orientation for which p(v) > f(v)
for every node v if and only if eg(X) > 3 [f(v) : v € XTholds for every subset X € V, where eg(X) denotes the
number of edges with at lcast one end-node in X. By combining this with Theorem 2, one obtains the following.

Corollary 3. If G = (V, E) is an undirected graph and eq(X) > YIF )| : v € X] holds for every subset X C V,
then G has an F-avoiding subgraph.

Along with Theorem 1, the following result was also proved in [5] via the Combinatorial Nullstellensatz. A graph is
called empty if it has no edges.

Theorem 4 (Shirazi and Verstraéte [5]). If G=(V, E) is an undirected graph,0¢ F(v) forallv e Vand}_ y|F(v)]
< |E|, then G has a nonempty F-avoiding subgraph G'.

Proof. Again, we use induction on the number of edges. If dg(v) ¢ F(v) for all v € V, then the nonempty G’ = G
will do. Otherwise there exists anode t € V where dg(t) € F(¢). As 0 ¢ F(v), there is an edge e of G incident to ¢. -
Let GT =G —e¢ let F (1) = F(t)\{dg()} and for z € V — {t} let F~(2) = F{(z). By induction, there is a nonempty
I~ -avoiding subgraph G’ of G™. As dg:(t) <dg(?), this G' is also F-avoiding. O

We remark that Theorems 2 and 4 clearly hold for hypergraphs, as well, with the same proofs. Combining this with
the hypergraph variant of Hakimi’s theorem, one concludes that also Corollary 3 applies to hypergraphs. However,
in Theorem 1 one should replace the denominator 2 by the rank of the hypergraph (that is, the maximum size of a
hyperedge). This is already observed by Shirazi and Verstragte [5]. Note also that both proofs give rise to polynormal
algorithms: such algorithms were not known before.
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Note added in proof

After submitting the paper, the authors learned that Adrian Bondy also formulated and proved Theorem 2. His proof
goes along the same line as ours.
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