Discrete Apptied Mathematics I (N1} en-EER

Contents lists available at ScienceDirect

Discrete Applied Mathematics

journal homepage: www.elsevier.com/locate/dam

W

Rooted k-connections in digraphs®

Andras Frank
MTA-ELTE Egerviry Research Group (EGRES), Department of Operations Research, Etvds University, Pdzmdny P. sétdny 1/c, Budapest, H-1117, Hungary

ARTICLE INFO ABSTRACT
Article history: The problem of computing a minimum cost subgraph D' = (v, A') of a directed graph
Received 1 December 2006 D = {V, A) s0 as to contain k edge-disjoint paths from a specified root ry € V to every other

Received in revised form 12 June 2007
Accepted 31 March 2008
Available online xxxx

node in V was soived by Edmonds [J. Edmonds, Submodular functions, matroids, and certain
polyhedra, in: R. Guy, H. Hanani, N. Sauer, J. Schonheim (Eds.), Combinatorial Structures and
their Applications, Gordon and Breach, New York, 1970, pp. 69-87} by an elegant reduction
to weighted matroid intersection. A corresponding probtem when openly disjoint paths are

f;:::;g ﬁltm ection requested rather than edge-disjoint ones was solved in [A. Frank, E. Tardos, An applicaticn
Connectivity of digraphs of submodular flows, Linear Algebra Appl. 114-115 (1989) 329-348] with the help of
Arborescences submodular flows. Here we show that the use of submodular flows is actually avoidable

and even a common generalization of the two rooted k-connection problems reduces to
matroid intersection. The approach is based on a new matroid construction extending
what Whiteley [w. Whiteley, Seme matroids from discrete applied geometry, in: ].E. Bonin,
].G. Oxley, B, Servatius (Eds.), Matroid Theory, in: Contemp. Math., vol. 197, Amer. Math.
Soc, Providence, R], 1996, pp. 171-311] calls count matroids. We also provide a polyhedral
description using supermodular functions on bi-sets and this approach enables us to handle
more general rooted k-connection problems. For example, with the help of a submodular
flow algorithm: the following restricted version of the generalized Steiner-network problem
is solvable in polynomial time: given a digraph D = (¥, A) with a root-node rg, a terminal
set T, and a cost function ¢ ; A — R, so that each edge of positive cost has its head in T,
find a subgraph D' = (V, A') of D of minimum cost so that there are k openly disjoint paths
in &' from rp to every node in T.

@© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Let D = (V, A) be a directed graph. For two specified nodes s and r of D, a (directed) path from s to tis cailed an st-path. Let
A(s, t; D) and «(s, r; D) denote the maximum number of edge-disjoint, respectively, openly disjoint, st-paths. Two st-paths
are called openly disjoint if their nodes in common are exactlysand . In particular, k parallel edges from s to ¢ form k openly
disjoint paths.

It is well known that A(s, t; D) can be computed via a max-flow min-cut algorithm and even more, given a non-negative
cost function on A, the cheapest set of k edge-disjoint paths from s to ¢ can also be computed in strongly polynomial time
with the help of a min-cost flow algorithm, There is a well-known and easy node-splitting technique (described, for example,
in [8]) to reduce the computation of k openly disjoint st-paths to that of k edge-disjoint st-paths.

Let ry be a specified node of D called a root. We will throughout assume that no edge of D enters ro. The digraph
is called rooted k-edge-connected (resp., rooted k-node-connected or briefly rooted k-connected) if A(rp,viD) > k
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(resp., k(ro, v; D) = k) holds for every v € V — rp, By the directed edge-version of Menger’s theorem rooted k-edge-
connectivity is equivalent to requiring that the in-degree g,(X) of every non-empty subset X € V — ry is at least k. Suppose
that D is endowed with a non-negative cost functionc: A — R,

We are interested in the rooted k-edge-connection and the rooted k-node-connection problems which consist of
finding a cheapest subgraph Y = (V, A") of D so that

D' is rooted k-edge-connected from ry (1)

and, respectively,
I’ is rooted k-node-connected from rq. (2)

When k = 1 the two problems coincide and it amounts to finding a minimum cost spanning arborescence. This was
first solved by Yong-Jin Chu and Tseng-Hong Liu [1] by using a direct graph-theoretical approach. Fulkerson [9] described
a min-max theorem along with a polyhedral description of arborescences. For general k > 1, two approaches have been
known for sotving ( 1). The first one, due to Edmonds [2], consists of showing that there are two matroids on the edge-set of D
so that their common bases are exactly the minimal rooted k-edge-connected subgraphs of D. The second one uses polyhedral
techniques [10]. Though this is more complicated and its aigorithmic solution relies on submodular flows algorithms, it has
the advantage of implying several extensions of (1).

The minimum cost rooted k-connected subgraph problem was solved by Frank and Tardos [ 13] who described a rather
complicated way to reduce it to submodular flows: in this sense a polynomial algorithm has been available. Since the k
openly disjoint se-paths problem can so easily be reduced, via the node-splitting technique, to that of k edge-disjoint st-
paths, it has been tempting to avoid the difficult reduction of [13] by invoking node-splitting. A natural direct approach,
however, fails since node-splitting gives rise to new nodes of in-degree 1 and therefore the resulting digraph certainty will
net contain k edge-disjoint paths from ry to every other node (when k > 2).

The goal of this paper is twofold. First, it will be shown that the rooted k-node-connection problem, like its k-edge-
connection counterpart, can aiso be reduced to matroid intersection, and this will, in fact, be proved for a common
generalization of the two versions. In other words, the use of submodular flows is avoidable, Second, by introducing an
approach simpler and more natural than the one in [13], a totally dual integral (TDI) description of the rooted k-connected
subgraphs will be provided. By extending a method of A. Schrijver, we show that the polyhedron in question is also a
submodular flow polyhedron. Again, this second, more complicated framework gives rise to more general root-connection
problems. For example, this way one is able to find a cheapest subgraph of a digraph in which there are k edge-disjoint (resp.,
openly disjoint) paths from ro to every node in a specified terminal set T € ¥V — ro provided that the head of every edge with
positive cost is in T, a requirement satisfied automatically when T = V — rp. In fact, these solutions will be formulated in a
general framework that includes both the rooted k-edge-connection and the rooted k-node-connection problems.

Theidea behind the extensions is that, while edge-connection problems are often successfully attacked via supermodular
set-functions, for node-connections the right tool is supermodular functions defined on certain pairs of subsets called bi-sets.
They not only help in formutating the requested polyhedral description but can also be used to extend a matroid construction
called count matroids by Whiteley [27].

The paper is organized as follows. The next section describes two known approaches to the rooted k-edge-connection
problem: Namely, Edmonds’ reduction, via his disjoint arborescences theorem, to matroid intersection and a polyhedral
description from [10]. In Section 3, the notion of count matroids on directed graphs is introduced and an independence
oracle for them is described. Section 4 shows how the rooted k-connection problem is reduced to matroid intersection
while the last section describes a polyhedral description of rooted k-connected subgraphs.

We conclude this introductory section by listing some notions and notation used throughout the paper. We often do not
distinguish a one-element set {v} (sometimes called a singleton) from its only element v. The union of a set X and a singleton
{v} is abbreviated by X + v while X\ {v} by X — v. For the difference X \ Y of two sets, we write X — Y. By a subpartition of 5, we
mean a partition of a subset of 5. X C Y means that X is a proper subset of Y, in particular, @ C X denotes that X is non-empty.

An undirected edge connecting « and v will be denoted by uv or vu. A directed edge e with head v and tail u is denoted by
e = uv.Itis said to enter asubset 2 if v € Z, u ¢ Z. Whenu, v € Z, the edge uv is induced by Z, Induced edges in an undirected
graph are defined analogously.

For a digraph D = (V, A), its in-degree function g := gp := g, is defined for every subset Z € Vv by the number of edges
entering Z. For a function x : A — R, we write g,{(Z) := Y.[x(e) : e enters Z]. The out-degree function § ;= 8y = 8§, is
defined by §(Z) := o(V — Z) and also §,(Z) := o«(V — Z). The number of edges of D induced by a subset Z is denoted by
{Z) = ip(Z) = is(Z).

By a branching we mean a directed forest in which the in-degree of each node is at most one. The set of nodes of in-
degree 0 is called the root-set of the branching. When the root-set is a singleton, we speak of an arborescence. Note that a
branching with root-set R is the union of |R] disjoint arborescences.

The non-negative part of a number x is x* := min{x, 0}. For a function m : § - Ron S and for any subset X C §, we use
the abbreviation m(X) = Y [m{v) : v € X].
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2. Preliminaries on rooted k-edge-connection

2.1. Edmonds’ reduction to matroid intersection

Edmonds’ algorithmic solution in [2] to the rooted k-edge-connection problem has actually been a by-product of his
approach to the problem of finding a cheapest subset of edges of I} which is the union of k edge-disjoint spanning
arborescences. The link between the two problems is Edmonds’ disjoint arborescences theorem [4].

Theorem 2.1 (Edmonds’ Disjoint Arborescences Theorem). A digraph D = (V. A) with a specified root ry has k edge-disjoint
spanning arborescences of root ry if and only if

op(X) = k  for every non-empty subset X € V — rp, €)]
that is, D is rooted k-edge-connected. e

This theorem (along with the stronger disjoint branchings theorem stating that, given k non-empty root-sets R; C V, there
are k disjoint branchings B; of root-set R; if and only if the in-degree of every non-empty subset X C V is at least the number of
root-sets disjoint from X) was used in {2]. Its full proof appeared in [4]. Edmonds observed that Theorem 2.1 easily implies

the following.

Theorem 2.2. Adigraph I' = (V, B) is the union of k edge-disjoint spanning arborescences of root ry if and only if
o)) =0 and o(v) =k foreveryveV—rp (4)
and the underlying undirected graph of I¥ is the union of k edge-disjoint spanning trees.

Proof. The necessity of the conditions is straightforward. Their sufficiency follows from Theorem 2.1 once one shows that
DY is rooted k-edge-connected. Indeed, for a non-empty subset X C V — ry, we have i(X) < k(JX| — 1) since the underlying
graph is the union of k forests and hence g(X) = o) : v € X1 —i(X) = KX| —i(X) = kX| —k(X| - 1) = k,
as required. e

Edmonds and Fulkerson [G] proved that the sum (or union) of some matroids forms a matroid, in particular, the subsets of
edges of a graph which are the union of k edge-disjoint spanning trees form the set of bases of a matroid denoted by M;. Let
M, denote the partition matroid whose set of bases is defined by (4). Theorem 2.2 implies that finding a cheapest subgraph
of a digraph which is the union of k edge-disjoint arborescences is equivalent to computing a cheapest common basis of
matroids M; and M;. This can be done with the help of any weighted matroid intersection algorithm. (See, for example,
Edmonds' algerithm |5] or a conceptually simpler version in [11].) A matroid intersection algorithm can only be applied if
the independence oracles (or equivalent) for the two matroids are indeed available. This is obvious for the partition matroid
M,. As far as M; is concerned, Edmonds’ 3] polynomial-time algorithm for computing the rank of the sum of matroids
provides the requested oracle.

Summing up, Edmonds' approach to compute k edge-disjoint spanning arborescences of root ry whose set of edges is of
minimum cost is as follows. First, compute a cheapest common basis B of matroids M, and M. Second, apply any existing
algorithm to partition B into k edge-disjoint spanning arborescences. For example, Tarjan [26] observed that the strong
form of Edmonds’ theorem (that is, the disjoint branchings theorem) has a self-algorithmic nature in the sense that the
theorem lends itself to an algorithm for constructing the k disjoint branchings, provided an MFMC-subroutine is available
for computing minimum cuts. Lovasz' simple proof [20] for Edmonds’ theorem also gave rise to such an algorithm.

2.2. Polyhedral description

The second approach uses a more general framework. In handling edge-connectivity optimization problems, it is rather
typical that a general result on covering supermodular functions by directed graphs is in the background. For the rooted
k-edge-connection problem such a framework can be formulated as follows. A set-function p : 2¥ — Z is said to satisfy the
supermodular inequality on subsets X, Y C Vif

pOO 4+ p(Y) < pXUY) +pXOY). (5}

If this holds whenever X N Y # @, then p is called intersecting supermodular. If (5) is required only for subsets with
p(X) > 0, p(Y) > 0,and X N Y # &, then p is positively intersecting supermodular,

A typical way to create a positively intersecting supermodular function is to take the ‘non-negative part’ of an intersecting
supermodular one with possible negative values which means replacing each negative value by zero. Example shows,
however, that not every non-negative, positively intersecting supermodular function arises this way.

Adigraph D = (V, A) (or a functionx : A — Z, U{oo} on its edge-set) is said to cover pif g5 (X) = p(X) (resp., 0:{(X) = p(X))
for every subset X < V. The problem consists of finding a cheapest subgraph of D covering a positively intersecting
supermodular function. To formulate the result on covering intersecting supermodular functions, let g : A — Z, U (o0}
be a non-negative upper bound on the edges of D that covers p.

Please cite this article in press as: A. Frank, Rooted k-connectionsin di"gr.a_lﬁ_hs‘ Discrete Applisd Mathematics (2008), doi:10.1016/j.dam.2008.03.040 |
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Theorem 2.3 ({10,13]). If p is a positively intersecting supermodular set-function, the linear system

{0 < x < g and 0,(7) = p(Z) forevery Z C V} (6)
described for x € R? is totally dual integral. In particular, the linear programming problem

min{cx : x satisfies (6)) 7N

has an integer-valued optimum solution and so has its linear programming dual provided c is integer-valued.

Theorem 2.4 {Schrijver {22]). If p is an intersecting supermodular set-function, the polyhedron R defined by (6 is a submodular
flow polyhedron.

To see how the framework in Theorem 2.3 includes Problem (1), consider the special case when g = 1 and p is defined by
p(Z) = k for every subset @ C Z C V — rg and p(Z) = 0 otherwise. In this case there is a one-to-one correspondence between
the 0— 1-valued solutions of { 6) and the rooted k-edge-connected subgraphs of D. Therefore a submodular flow algorithm may
be used to construct a cheapest rooted k-edge-connected subgraph, More generatly, given root-sets Ry, . . ., R, by choosing
p to be the function for which p(#) = 0 and p(X) is the number of root-sets disjoint from X # #, one obtains a polyhedrai
description of subsets of D which contain k disjoint branchings B; of root-set R;.

The statement in Schrijver’s theorem is not known for positively intersecting supermodular functions. Fortunately, each
known application of the framework in Theorem 2.3 requires intersecting supermodular functions. The main reason for the
usage of positively intersecting supermodular functions is that the proofs become technically simpler.

Schrijver's method to formulate (6) as a submodular flow problem will be extended in Section 5.2. Since this reduction
can be carried out in polynomial time and since there are good (combinatorial} algorithms for submodular flows (for a
comprehensive overview, see Fujishige’s book [ 16}), the optimization problem (7} is also solvable in polynomial time.

It was proved in [12] that every {integer) submodular flow polyhedron is the projection (along coordinate axes) of the
intersection of two base-polyhedra. The submodular flow polyhedron R above is actually in the 0-1 cube of R* and in this
case R is the projection of the intersection of the base-polyhedra of two matroids in the space of dimension 2|A|. In this
sense, matroid intersection can be applied to optimize 0-1-valued submodular flows. This reduction, however, is not only
significantly more complex than the one outlined in Section 2.1 but its algorithmic realization is also far more complicated.

On the other hand, the polyhedral approach has the advantage that more general rooted k-edge-connection problems
can also be handled with its help. For example, let us be given a digraph D = (V, Fo UA) with aroot-nede rg and a terminal set
T C V—ro sothat T contains the head of every edge in A and so that there are k edge-disjoint paths fromro toevery nodet € T.
There is also a cost function ¢ ; A -» R. The problem is to find a minimum cost subset F of A so that there are k edge-disjoint
paths in (v, Fy UF) from rp to every node ¢ € T. Note that this problem specializes to the rooted k-edge-connection problem
whenT = V—rg and Fy = , while it becomes NP-complete even for k = 1 if F; = ¥ and the assumption on the head of edges
in A{to be in T) is dropped. (This is the directed Steiner-tree problem). The problem is indeed a special case of the framework
in Thearem 2.4 when the groundset is chosen to be T and function p is defined by p(X) = max{k—or, {(XUY) : ¥ C V—(T+ro}}
when X € T is non-empty and p(#) = 0 since this p is easily proved to be intersecting supermodular. (This application was
explicitly mentioned in [10] only for the special case T = V — ry.} For an extension, see Section 5.3.

3. Matroids on the edge-set of undirected and directed graphs

In addition to the weighted matroid intersection algorithm, the matroidal approach of Edmonds outlined above needed
several other tools: his disjoint arborescence theorem and algorithm, the notion of the matroid sum along with the
matroid partition algorithm. Since there is no known decomposition theorem for rooted k-connected digraphs analogous
to Theorem 2.1, in order to reduce the rooted k-connection problem to matroid intersection, we must choose a different
approach.

A set-function b on a groundset § is called non-decreasing if b(X) < b(¥) wheneverX C Y C S.1tis fully submodular, or
for short, submodular if the submodular inequality

bX) +b(Y) = B(XN Y)Y+ bXUY) (8)
holds for every two subsets X and Y of 5, and b is intersecting submodular if (8) holds whenever X NY # @.

Theorem 3.1 (Edmonds). For an integer-valued, non-decreasing, intersecting submodular function b, the set {F € 5 : [FNX| <
b(X) for every non-empty subset X C F} forms the set of independent sets of a matroid M, whose rank function r, is given by the
Sformula

rp(2) = min {Z B(X) + |2 — W X;| : {X:) a subpartition of Z] . e (9)

M, is called the matroid of b.

Please cite this article in press as: A, Frank, Rooted k-connections-in digraphs, Dis'creter}\ppliéd_ Mathematics (2008), doi:10.1016/j.dam.2008,03.040 |
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3.1. Count matroids on undirected (hyper)graphs

A widely used way to apply this construction is as follows. Let G = (V, E) be an undirected graph with no loops. For a
subset F C E, let V(F) denote the nodes covered by the edges in F. Letm : V — Z,. be a non-negative integer-valued function
on vV and ! an integer for which

m{u) + m(v) = ! foreveryedgeuve E. {10}
[t is easy to see that the set-function b* defined by 5* (#) = 0 and

PR =m(V(F)) -1 (BCFCE) (11)

is a non-decreasing, intersecting submodular function on groundset £ (which is actually fully submodular for ! < 0). Note
that (10) ensures that #* is non-negative. By Theorem 3.1 the set

[FCE: |F| < B*(F) for every non-empty subset F € F} (12)

forms the independent sets of a matroid. It is easily seen and will be shown for a more general case in the next subsection
that it suffices to require the inequatity iF'| < b* (¥ only for subsets F' € F induced by subsets of nodes. Hence one gets the
fotlowing.

Theorem 3.2. Suppose that m and | satisfy (10). The set
F¥ = {F CE:ip(X) < m(X) — | forevery X S Vwithis(X) = 1} (13)
forms the set of independent sets of a matroid Mm i((G).

The matroids M., are called count matroids {on graphs) in a paper by Whiteley [27] where several special cases and
applications are exhibited along with an extension to hypergraphs H = (V, €). (Here a subset ¥ < & of hyperedges is
dectared independent if |F’| < m(U{Z : Z € 7)) — | for every non-empty subset ¥’ C ¥. The only difference is that {10}
should be replaced by m(Z) = I for every hyperedge Z € &.) For example, for a graph G = (V, E) and a positive integer k,
let m = k and | := k. Then in the corresponding count matroid M{G) := Mn(G) a subset F of edges is independent if every
non-empty subset X of nodes induces at most k(|X| - 1) elements of F. For k = 1, this is just the circuit matroid of G. Note that
by a theorem of Nash-Williams [21], the independent sets in M, are those subsets of edges which can be partitioned into k
farests. Hence, by the matroid partition theorem of Edmonds and Fulkerson [6], My is the matroid union (sum) of k copies of
the circuit matroid M;. However, in order to construct an independence oracle for M;, this relationship and in particular the
matroid partition algorithm is avoidable. For any count matroid such an oracle, relying only on MFMC computations was
developed by H. Imai and by K. Sugihara (see the book of Sugihara [24] or papers of Sugihara and Imai [25,19]).

Remark. We indicate that the count matroid M,(G) allows one to provide ancther matroid intersection approach to rooted
k-edge-connection more flexible than the one outlined in Section 2.1. Namely, let M, be the same partition matroid as before,
while M, is the direct sum of the free matroid on A (the set of edges leaving ro) and the restriction of M, (G) to A* .= A — Ap.
Although this matroid is more free than the matroid M used in Edmonds’ reduction, it is still true {and will be proved in a
more general context) that the minimal rooted k-edge-connected subgraphs of D are exactly the common independent sets
of k(|V| — 1) elements of M} and M.

3.2. Count matroids on directed graphs

We are going to extend the notion of count matroids for digraphs and this will include count matroids on undirected
graphs as a special case. An independence oracle for these more general count matroids will also be outlined.

Given a groundset V, by a bi-set X = (Xp, X;) we mean a pair of subsets X;, X, of V for which@ C X, € Xy € V. Xp is
the outer member of X while X, is the inner member. A bi-set X with X; = @ or with X, = V is called trivial. When X; = ¢
the bi-set is void. A function defined on bi-sets will be called a bi-set function. We will assume throughout that the bi-set
functions in question are integer-valued and that their value on void bi-sets is always zero.

We say that a directed edge e = uv is induced by a bi-set X = (X, Xp) if the head v of e is in X; while its tail u is in X,. For
adigraph D = (V, A), let Ip(X) = [s(X) denote the set of edges induced by X and ip(X) = ix(X) == lp (X)|. Let D* = (V*, A*) be
a digraph, my : V* — Z, and m, : V* — Z, two functions and ! an integer such that

m(v) + mo(u} + mo(v) > | for every edge uv € A*. (14)
Let
F¥ = [FCA i (X) < m(X) + mo(Xg) — ! for each bi-set X = (Xo, X;) with ir(X) = 1}. (15}

Theorem 3.3. F* forms the set of independent sets of a matroid on A™.

Please cite this article in press as: A, Frank, Rooted k-connections in digraphs, Discrete App!_i_e_d Mathematics (2008), doi:10.1016/j.dam.2008.03.040 |
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Proof. We are going to define a non-decreasing, intersecting submodular function b* on A* and show that the set of
independent sets of its matroid is 5.

For a subset | C A* of edges of digraph D*, let H(j) := {v : visthe head of some edgesinj} and V() = {u :
u is the head or the tail of some edges in j}. Note that V(j) is actually a set-function on the underlying undirected edge-set
and independent of the crientation of the edges. Let

by = m(H()) and bo(f} = mo(V()). (16)
The proof of the following proposition is an easy exercise and is left to the reader.

Proposition 3.4. Both b; and b, are non-decreasing submodular functions on groundset A*. o

Define the set-function »* to be 0 on the empty set and, for @ C J € A%,

b*() := () + bo(N — 1. (17}

By the proposition, 5* is intersecting submodular. Furthermore, if uv € A* is an edge, then (14) implies for the singleton
J = {uv} that B*{) = my(H{)) +-mo (VD) — 1 = my(v) + mo(w) +me(v)—1 = 0. This and the non-negativity of m; and mgy imply
that b* is non-decreasing (and hence non-negative). Let M* := M;» denote the matroid of b* defined in Edmonds' theorem
(Theorem 3.1).

Proposition 3.5. Fis independent in M¥ ifand only if F € F*

Proof. Let F be independent in M*, Let X be a bi-set for which i:(X) > 1and let] = Ir(X) be the subset of F induced by X.

Since H(J) € X; and V() € Xo, we have [J| = #* () = m(H{)) + mo(V()) =1 < my(X;) + mg(Xp) — I, that is, ( 14) holds true.
Conversely, if Fis dependent in M*, then it has a subset for which 7| > b*()). LetX; := H() and X, := V(j). Then every ele-

ment of | is induced by bi-set X = (Xo, X;) and hence ir(X) = UJ| > b*() = mi(H())+mo(V(/))—1 thatis, (14) is violated.  ee

Note that in the special case m; = 0, (15) reads as F*¥ = [F € A : ir(X) < my(Xy) — Iforeverybi-setX =
(Xo, Xp) with i(X) > 1}. Since ir(Xo, Xo) = ir(Xo, X}, it suffices to require the inequality only for bi-sets of type (Xo, Xo)
thatis, ¥ = [F € A* : ir(Xo) < mo(Xo} — I far every subset Xp € V*}. In this case, the orientation of the edges does not play
any role and we are back at the count matroids on undirected graphs. {Also, (14) is equivalent to (10).)

3.2.1. Independence oracle for M*

In order to apply count matroids in algorithms, one must have an independence oracle to decide for any input subset
X whether X is independent or not in M¥, For count matroids on undirected graphs, this can be obtained via MFMC
computations (see the book of Sugihara [24] or papers by Sugihara and Imai [25,19]). Here we describe the cofresponding
oracle for count matroids on digraphs. Instead of using MFMC computations, we rely on an orientation result which is a
slight extension of a theorem Hakimi [ 18] obtained in the special case y = 0.

Lemma 3.6. Let H = (V, F) be an undirected graph, g : V — Z,. an upper-bound function and y = 0 an integer. it is possible to
remove at most y edges from H so that the remaining graph H' has an orientation with in-degree function ¢’ satisfying ¢'(v) < g(v)
for every node v if and only if

gX+yzinl) (18)
holds for every subset X of nodes.

Proof. Necessity. If a subgraph H' = (V, F') with |F — F'{ < y has the required orientation, then0 <= o (X) =3[og(v):ve
X] - i (X) < T W) : v € X] — (iy(X) — ¥) from which { 18) foilows,

Sufficiency. Starting with an arbitrary orientation of H, we graduaily reduce the ‘ervor-sum’ 3 [(o(v) — gt :veVliby
successively reorienting certain paths. Let Z, denote the set of nodes z with o(z) > £'(z) (called bad nodes). If Zy is empty,
then the current orientation of H itself is good. For a non-empty Z, compute the set Z of nodes from which Z, is reachable
along a directed path in the current orientation. Then Zy € Z and no edge enters Z. If there isanode u € Zwith g(u) < g'{u),
then by reorienting any path from u to Z, the error-sum becomes smaller. If no such node u exists, then remaove o(z) — g'(z)
entering edges at every bad node z. In the remaining digraph the in-degree of every node v is at most g’(v). The number of
removed edges is Yo(v) —g'(v) :ve Zol = Lo —g(M) :veZl=o@) +in(@) —g @D =iu(@ —g@) <y. o

Note that the proof of the lemma gives rise to an algorithm of complexity O{|V|IE|>) and since it can be considered as a
variation of the alternating path algorithm for flows, the bound can actually be reduced to o(V?).

We assume | > 0 since only this case is needed for rooted node-connection. (For I < 0, see the remark below.) What
we actually construct is a subroutine which decides for an input independent set F' < A* of M* and for an input element
f = sz € A* — F whether F := F' + f is independent. By repeated applications of this, one can easily decide if an arbitrary
subset is independent or not in M¥.

1 Please cite this article in press as: A. Frank, Rooted k-connections :i_nfdigraphs,.ﬁim‘_e_-'tt Apphedmth&mam:s (2008), doi: 10.1016/j.dam,2008.03.040 J
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For the digraph D, = (V*, F), construct a bipartite undirected graph ¢ = (v, V"; E) as follows. To every node v € V*,
assign a node v € V' and a node v’ € V" which are connected by my(v) parallel edges. The set of these edges is denoted by
Ey. Furthermore, with every directed edge e = uv € F, we associate an edge e; = u'v” of G. The set of these edges is denoted
by E,. Let E .= Ey U E; and V; = V' UV”. We use the convention that the subsets of ¥ and v corresponding to a subset X € v*
will be denoted by X’ and X", respectively.

By (14), there are integers 0 < Ks} < mq(s) and 0 < I{z) < mo(z) + m(z) for which | = I(s) + i(z). For example,
1(z) == minfl, mp(z) + my(2)} and I(s) ;= | — I(z) will do,

Define a function g’ : V¢ — Z, as follows. Let g'(s'} == mo(s) — I(s) and ' (z") == my(2) + my(z) — {z). Forv' € V' — ¢, let
g(V) = mo(v), and for v’ € V"' — 2, let g (v'') 1= mp(v) + my(v).

Lemma 3.7. For the independent set F' € A* of M* and for the edge f = s7 € A* — F. theset F .= F' + szis independent in M* if
and only if G has an orientation in which the in-degree of each node x is at most g’ (x).

Proof. Assume first that the required orientation does not exist. By Lemma 3.6 (when applied for y = 0) there is a subset
X' UY" € Vg of nodes for which ic (X' U Y") > g'(X’ UY"). Let§ C F denote the set of those edges e = uv for which &' € X' and
v’ € Y. Since X' UY” induces mo(XNY) edges from E;, we have [f| + mo(XNY) = ig(X' UY") > (X' UY") =g/ (X) + gy >
[mo(X) — {s)] + [mo(Y) + my(Y) — K2)] = mo(X) + mo(Y) + m,(Y) — I, from which

U| > mg(XU Y)+m;(Y)—L (19)

If, indirectly, F were independent in M*, then we would have |J| < b*()) = m(H()) + mo(V()) — | < mi(Y) + mo(X UY) — 1,
contradicting (19).
To see the converse, assume that F is dependent in M*, that is, there is a bi-set X = (X,, X;) for which

Yl = ip(X) > mo(Xo) + my(X)) — ! (20)

where | denotes the subset of F induced by X.

As F is independent in M*, X must induce f = sz, thatis, s € X, and z € X,. Hence ¢’ X7 = me(X) + miX) — Kz)
and g (X;) = mp(Xo) — I(s) from which g'(X, U X/) = my(X)) + mp(X)) + mo(Xo) — I. The set Xo UX{ © Vg induces (in G)
mo(X;) edges from E,. If, indirectly, the requested orientation does exist, then [J| + mo(X) = X UX) = g UX)) =
m(Xe) + mo(X;) + mo{Xg) — |, that is, [J| < my{X,) + mo{Xs) — |, contradicting (20).

We can conclude that with the help of the orientation lemma the necessary independence oracle for M* is available (and
this does not rely on the matroid partition algorithm).

Remark. In the oracle above, we needed the orientation resuit only in the special case ¥ = 0 which is Hakimi’s original
theorem. The general form has only been included in order to outline an independence oracle for count matroids in case of
| < 0 which is even simpler than the one above for non-negative /. Although this is not required for our present purposes,
for completeness we include it.

Let y .= —I.For asubset F < A*, we consider the same bipartite graph as before. (Now there is no special element of F and no
a priori assumption is made on the independence of any subset of F.) Define a function g’ : V; — Z, as follows. For v ¢ V",
let g'(v') = mg(v), and for v/ € V", let g'(v") := mo (v} + m;{v). Similarly to the proof of Lemma 3.7, it can be shown that F is
independent in M* if and only if ¥ + ic(X’ U ¥") < g/(X’ U Y”) for every subsets X’ C V', ¥” € V”, and this condition can be
checked with the help of the orientation lemma (Lemma 3.6).

4. Rooted k-connections via matroid intersection

Turning to our main goal, we show how a common generalization of the rooted k-edge- and k-node-connection problem
can be formulated as a matroid intersection. Let D = (V, A) be a digraph with a root-node ry. Throughout the section, A*
denotes the set of edges induced by V* := V — rg, that is, D* = (v*, A*) is the digraph D — ro. Let Ay := A — A", that is, A° is the
set of edges with tail ry.

4.1. {k, g)-foliages

Let D = (V, F) be adigraph and g : V* — Z, a function. A set of edge-disjoint rgt-paths is said to be g-bounded if each
node v € V — {ro, t} is used by at most g(v) of these paths. We stress that g-boundedness automatically means that the paths
are edge-disjoint. Let A,(rs, t; D) denote the maximum number of g-bounded rot-paths. Note that for large g (say, g = |F|)
Ag(ro, t; D) is the maximum number of edge-disjoint rot-paths, while for g = 1, A;(ro, ; D) is the maximum number of openly
disjoint ryt-paths,

A directed edge a = uv enters or covers a bi-set X = (X,, X;} if a enters both X, and X;. For a directed graph D = (V, A),
(X} := gp(X) := ga(X) denotes the number of edges entering (covering) X. We will need a bi-set function g defined by

HeX) =) [g(v) 1 v € X — X). (21)

| Please cite this article in press as: A. Frank, Rooted k-connections in digraphs, Diserete-Applied Mathematics (2008}, dot: 10.1016f;.dam.2008.03.040 ]
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Preposition 4.1 (Variation of Menger’s Theorem). In a digraph D = (V, F) there are k g-bounded rot-paths if and only if
0r(X) = k — py (X) (22)
holds for every bi-set X = (Xy, X)) with t € X; C X5 © V*.

Proof. Suppose that there are k g-bounded rot-paths. Among these paths at most 1¢(X) use a node from X, — X,, hence at
least k — 144(X) of them must use an edge entering bi-set X and the necessity of (22) follows.

Conversely, suppose that (22) holds. We may assume that there is no edge entering ro and no edge leaving t. Define a new
digraph ¥ .= (V' U V", F UE UE"), as follows. V' and V" are disjoint copies of V. For each edge uv ¢ F, let «'v" be a member
of F'. For each node v € V — {ro, t} put g(v) parallel edges from v’ to v’ and k parallet edges from v’ to v". The edges from v/ to
Vv form £, the edges from v’ to v* form E”.

By this construction, if I¥ includes k edge-disjoint rjt”"-paths, then these paths correspond to k g-bounded rot-paths in D.
If no such paths exist in D/, then, by the directed edge-version of Menger's theorem, there is a subset X’ of nodes of I¥ so that
op(X) <kandt" e X CV UV =~ LetX;:={veV:v' e X}andletX, = {veV:v € X'}. Due to the edges in E”, v € X’
implies v € X" and hence z € X, € X, C V*. By the construction, we get k > o (X') = gp(X) + pg(X) contradicting (22).

Note that for g = k, (22) is automatically satisfied for bi-sets X with t € X, C Xo € v* and hence {(22) is equivalent to
requiring that g(Y) > k holds for every subset ¥ witht € Y € v*,

The proposition immediately implies the following slight extension. Let D = (V, F) be a digraph with a specified root-
node 1o and terminal set T € V*. Letg : V* — {1,2,...,k) be a function. We say that D is (k, g)-connected from o to T
if

Ag(ro, t; D) = k holds forevery t e T. (23)

In the special case when T = ¥*, we call D rooted (k, g)-connected,

Proposition 4.2. A digraph D = (V, F) is (k, g)-connected from r to T if and only if
0r(X) = k — jag(X) (24)
holds for every bi-set X = (Xo, ) WIth X, NT £ Gand X, S V*. »

Adigraph is catled a (k, g)-foliage (of root ro }if it is rooted (k, g)-connected but deleting any edge destroys this property.

Proposition 4.3. Suppose that D = (V, F) is (k, g)-connected from ry to T but removing any edge of D destroys this property.
Then the in-degree of every node in T is exactly k. In particular, in a (k, g)-foliage the in-degree of every node distinct fromrg is k.

Proof. Suppose indirectly that o(z) > k for some z € T. Choose k g-bounded roz-paths Py, ..., P.. Then there is an edge
e = uz not used by these paths. We claim that there are k g-bounded rot~paths in I’ := D — ¢ for every t € T and this will
contradict the minimality assumption on D. If these paths do not exist for some ¢ € T, then, by Proposition 4.2 there is a
bi-set X violating (24) in I¥. Since X does not violate {24) in D, it follows that e must enter X and hence t € X;. But then the
existence of paths Py, .. ., P, show that X cannot violate (24) in I¥ either, a contradiction. e

4.2. Foliages as matroid intersection

Letc: A — R, be anon-negative cost function andg : v* - {1, 2,..., k} a bounding function {but now no terminal set
T is considered). Since ¢ is non-negative, in order to find a cheapest rooted (k, g)-connected subgraph of D, it suffices to find
acheapest (k, g)-foliage (of root rp). We are going to show that there are two matroids M; and M; on A so that their common
independent sets of cardinality k({v] — 1) are exactly the (k, g)-foliages of D.

Recall the notation V*, A*, Ay, and consider the count matroid M* on A* determined by b*(X) := mq(Xo) +my(X,) —  where
I''=kand, forv € V*, mp(v) == g{v), m;(v} := k — g(v). For brevity, we will refer to M* as the master matroid, An easy
calculation shows that b*(X) := k(|X;| — 1) 4 u,(X), and hence a subset F C A* is independent in M* if and only if

ir(X) < b*(X) (25)

for every bi-set X = (Xp, X)) with @ C X, C X, € V*,

Define a matroid M; on A to be the direct sum of the free matroid on A, (in which, by definition, every subset is
independent) and the master matroid M¥. Let M, denote the partition matroid on groundset A in which a subset | CA
is independent if o, (v} < k for every node v € v* {(and o,(ro) = 0).

Theorem 4.4. A subgraph Dy = (V, B) of digraph D = (V, A) is a (k, g)-foliage if and only if B is a common independent set of
matroids My and M, and {B| = k(n — 1) where n = |V|.

Piease cite this article in press as: A. frank, Rooted k—connectipns in digraphs, Discrete Ap_pl_ied Mathematics {2008), d0i:10.1016/j.dam.2008.03,040 l
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Praof. If Dy is a (k, g)-foliage, then Proposition 4.3 implies that gp(v) = k and gs(rp) = 0. Hence Dg has exactly k(n — 1)
edges and B is a basis in M,. For any bi-set X = (Xp, X)) with @ C X € X, € V*, one has 28(X) + 1g(X) > k and hence
ig(X) = 3l@a(v} : v € Xi} — 0a(X) < k|X;| + pg(X} — k = b¥(X) and thus B is independent in M,.

Conversely, suppose that a k(n — 1)-element subset B € A of edges is independent in both M, and M,. Then os(v) = kfor
every v € V* and gz(ro) = 0. Furthermore, for a bi-set X = (X, X,) with@ < X; © X, C V*, one has 18(X) = k(X — 1)+ py(X).
Therefore g4 (X) + 1, (X) = Tles(v) : v € X] — is(X) + Mg(X) = kIX;| — ig(X) + 1£4(X) = kIX| — k(|X;| — 1) = k and hence
Proposition 4.2 implies that Dy = (V, B) is a (k, g)-foliage.

This matroid approach enables us to handle a variation of the rooted (k, g)-connection problem in which the goal is to
find a cheapest rooted (k, g)-connected subgraph obeying a specified upper bound B imposed on the out-degree of root ry.
To this end it suffices again to restrict ourselves to consider (k, 2)-foliages and the only change in Theorem 4.4 is that matroid
My should be replaced by the direct sum of the master matroid M* and the uniform matroid on Aq in which the subsets of
cardinality at most 8 are the independent sets.

More generally, one can deploy a matroid M, on the edge-set A and a matreid M, of rank k on the set of edges entering
v for each node v € v*. Call a (k, g)-foliage matroid-restricted if its subset of edges leaving rp is independent in M, and its
subset of edges entering v is independent in M, for each v € v*,

Let M be the direct sum of M* and M, and let M; be the direct sum of the n — 1 matroids M, (v e V*).

Theorem 4.5. A subgraph Dy = (V, B) of digraph D = (V, A) is a matroid-restricted (k, g)-foliage if and only if B is @ common
independent set of matroids M; and M, and |B] = k(n — 1) where n = |V|.

Proof. Suppose first that Dy = (V, B) is a matroid-restricted (k, g)-foliage. Since by Thecrem 4.4 the edge-set of any (k, g)-
foliage is independent in M* it follows from the definitions that B is independent in both Mj and M;. The reverse implication
follows similarly from Theorem 4.4. «

Edmonds’ matroid intersection theorem, combined with the rank-formula (9), provides a necessary and sufficient
condition for the existence of a matroid-restricted (k, g)-foliage. We formulate this only for the very special case when
the only restriction is imposed on the out-degree of r,.

Theorem 4.6. In a digraph D = (V, A), there exists a rooted (k, g)-foliage in which the out-degree of root rp is at most § if and
ondy if 3k — (Qp (X:) + po (X))} = B for every set of non-void bi-sets Xy, ..., X, whose outer members are subsets of V* and
inner members are pairwise disjoint, where D* = D — ro. In particular, in a digraph there is a rooted k-edge-connected subgraph
in which the out-degree of the root is at most £ if and only if Y[k — 00+ (X)] < 8 hoids for every set of pairwise disjoint subsets
Xof V. e

Note that if upper-bound restrictions are given on the out-degree of nodes v € V* rather than on the in-degrees, then
the problem becomes NP-complete even in the special case k = 1, g = 1 since the restricted (k, g)-foliages in this case are
exactly the Hamiltonian paths of initial node rg.

5. Covering supermodular bi-set functions by digraphs

It this section we show how Theorems 2.3 and 2.4 concerning supermodular set-functions can be extended to those on
supermodular bi-set functions.

Let # = £,(V) denote the set of all bi-sets of V. The intersection N and the union U of bi-sets is defined in a
straightforward manner: for X,y € P let XNY = X NY, XN Y), XUY = (Xo U Yo, X, U Y;). We write X C Y if
Xo € Yo, X € Y. This determines a partial order on #,. Accordingly, whenX C YorY C X, wecall Xand ¥ comparable, A
family of pairwise comparable bi-sets is called a chain, Two bi-sets are intersecting if X, N'Y; # @ and properly intersecting
if, in addition, they are not comparable, A family of bi-sets is called laminar if it has no two properly intersecting members,
A family ¥ of bi-sets is intersecting if both the union and the intersection of any two intersecting members of ¥ belong to
F. Alaminar family is obviously intersecting.

For a bi-set function p, a digraph D = (V, A) is said to cover p if gp(X) = p(X) for every X e P, (V). Foravectorz: A — R,
let o,(X) == ¥[2(u) : a € A, a covers X]. A vector z : A — R covers pif o,(X) > p(X) for every X € P5(V).

A non-negative bi-set function p is said to satisfy the supermodular inequality on X, Y € 2, if

pX) +p(Y) < p(XNY) +p(XUY). (26)

If the reverse inequality holds, we speak of the submodular inequality. p is said to be fully supermodular or supermodular
if it satisfies the supermodular inequality for every pair of bi-sets X, Y. If (26) holds for intersecting pairs, we speak of
intersecting supermodular functions. Analogous notions can be introduced for submodular functions. Sometimes (26)
is required for those intersecting pairs for which p(X) > 0and p(Y) > 0. 1n this case p is called positively intersecting
supermodular.

Proposition 5.1. The in-degree function g, on #; is submodular. e

Please cite this article in press as: A. Frank, Rooted k-connections i digraphs, Discrete Applied Mathematics (2008}, doi:10.1016/jdam. 2008.03.040
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5.1. Total dual integrality

Proposition 5.2. Let ¥ be a laminar family of bi-sets and D = (V, A) a digraph. Let M be a 0-1 matrix the rows and columns of
which correspond to the members of ¥ and to the edges of D, respectively. An entry of M correspondingtoX € ¥ ande € Ais 1if
e enters X and zero otherwise. Then M is totally unimodular.

Proof. Since a subfamily of a laminar family is also laminar, by a characterization of Ghouila-Houri [17], it suffices to prove
that there is a uniform 2-colouration of the rows of M, that is, a function h : ¥ — {—1, +1} sothat | Z[h(X) : eenters X]| < 1
for each edge e of D. (In words, each edge e enters near the same number of 1-coloured and of {—1)-coloured members of ¥
where near the same means that the two numbers may differ by at most one.)

We may assume that the members of # are distinct. Indeed, if a bi-set X occurs in at least two copies then, in order to
get a uniform 2-colouration of #, remove first two copies of X, get then inductively a uniform 2-colouration of the rest and
finally colour the two removed copies of X differently.

Turning to the case when the members of F are distinct, define first R(X) to be 1 for each maximal member X of %. In
a general step take a maximal uncoloured member X of ¥, By the laminarity, there is a unique smatlest coloured member
Y for which X C Y. Define k(X) := —h(Y). By the laminarity, the members of ¥ entered by an edge e form a chain in which
two consecutive members X C Y have the property that Y is the unique smallest member of ¥ that is larger than X. Hence
h(X) = —h(¥) and therefore the 2-colouration h is indeed uniform. o

Remark. The matrix M in the theorem can be rather easily shown to be a network matrix. To see this, consider the laminar
family of sets consisting of the inner sets of bi-sets in . It is well known [7] that a laminar family £ of subsets of ¥ can
be represented by an arborescence T = (U, F} in the sense that there is a mapping ¢ : V — U and thete is a one-to-one
correspondence between £ and F so that each member X of F is ¢~ (U(f)) where [fx denotes the edge of T corresponding to
X and U(fx) denotes the subset of nodes of T reachabie in T from the head of fy. Using this representation, one can show that
the edges of the arborescence corresponding to the inner sets of those members of  that are entered by e form a directed
pathin T and hence M is indeed a network matrix.

The following result is a direct extension of Thearem 2.3 to bi-set functions. Its proof is a rather standard application of
the well-known uncrossing technique.

Theorem 5.3. Let D = (V,A) be a digraph. Letp : P, — Zbea positively intersecting supermodular bi-set function and
& : A = Z, U {oo} a non-negative upper bound on the edges of D that covers p. The linear system

{0 < x = g4 and g,(2) = p(Z) for every bi-set Z € Py} (27)
described for x e R" is totally dual integral. In particular, the linear programming problem

min{cx : x satisfies (27)} (28)
has an integer-valued optimum solution and so has its linear programming dual provided c is integer-valued,

Proof. Letc: A — Z be integer-valued so that the primal optimum is bounded (which, in the present case, is equivalent to
requiring that g, (e) is finite whenever c(e} < 0). Let @ denote a 0-1 matrix in which the rows and the colums correspond
to the non-trivial members of % and to the edges of D, respectively. An entry of ¢ corresponding to a bi-set X and edge e
is 1if e covers X and zero otherwise. In what follows, we also denote by p the | P;|-dimensional vector whose component
corresponding to the member X € P; has value p(X).

Then the primal linear programming problem is min{cx : 0 < x < g, Qx > p}, while its dual is:

max{yp — g4 yQ¢ —2<c,y> 0,z> 0}, (29)

where z(e) denotes the dual variable corresponding to the primal inequality x(e) < 2a(e) (ga(e) is finite),

For a given y, the optimal z is uniquely determined: z(e) = (yg. — c(e))+, where ¢, denotes the column of Q corresponding
to edge e. Therefore we can say that a certain y is an optimal solution to {29).

What we have to prove is that the optimum to (29) is attained at an integer vector. Let y, be an optimal rational solution.
As long as there exist two properly intersecting bi-sets X = (X, Xz} and Y = (Y, Ys) with positive yo(X) and yo(Y), revise yg
as follows. Define o := min{yo(X), yo(Y)}, decrease by o both yg (X) and yo{Y), and increase by e both yo (X N Y) and ya (X UY).

Due to the submodularity of bi-set function g on %, the resulting dual vector continues to be feasible. Moreover it is also
dual optimal since p is assumed to be positively intersecting supermodaular. Let us call such a change in the dual solution an
uncrossing step.

Define a linear ordering of the partially ordered set (#;, C) obtained in such a way that if the first j — 1 elements of the
ordering have already been determined then the subsequent jth element is selected to be minimal among the members of
% not yet selected. [n this ordering, for arbitrary X, Y € #, X N Y precedes both X and Y while X U Y follows both of them.
Therefore the following lemma implies that the number of uncrossing steps cannot be infinite.
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Lemma 54. Letr,, ..., r, be asequence of non-negative rational numbers. As long as possible, apply the following 4-change step.
Select four distinct members for which the two middle ones are positive. Let « denote the minimum of the two middle elements.
Decrease by « the value of the two middle elements and increase by o the value of the first and fourth ones. Then after a finite
number of 4-change steps the procedure terminates.

Proof. By multiplying through with the least common denominator, if necessary, we may assume that the sequence consists
of integers. Since the first member never decreases, each member remains non-negative and the total sum stays constant,
after a finite number of 4-change steps the first member gets fixed and the lemma follows by inductiononn.

We may therefore assume that the set .7 of bi-sets for which the yo-value is positive is laminar. By Proposition 5.2 the
submatrix of Q deterrnined by the rows corresponding to the members of #¢ is totally unimodular, Therefore the optimal
dual solution yo may be chosen integer-valued, as required. oo

5.2, Relation to submodular flows

In order to have an algorithm for the optimization problem given in Thecrem 5.3, we are going to prove that the
linear system (27) actually describes a submodular flow polyhedron. Since there are efficient combinatorial algerithms for
submodular flows (for rich overviews, see [16,23]) this way we will have one for finding optimal coverings of intersecting
supermodular bi-set functions, We remark that, for the special case when p is identically 1 on a given intersecting family of
bi-sets and zero otherwise, Theorem 5.3 was algorithmically proved in [14] with the help of a two-phase greedy algorithm.

LetD = (V,A)bea digraph, ¥ an intersecting family of subsets of Vb F > Zan | intersecting submodular function. Let
f cA—> ZU{~oo}and: A — Z U {00} be twa functions with f < §. Afunctionk : A > Ris called a submodular flow or
for short a subflow if

0:(2) - 8;(2) = b(Z) foreveryZe ¥ (30)
and

f=izg
The set of subflows is called a submodular flow (subflow) polyhedron. This notion was originally introduced by Edmonds and
Giles [7] for the more general case of crossing submodaular functions: here we need only intersecting submodular functions.

It is known and easy to show anyway that, for an intersecting supermodular function p on ¥, the polyhedron defined by the
linear system

f <% <gand g(2) - &(2) = p(2) forevery Z e F} 31)

is also a subflow polyhedron, In this sense one could speak of supermodular flows as well but we stay at the conventional
term of submodular flow even if the polyhedron is defined by a supermodular function. The subflow polyhedron is called
one-way if the in-degree or the out-degree of every member of ¥ is zero.

Theorem 5.5. Let D = (V, A) be adigraph. Letp : P — Zbe anintersecting supermodular bi-set functionand g, - A — Z,U{co}
a non-negative upper bound covering p. The polyhedron P defined by

{xeR*:0 < x < g, and g,(2) = p(2Z) for every bi-set Z € 3} (32)
is a one-way submodular flow polyhedron.

Proof. It follows from the definition that the intersection of a submodular flow polyhedron with a box is also a submedutar
flow polyhedron so it suffices to prove the theorem for the special case when g, =

Construct a digraph D = (U, A) from D as follows. For each edge e = uv of D, subdw1de e by a new node u, and delete uu,,
one of the two newly arising edges. The remaining edge u.v wifl be denoted by & Here U = V U ¥, where ¥/, denotes the set
of subdividing nodes. For any subset F C A, the corresponding subset of edges and subset of nodes of £ will be denoted by F
and ¥, respectively.

Define a family ¥ of subsets of U and a function f on ¥ as follows. For each non-void bi-set X € F2(V} with finite p(X)
and for each subset F € Ip(X), let X; U V+ be a member of & and let p(X; U ¥;) == p(X).

Claim 5.6. ¥ is an intersecting family of sets and i is intersecting supermodular.

Proof. Suppose for bi-sets X, X’ and edge-sets F C Ip(X), F' C Ip(X") thatY :=X U Vrandy = XU V- are intersecting sets,
Then X and X’ are also intersecting. It easily follows from the definition that i (X) N Ip(X") C (X NX"} and (X} U Ip(X") €
Ip(X U X’y and hence both ¥ and ¥’ are in ¥. Furthermore, we have §(Y) + p(Y") = p(X) + p(X") < pX N X} +pXUX) =
BUX N XY U Vieney) + DO U XD U V) = YN Y) + BY U Y'), asrequired. o

By the construction, no edge of D leaves any member of ¥ and hence P=fie R : 2 >0, p:(Z) = p(Z) forevery Z € ¥}
is a one-way subflow polyhedron. Since the edges of D and D correspond to each other, we may speak of the potyhedron P/
in R* corresponding to &.
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Claim57. P=P.

Proof. Let x € P, that is, ¥ € P. For a non-void bi-set X with finite p(X) and for F := I5(X) we have g,(X) = ox(X; UV;) >
P(X; U Ve) = p(X) and hence x P, from which P € P.

Conversely, fet x € P. For a non-void bi-set X with finite p(X) and for F C Ip(X) we have g; (X U Vp) = 0.(X) > p(X) =
PG U V) and hence ® € P, from whichPC P,

By the two claims, the proof of the theorem is complete.  ee

Theorem 5.3 has a certain self-refining nature. Given a subset T € V, we say that a bi-set function p is (positively) T-
intersecting supermodular if the supermodular inequality holds for bi-sets X and Y whenever XNY,NT # @and p(X) > 0,
p(Y) > 0).

Proposition 5.8. For bi-set function p,, define a bi-set function p on bi-sets Z = (2, Z) by

p(@): (33)

_ max{;(Z, ZUK) K S Zo—T) fZCT
1o otherwise.

If p1 is (positively) T-intersecting supermodular, then so is p.

Proof. Let X and Y be two intersecting bi-sets {for which p(¢) > 0, p(Y) > 0 in case p, is positively T-intersecting
supermodular). There are subsets K € X, — T, L € ¥p — T for which p(X} = p;(X') and p(¥) = p1{Y") where X' = (X, X, UK)
and Y = (¥,, Y,UL). Since (X, UK)N(Y,UL} # B, KNLC (XoNYy)—TandkKUL C (XoUYp) —T, therefore p; (X’ N Y} < p(XNY)
and p (X'UY') < p(XUY).Hence p(X)+p(Y) = p1(X)+p1(¥) < p1 (X MY ) +p 0/ UY) < pXNY)+p(XUY), asrequired. o

Theorem 5.9, Let D = (V. A) be adigraphand g, : A — Z, U {oo} an integer-valued function. Let T < V be a subset of nodes
containing the head of every edge of D. Let p; be a positively T-intersecting supermodular bi-set function covered by g,. Then the
linear system

{0 < x < g and 0,(X) = p1(X) for every bi-set X} (34)
described for x € R* is totally dual integral, The polyhedron defined by (34) is a submodular flow polyhedron.

Proof. By Proposition 5.8 the bi-set function p defined in (33) is positively intersecting supermodular. Since every edge has
its head in T, a vector x : A — R covers p, if and only if x covers p. Furthermore, a dual solution y to {32) determines a duat
solution y; to (34} as foliows. For X = (X, X;) with X; € T let ¥ be the bi-set for which Y, = X0, X; Y, and p(X) = py(Y).
Define y; (Y) := y(X) if Y arises this way and y,(Y) := 0 otherwise. Then y, is a dual feasible solution to (34) having the same
value as y does. Therefore Theorem 5.3 implies that the system (34)isalso TDI. »

5.3. Polyhedral descriptions of rooted (k, g)-connected subgraphs

letk > 1beanintegerandg : V -» {1,..., k} a function. As an application, we exhibit how the problem of cheapest
subgraphs which are (k, g)-connected from ry to a terminal set T can be handled polyhedrally and algorithmically provided
each edge of positive cost has its head in T.

Theorem 5.10. Let H = (V, Fy U A} be a digraph with a specified root-node ro and terminal set T C V — 1o so that the head of
each edge in A is in T. Suppose that H is (k, g)-connected from ro to T. The convex hull of incidence vectors of the edge-sets F C A
for which the subgraph (v, Fo UF) is (k, g)-connected from ry to T is equal to the polyhedron

{xeR": 0 <x < 1and g.(Z) > p1(2) for every bi-set Z) {35)
where py is defined for each bi-set Z = (Zy, Z)) by

k— Iy —pe(Z) FZNT#BandZy CV —r
Furthermore, the linear systern in (35) is TDI and determines a submodular flow polyhedron.

Proof. Observe that the function p; defined in the theorem is intersecting supermodular and hence Theorem 5.9 can be
appliedtoD = (V,A),pj.andgs=1. e

Let us formulate Theorem 5.10 in the special case when g = k.

Corollary 5.11. Let D = (V, Fo U A) be a digraph with a specified root-node ry and terminal set T C V — rq so that the head of
each edge in A is in T. Suppose that D is k-edge-connected from ro to T. The convex hull of incidence vectors of the edge-sets FC A
for which the subgraph (V, Fo U F) is k-edge-connected from ro to T is equal to the polyhedron

xeR':0<x<land gX) 2 k~gg(X) foreachX CV—rywithXNT # @), (37)
(]

Furthermore, the linear system in (37) is TDI and determines a submodular flow polyhedron.

[ Please cite this article in press as: A, Frank, Rooted k-connections in digraphs, Discrete Applied Mathematics (2008), dei: 10.1016/j.dam.2008.03.040 l




A. Frank / Discrete Applied Mathematics I (NNER} BS-EIN 13
Let us formulate Theorem 5.10 in the special case when T = V — rpand Fy = 4.

Corollary 5.12. Let D = (V, A) be a rooted (k, g)-connected digraph with respect to a root-node ry. The convex hull of incidence
vectors of the edge-sets F C A for which the subgraph (V, F) is rooted (k, g)-connected is equal to the polyhedron

xeR:0<x<1land g (2) = k- Hg(Z) foreachbi-set Zwith# < 2, S 2, CV — rg}. (38)
Furthermore, the linear system in (38) is TDI and describes a submodular fiow polyhedron.

6. Conclusion

[n this paper we considered the rooted (k, g)-connection problem which is a common generalization of those of finding a
cheapest rooted k-edge-connected and k-node-connected subgraph of a digraph. By extending a known result on rooted k-
edge-connectivity, we proved that the general version is also a matroid intersection problem and hence a weighted matroid
intersection algerithm may be applied. We also showed that the independence oracle required for the matroids in question
can be constructed through an easy graph orientation result. This matroid approach supersedes the only solution to the
rooted k-node-connection problem known earlier, which invoked the more complex model of submodular flows.

Moreover, we exhibited TDI descriptions for further generalizations of the rooted (k, g)-connection problem for which the
algorithmic solution did invoke submodular flows. For example, the problem of finding a cheapest subgraph of a digraph in
which there are k g-bounded paths from a root-node to each element of a terminal set T could be handled this way provided
that each edge of positive cost has its head in T. Without this latter restriction, even the special case k = 1 involves the
NP-complete problem of directed Steiner trees,

The key idea behind our approach was that earlier results on supermodular set-functions could be extended to those on
supermodular bi-set functions.

Finally, we remark that the same technique can be used to solve the following extended form of the optimization problem
over (k, g)-foliages. Suppose that, in addition to the function g on the node set V, we are also given a function g, on the edge-
setAofD.Callaflowz : A — Zfrom ry to a node t node-feasible if @:(v) < g(v) for each node v € V ~ {ry, t}. The generalized
problem consists of finding a cheapest vectorx : A — Z so that x < g, and there is a node-feasible flow ¥ < x of amount k
from rg to ¢ for every node ¢ of V. Naturally, in this case one must rely on the intersection of two polymatroids rather than
just matroids.
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