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Two matroids M, = (8, §,) and M, = (S, %,), and a weight function s on
S (possibly negative or nonintegral) are given. For every nonnegative integer
k, find a k-element common independent set of maximum weight (if it
exists).

This problem was solved by J. Edmonds [3, 4] both theoretically and
algorithmically. Since then the question has been investigated by a number
of different authors; see, for example, [1, 6-10]). The purpose of this note is
to make a simpler primal-dual algorithm and thereby give a clearer
constructive proof for Edmonds’ matroid polyhedral intersection theorem.

The idea behind the procedure is that the meaning of the dual part in
Lawler’s primal-dual algorithm can be made much simpler. We shall not
need the dual variables assigned to the closed sets of the two matroids.
Instead, we are working by splitting the weights of the ¢lements. At the end
of the algorithm the optimal dual variables can simply be computed from
the final splitting.

The reader is assumed to be familiar with such basic concepts of matroid
theory as “independent set,” “circuit,” “greedy algorithm,” etc. [9, 11].

The weight of a subset X of S is s( X) = Z(s(x):x € X). If Fis a family of
subsets of $ we say that F € Fis s-maximal in Fif s(F) = s(X) for X € ¥.

Before describing the algorithm we need some simple lemmas. The main
content of the Greedy Algorithm theorem [2] is:

LEMMA 1. For a given matroid M = (S, 9), let §* = {X: X € §,| X| = k}.
I € §* is s-maximal in 3% if and only if

M xeI I+ xe&%imply s(x) s s(y), for every y € C({, x) and
(2) x &I, I+ x €% imply s(x) =s(y), for every y € I,

*This note was written while the author was visiting the University of Waterloo, January—
April, 1980.
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where C(1, x) denotes the unigue circuitin I + x. O

LEMMA 2. Let B be s-maximal in §*. Let x,, x,,..., x;and y|, y3,..., };
be distinct elements,y, € B, x; € B(i = 1,2,...,1) such that

(3) B+ x;,¢&%andy € C(B, x,),
@ s(x,) = s(),
(5) s(y,) = s(y;) and i < j imply y, & C(B, x;).
Then B' =B — { ¥y, V3s---> ¥} U {x)5 X3, ..., x;} is also s-maximal in 3*.

Proof. Since s(B’) = s(B)} and | B’ |= k we have to prove the indepen-
dence of B’. By induction on /. The case / = 1 is trivial so let / > 1, Let y, be
that element which minimizes (s( y;), j) lexicographically. Then i # j implies
Y; € C(B, x;); the contrary case would imply s(y;) = s(y;) by (1) and (4),
and so s(y;) = s(y;) because of the choice of y, whence i > by (5),
contradicting the inequality (s(y;), i) < (s(;), /)

Now the induction hypothesis holds for B, = B — y, + x, and
X1y Xgueens Xpts Xiqseens Xps Yoo Yaseoos Yie1s Yia1s+-+» ¥ from which the
lemma follows. [J

Denote $f, = 9F N &f.

LEMMA 3. Let I € 3 and s,,s, be functions on S with the property that
s, +s, = s and I is s;-maximal in $% (i = 1,2). Then I is s-maximal in 95

Proof. Tnvial. O

For each possible k, the algorithm constructs I,s;,s, satisfying the
hypotheses of Lemma 3. .

The procedure starts with k = 0. Then k is increased one by one. An
essential property of the algorithm is that, in every stage, the current € §};
is s-maximal in 95.

Suppose we have I € %55, s, which satisfy the hypotheses of Lemma 3
and which have been constructed by the algorithm previously. From these
we shall make I’ € §f;"', 5, 8, satisfying again the hypotheses of Lemma 3.
At the beginning s =0, f = &,s, =0,s, =s.

Let m; = max(s(y):y € L,I+y € %) (i=12).

Let X, = {(xxx@LI+xe€ %, s(x)=m)(i=12).
Define an auxiliary digraph G on § as follows:
LIfx@LI+x&9,y€C,x),s/(x)=s,(y)thenlet (xy)bean
edge.
ILIfx@&LI+x&9, y€ G, x),s,(x) = s,(y) then let (yx) be
an edge.
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By the well-known labeling technique [9], decide whether there exists a path
from the set X, to X,.

Case 1. If the path in question exists let U be a path of minimum
number of vertices. (I is considered as a vertex set, and we shall need only
that U/ is minimal.)

Let I' =1I® U, where € denotes the symmetric difference, and let
s, =s,(=12).

CLamv 1. I',s!, s, satisfy the conditions of Lemma 3 for k + 1.

Proof. Let us denote the vertices of U by xg, ¥, X1, Yoy Xaye0 00 Vo X4
(xo € X,. x; € X,). By Lemma 1, B = I + x, is s,-optimal in ¢} *'.

Observe that the hypotheses of Lemma 2 hold for £+ 1 and for B €

§E* x4, X350y X5 Yis Yoy -+, ¥ (Properties (3) and (4) are true because

of the definition of G, (5) follows from the minimality of U} Thus I’ is

s,-optimal in $f*!. That I’ is s,-optimal in 9" can similarly be proved
2 3 1

with the difference that one should rename the vertices of U just in reverse
order (i.e., its last vertex will be x, while the first one x;). [

Coam 2. s(I)—s(I)=m, + m,.
Proof. Obvious. [

Case 2. 1f there is no path let 7T consist of vertices having reached from
X;. Let

s)(x) =s,(x)+ 8 ifxeT
=$,(x) ifxegT

and s%(x) = 8(x) — si(x). § = min(8§,, §,, 8, §,), where

8, =min(s,(y) ~s,(x): I+xg§,xeT—-I1,yeC(l,x)—-T),

8, = min(m, — s,(x): I+xe$,xeT~1I),

8, =min(s,(y) —s,(x): I+x&%,xES—(TUI),
ye(nnT),

8, = min(m, — s,(x): I+x€5,xeS—(TUI)).

(The minimum is defined to be co when it is taken over the empty set.)
CiamM 3. &6>0.

‘We prove that 8, and 8, > 0. That §,, §; > 0 can be proved similarly. If
¥ € C(1I, x) — T then s,(y) = 3,(x) by Lemma 1. But s;{ y) = s,(x} would
mean that (xy) is an edge in G leaving T, which is impossible. So §, > 0. If
x € § — (T UI)then x & X;; thus the definition of m, implies §, > 0. O
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CLamM 4. I' = I, §| and s, satisfy the conditions of Lemma 3.

Proof. We prove only that I’ = I is s}-optimal in §}. The s}-optimality
can be proved similarly. By Lemma 1, we have to prove that (1) and (2) hold
for s}.

Choose elements x, y so that y € C (I, x). If, indirectly, si(y} < sj(x)
then, because of s,(y) = s,(x), s{(x) = s;(x)+ & and s\(y) = sy} are
implied. But 6 < 8, < s,(y) — s,(x), that is, s}(x) = s{(y), a contradiction.
Thus (1) holds.

Choose elements x, ysothat y €, x € Tand I+ x € 9,. If, indirectly,
si(¥) < s{(x) then, because of s,(y) = s,(x), we have s|(y) = s|(y) and
si(x) =s(x)+ 8 But m =<s(y) and 8§ <8, =m ~ s(x), from
which sj(x) < s}(y), a contradiction. Thus (2) holds. O

Now again apply the algorithm starting with I, s], s5. Observe that the
new T” (if Case 2 occurs again) properly includes T furthermore X D X;
(i = 1,2). Consequently, after no more than { S| applications of this loop of
the algorithm, either Case 1 is attained or & becomes <. The latter case
means that the current I is of maximum cardinality since k =|T}|=r/(T) +
r,(S — T). (Obviously, | I'|=r(T") + 1,(S — T") for any common inde-
pendent set I’ and T" C §.)

COMPLEXITY OF THE ALGORITHM

The matroids are defined by the help of an oracle, which decides, in at
most g steps, for an independent set I and an element x € I, whether I + x
is independent or not and in the latter case, determines the fundamental
circuit C(Z, x).

The addition, subtraction, and comparison of two real numbers are
considered as one step each.

Let |$]=n and K denote the maximum cardinality of a common
independent set (yet to be determined).

The labeling technique requires at most n> steps to find a path or the
subset 7. However, if Case 2 occurs the current labels can be used again,
because 7" D T, X| D X,, X; 2 X,. Consequently, if Case 1 has occurred
at any time, after no more than g-n? steps, Case 1 will have occurred again.
Therefore the complexity of the algorithm can be bounded by O(g-K-n?)
= O(gn’).

Remark. 1f the algorithm starts with s, =0 then m; =0, and §, = ©
throughout the process. We have not exploited this simplification, in order
to keep the symmetry between M| and M, and to provide the possibility of
starting with any I, s, s, satisfying the conditions of Lemma 3.



332 ANDRAS FRANK

WEIGHTED INTERSECTION ALGORITHM

Input: Matroids M, M, on §. Weight function s on §.
Qutput: Maximum cardinality K of a common independent set and
T C S, for whichr(T) + r,(S — T) =K and
I; a k-element common independent set of maximum weight
(0 < k=<K)and
s* and s%: for which s* + s% = s and [ is s¥-maximal in 4}
(i=1,2).

Step 1
10. 5, =0,5, =5, k=0,1, = &
1.1. Make the auxiliary graph. Determine X, and X,.

1.2. Find a path U from X, t0 X, by the labeling technique, using the
labels having defined but not deleted previously. If it exists, go to step 3.

Step 2

2.0. Let T denote the set of vertices having labels.

2.1. Count 8. If § = oo, Let K =k, the current [, has maximum
cardinality and K = r(T) + r,(§ — T). HALT.

2.2. Let s;(x) = s;(x) + 8,5,(x) = s,(x) — & whenever x € T.

2.3. Goto 1.1,

Step 3

3.0. Let I, . :=I,® U. Let k:= k + 1. I, is optimal in $};, record
it.
3.1. Delete all the labels.

32. ski=s, s5:= 5,

33. Goto 1.1

Now we show some consequences of the algorithm. Since neither m, nor
m, increases during the algorithm Claim 2 implies a result of Krogdahl
[7, 91

COROLLARY. §;, = 84 =8 — Sz, where s; denotes the weight of an
s-maximal member of %{,.

-We have proved the following.

THEOREM. [ € 3}, is s-maximal if and only if there exist two weightings s,
and s, such that s, +s, =s and I is s,-maximal in 8% (i=1,2). If, in
addition, s is integer valued then s, can be chosen to be integer valued.
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The main consequence of the algorithm is a min-max theorem on the
maximum weight s, of a k-element common independent set. The most
convenient way to formulate it is to describe it as a linear program.

Let A, denote a 0-1 matrix, the columns of which correspond to the
¢lements of § while the rows correspond to the closed subsets of M, Let e
denote a row vector consisting of | S| 1’s. The following result is a version of
Edmonds’ matroid polyhedral intersection theorem [3].

THEOREM. Consider the dual pair of linear programs:

(*) A r 4,
1 1
ﬁ;PNH—NM —.M_ A%_uu@_&v .\AN =8 Ai *v
e
ex — k Yo =0
x=0
max sx min By, (2)r,(z) + 2y, (2 (2) + ¢k

If the primal program (») has a feasible solution it has an integral optimal
solution. Moreover, if s is integral the dual program has an integral optimal
solution.

Proof. ‘The primal optimal solution is defined as the incidence vector of
I,, where I, is the optimum element of 5, constructed by the algorithm.
The dual optimal solution can be obtained from s, and s,

Let I, = {e}, e5,....€;} = {fi, fas.-+, [} 50 that

si(e) Zsi(e;) =---=s,(e,) and  s,(f)) =s,(f) == 5,( /).

o
W
a
[=4]
B
m

d
M, My

Example for weighted matroid intersection algorithm.
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)
k=0,1=¢ 0
abcde X, my =0
s, |ofojololo m, = 10
2 |3]5]efw]e ¢ x
2
@4 D
_ooua 1.
m, =0 k=1 10
mp =8 | 8 [[3[5 ]2 I,= (d)
colools [3(7)
9 bc da Xy m, =0
s,|ololo]3 |3 m, =5
s,|3|5(8|7|5
| Casa 1
X, my =0 k=2 15
by, () m, =5 | pJeJo, [ ] Ly (b,e}
1
o ZEh00
obc d m, =0
s, |o[o|o]e ki AR
s, [3]s[6]e Poteo] 2 [eoli2)
a b c d m, =0
n|o|2|e]s m, 22
5, |13]3|4]4
Case 1.
k=3
Iz (a,cet | 17

Let E;, = sp,(e;, e,5,...,¢;) and F; = sp,( f}, fz.-.., f). Define
Yi(E) =s(e) —si(e1),
Y2 F) =s,(f) —s:(fi+1) fori=12,...,k— 1
Let t =s,(e,) + s5( /). Using (1) and (2), a simple counting shows that
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(y,,¥2, t) is a feasible solution to (* *). The value of the objective function
on (y, Y, 1) is

1(s,(e,) — sy(€;)) + 2(sy(e;) — sy(e3)) + - - -
+(k — I)si(e—y) — si(e)) T 15 f1) — s:( )
+MAmemW —s; (ANt - +:ﬁ_wl NS fym) —S2(EL )+ k-t

2 sie) —ksi(e) + X sy(f) —hsy(f) + k-t

i=1 i=1

k
= 2 s(e) = s(L,).

i=1

This proves the optimality of the primal and dual solutions. Moreover, if
s is integer then so are s, and s, and thus y,, y,, as well. {J

Another consequence of the algorithm deserving mention is:

COROLLARY. For every k=0, if $55"' # @, there exists .an optimal

solution to ( » ») which, at the same time, is an optimal solution to (* ») for
k + 1 instead of k.

{This is the so called -phenomenon; see [5].)

Proof. Consider that stage of the algorithm when I, , is arising. The
vector (¥,,¥,, ) belonging to the current s, s, satisfies the requirements.
The original version of Edmonds’ theorem can similarly be obtained:

THREOREM. [3]. Consider the dual pair of linear programs

A (" A, -
>M N!A—.&vv AQ:%NV >M =8
x=0, Y =0
max sx min Zy,(z)ry(z) + Zy,(z)ry(2)

The primal program has an integral optimal solution. If s is integer valued
the dual program has an integral optimal solution.

Proof. For simplicity suppose that none of the matroids contains loops.
Let us slightly modify the algorithm. Suppose that the algorithm starts with
s, =0,s, = s, in which case m; = 0 and 8, = oo throughout the algorithm,
Furthermore when Case 2 occurs set § = min(8,, §;, 8,, m,). If s =0 the
zero vectors appropriately dimensioned satisfy the requirements. If s £ 0,
m, is strictly positive when the algorithm is starting. Obviously the algo-
rithm works in the same way as before until the value of § takes the current
m,. (This case will certainly occur.) Now performing the changes in s, and
$, m, becomes 0 (first time during the algorithm). Let I, ,s;,s; denote the
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corresponding common independent set and weightings belonging to this
stage. Now we have m; = m,; = 0 and s(¢,) = 0,s,(f, ) = 0. (Of course
en,-..,e and fy,..., f, may change when s,,s, are changed.) Let y,(E,)
and y,(F) be defined as before but now fori = 1,2,..., k. Theny, =0,y,
= (0 and, as can be simply checked, the incidence vector x of I, and y,, y, are
optimal solutions to the primal and dual programs. Moreover, if s is integer
valued then so are y; and y,.

1.
2.
3.
4.
5.
6.

7.

8.
9.

10.

1L
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