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Balanced list edge-colourings of bipartite graphs

Tamás Fleiner? and András Frank??

Abstract

Galvin solved the Dinitz conjecture by proving that bipartite graphs are ∆-
edge-choosable. We improve Galvin’s method and deduce from any colouring
of the edges of bipartite graph G some further list edge-colouring properties of
G. In particular, for bipartite graphs, it follows from the existence of balanced
bipartite edge-colourings that balanced list edge-colourings exist as well. While
the key to Galvin’s proof is the stable marriage theorem of Gale and Shapley,
our result is based on the well-known “many-to-many” version of the stable
matching theorem.
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1 Introduction

A proper edge-colouring of graph G is the assignment of colours to the edges of G
such that no two edges incident with the same vertex have the same colour. Graph
G is said to be k-edge-choosable if no matter how we assign lists L(e) of k possible
colours to each edge e of G, there always exists a proper edge-colouring of G such that
each edge e of G is coloured from L(e). The list chromatic index χ′

l(G) of G is the
smallest integer k such that G is k-edge-choosable. As we may assign the same list to
each edge, the chromatic index is always a lower bound on the list chromatic index:
χ′(G) ≤ χ′

l(G). Dinitz conjectured (in terms of Latin squares) that complete bipartite
graph Kn,n has list chromatic index χ′

l(Kn,n) = n (see [1]). This is a special case of the
famous list colouring conjecture stating that for any finite loopless graph G, we have
χ′(G) = χ′

l(G). Galvin’s celebrated result shows that the list colouring conjecture is
true for any finite bipartite graph and this immediately implies the Dinitz conjecture
[3].
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The hearth of Galvin’s proof is a special case of a Theorem of Maffray [6]. This
very special case is equivalent to the stable marriage theorem of Gale and Shapley
[2] stating that for any (finite) bipartite graph G and for any linear preference orders
on the stars, there exists a so called stable matching M of G with the property that
every edge e of G−M has a vertex v such that there is an edge m of M preferred to
e by v. (If the two colour classes of G represent boys and girls, respectively, and an
edge means that the two corresponding people are not against marriage then a stable
matching describes a marriage scheme where no boy and girl have the mutual interest
to leave their spouses for one another.)

In this work, we extend Galvin’s method to not necessarily proper edge-colourings.
For this reason, we define a partial order on edge-colourings such that proper colour-
ings and 1-colourings are at the best and worse elements, respectively. In Section 2,
we apply the “many-to-many” generalization of the stable marriage theorem to show
that for any given edge-colouring of bipartite graph G there exists a better list edge-
colouring provided each edge has a sufficiently large list of possible colours. This result
with a ∆-edge-colouring of G (that exists by a theorem of Kőnig) implies Galvin’s
theorem.

Section 3 is devoted to our main motivation: balanced colourings of bipartite graphs.
It is well-known that for any bipartite graph G and for any positive integer k there
exists a colouring of the edges of G with k colours such that for any vertex v, at most⌈

d(v)
k

⌉
edges incident with v can have the same colour. We show that if each edge

list contains at least k colours then there exists a list edge-colouring with the same
property. We conclude in Section 4 by formulating two open questions and indicating
that a certain generalization of our result is not possible.

2 Edge-colourings and list edge-colourings

To define a partial order on edge-colourings, we start from a little afar. For a nonnega-
tive integer n, a (number theoretic) partition of n is a way to decompose n as a sum of
positive integers where the order of the summands is indifferent. That is, if two sums
only differ in the order of the summands then those determine the same partition.
We say that partition π of n is finer than partition π′ of n (denoted by π � π′) if π′

can be obtained from π by grouping certain summands of π. It follows immediately
from the definition that for any partition π of n we have 1 + 1 + . . . + 1 � π � n

Let us turn to edge-colourings now. By a k-edge-colouring of graph G we mean a
function c : E(G) → {1, 2, . . . , k}, and c(e) is called the colour of edge e of G. Each
k-edge-colouring c and each vertex v of G induce a partition π(c, v) of degree d(v) of
v into (at most k) summands that describe how many edges of each colour of c are
incident with v. In particular, edge-colouring c is a proper one if and only if π(c, v) is
the finest partition of d(v) for each vertex v of G. An edge-colouring of graph G is a
k-edge-colouring of G for some k.

Let c and c′ be two edge-colourings of G. We say that edge-colouring c is finer
than c′ if π(c, v) � π(c′, v) holds for each vertex v of G, that is, if c induces a finer
partition on each degree than c′ does. This definition yields in particular that the
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finest edge-colourings are the proper ones. Now we can claim our main theorem.

Theorem 2.1. Let G = (V, E) be a finite bipartite graph and let c be a k-edge-
colouring of G. If for each edge e = uv of G, L(e) is a set of k elements (that is, a
list of k possible colours) then for each edge e of G, we can pick an element (a colour)
c′(e) of L(e) such that edge-colouring c′ is finer than c.

Galvin’s theorem is an immediate consequence of Theorem 2.1. Recall that ∆(G)
denotes the maximum degree of G.

Corollary 2.2 (Galvin [3]). Each bipartite graph G is ∆(G)-edge-choosable.

Proof. There is a proper ∆(G)-edge-colouring c of G by Kőnig’s edge-colouring theo-
rem [5]. So by Theorem 2.1, if each edge list L(e) contains at least ∆(G) colours then
there exists an edge-colouring c′ from the edge-lists such that c′ is finer than c. As c
is a proper edge-colouring, c′ must also be a proper one.

We proceed with justifying our main theorem. A main ingredient of the proof of
Theorem 2.1 is the following well-known stable b-matching theorem, the many-to-
many version of the stable marriage theorem of Gale and Shapley. (Note that special
case b ≡ 1 of Theorem 2.3 is equivalent to the stable marriage theorem.)

Theorem 2.3 (See [4] and [7]). Let G be a finite bipartite graph, let b : V (G) → N
be an arbitrary quota function and let ≤v be a linear order on the edges of G incident
with v. There always exists a set S of edges of G such that each vertex v of G is
incident with at most b(v) edges of S and each edge e of E \ S has an endvertex u
such that u is incident with b(u) edges of S each of which is smaller in ≤u than e.

The edges of subgraph G′ in Theorem 2.3 is sometimes called a stable b-matching.
We shall follow Galvin’s method to prove our result but instead of stable matchings,
we pick stable b-matchings with appropriate quotas b.

Proof of Theorem 2.1. Let A and B denote the colour classes of bipartite graph G.
Choose linear order ≤v in such a way that if e, e′ are incident with v and c(e) < c(e′)
then e ≤v e′ whenever v ∈ A and e′ ≤v e for v ∈ B. Such a choice is clearly possible.
Let di(v) denote the number of edges of colour i incident with v and let Ei be the set
of edges of G that can be coloured with colour i:

di(v) := |{e = uv ∈ E : c(e) = i} Ei := {e ∈ E : i ∈ L(e)} .

To prove the existence of the list edge-colouring c′ described in the theorem, we shall
c′-colour some edges of E1 with colour 1, then certain edges of E2 with colour 2,
followed by giving c′-colour 3 to a couple of edges in E3, and so on. More precisely, we
start with defining b1 := d1 we find a stable b1-matching S1 of bipartite graph (V, E1)
(that exists by Theorem 2.3) and we give c′-colour 1 to each edge of S1. To proceed
with colour 2, we define for each vertex v of G

b2(v) =

{
b1(v)− |S1(v)| if b1(v) > |S1(v)|

d2(v) if b1(v) = |S1(v)|
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where for a set S of edges and vertex v of G, S(v) denotes the set of edges of S that
are incident with vertex v. Let E ′

2 := E2 \ S1 be the set of so far uncoloured edges
that can be c′-coloured to 2. There exists a stable b2-matching S2 of (V, E ′

2), and we
c′-colour the edges of S2 with colour 2.

In general, if S1, S2, . . . , Si are the set of i-coloured edges of c′, respectively then
the set Si+1 of edges that we c′-colour with colour i + 1 is a stable bi+1-matching of
(V, E ′

i+1), where E ′
i+1 := Ei+1\

⋃n
j=1 Sj is the set of (i+1)-colourable, yet c′-uncoloured

edges and

bi+1(v) =

{
bi(v)− |Si(v)| if bi(v) > |Si(v)|

ds(v) if
∑i

j=1 |Si(v)| =
∑s−1

j=1 dj(v) .
(1)

That is, if stable bi-matching Si did not saturate vertex v then the new quota bi+1(v)
will be the unused part of the previous quota, otherwise, when we have coloured
previously exactly d1(v)+d2(v)+. . .+ds−1(v) edges of E(v) with colours 1, 2, . . . , s−1,
then we start to fill up the next degree-quota ds(v).

We show that c′ is an edge-colouring. Consider edge e of G and assume that c(e) = t.
What does it mean that edge e is not c′-coloured with colour i of L(e)? It can happen
only because one of the following two reasons. Either e 6∈ E ′

i, that is, e is c′-coloured
by some colour j < i, or e is dominated by stable bi-matching Si. That is, e has a
dominating vertex u such that u is incident with bi(u) edges of Si and each of these
edges precede e in ≤u. Note that this latter case can occur for at most t − 1 indices
i where the dominating vertex is in colour class A and for at most k − t indices with
the dominating vertex in B. So if the above procedure does not determine c′(e) then
there can be altogether at most t − 1 + k − t = k − 1 colours of L(e) that is not
assigned to edge e. This contradicts the assumption that L(e) contains k colours, so
c′ is indeed a genuine edge-colouring of G.

To finish the proof, we show that c′ is finer than c, that is π(c′, v) � π(c, v) holds for
each vertex v of G. By the construction of c′, d1(v) = |S1(v)|+ |S2(v)|+ . . .+ |Si(1)(v)|
where i1 is the first colour such that stable b-matching Si1 is saturated at vertex v.
Again, by the construction d2(v) = |Si(1)+1(v)|+ |Si(1)+2(v)|+ . . . + |Si(2)(v)| for some
i2 > i1, and in general dj(v) = |Si(j−1)+1(v)| + |Si(j−1)+2(v)| + . . . + |Si(j)(v)| holds.
But this follows that c′ � c, just as we claimed.

3 Balanced list edge-colourings

Another application of Theorem 2.1 has to do with balanced colourings.

Corollary 3.1. Assume that G is a bipartite graph and for each edge e of G, list L(e)
contains at least k colours. Then it is possible to pick a colour c(e) ∈ L(e) for each

edge e of G such that no vertex v is incident with more than
⌈

d(v)
k

⌉
edges of the same

colour.

To prove Corollary 3.1, we use a special edge-colouring provided by the following
well-known observation.
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Lemma 3.2. For any bipartite graph G and positive integer k there exists a k-edge-

colouring c of G in such a way that each summand in π(c, v) is either
⌈

d(v)
k

⌉
or

⌊
d(v)

k

⌋
for each vertex v of G.

We prove Lemma 3.2 for the sake of self-containedness. For this reason we need the
following well-known fact.

Lemma 3.3. If f is an st-flow on digraph D then there exists an integral st-flow f
on D (a rounding of f) such that f(a) ∈ {bf(a)c , df(a)e} holds for each arc a of D.

Proof. Let A′ := {a ∈ A(D) : f(a) 6∈ N} denote the set of arcs of D with nonintegral
flow. From flow conservation, it follows that no vertex of D different from s and t
can be incident with exactly one arc of A′. Consequently, if A′ is nonvoid then some
subset A′′ of A′ forms a cycle or an st path in the weak (unoriented) sense. It is trivial
to modify flow f along A′′ in such a way that for each arc a of A′′ the new flow value
on a belongs to closed interval [bf(a)c, df(a)e] and the modified flow becomes integral
on at least one arc of A′′. This means that step by step we can decrease the number
of noningegral arcs in such a way that each integral flow value is a rounding of the
original one. The Lemma directly follows from this latter observation.

Proof of Lemma 3.2. We prove the lemma by induction on k. Clearly, c ≡ 1 is feasible
1-edge-colouring of G for k = 1. Assume now that we have already justified Lemma
3.2 for 1, 2, . . . , k − 1 and we shall prove that it holds for k.

It is easy to see that the Lemma is equivalent to the statement that any bipartite
graph G has a so called balanced k-edge-colouring c such that for any vertex v of G
and any colours i and j the difference between the number of i-coloured edges incident
with v and the number of j-coloured edges incident with v is at most one. We shall
prove that that there exists a subset F of the edges of G such that

|F (v)| ∈
{⌈

d(v)

k

⌉
,

⌊
d(v)

k

⌋}
(2)

for each vertex v of G. This implies Lemma 3.2 as G − F has a balanced (k − 1)-
edge colouring c′ by the inductive assumption and we can extend it to a balanced
k-edge-colouring c of G by colouring each edge of F to colour k.

Orient each edge e of bipartite graph G from colour class X to colour class Y ,
let ~e denote the arc corresponding to edge e and let D = (V, A) denote the resulted
digraph. To create digraph D′ from D, introduce new vertices s and t, add arcs from
s to each vertex of X and from each vertex of Y to t. Define st-flow f on D′ by letting
f(a) = 1

k
for each arc of A and choose the f -values on the remaining arcs (incident

with s or t) so as flow conservation holds.

By Lemma 3.3, there is a rounding f of f such that f(sx) ∈
{⌈

d(x)
k

⌉
,
⌊

d(x)
k

⌋}
and

f(yt) ∈
{⌈

d(y)
k

⌉
,
⌊

d(y)
k

⌋}
for any x ∈ X and y ∈ Y . So if F := {e ∈ E(G) : f(~e) = 1}

denotes those edges that correspond to arcs with rounded flow value 1 then F has
property (2), and this is exactly what we wanted to prove.
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Proof of Corollary 3.1. Applying Theorem 2.1 to k-edge-colouring c of G as in Lemma
3.2 yields an edge-colouring c′ that is finer than c and picks the colours of each edge e

from its list L(e). As no vertex v is incident with more than
⌈

d(v)
k

⌉
edges of the same

colour in c, this has to be true also for finer edge-colouring c′.

4 Conclusion

The list colouring conjecture can be interpreted in such a way that if k colours are
enough to properly colour the edges of a graph then from arbitrarily given edge lists
of size k it is possible to pick a colour for each edge to form a proper edge-colouring.
The list colouring conjecture is known to be true for bipartite graphs due to [3] by
Galvin. Our Theorem 2.1 shows that for bipartite graphs, an even stronger statement
is true: if we fix some k-edge-colouring of G, it never hurts if we assign different lists
of k colours to the edges in the sense that we can always find a finer edge-colouring
from the lists than our fixed colouring. It is a natural question whether the following
more general form of the list colouring conjecture is true.

Generalized list colouring conjecture. Is it true that any graph
G and for any k-edge-colouring c of G, no matter how sets L(e) of
size k are assigned to each edge e of G, there always exist elements
c′(e) of L(e) such that c′ is a finer edge-colouring of G than c is?

The key notion for our results is the partial order on edge-colourings of graphs. This
partial order is based on number theoretic partitions. However, it is possible to define
it for set theoretic partitions as well, moreover, it is more usual to define the “finer”
relation for those. This would give a coarser partial order on edge-colourings: edge
colouring c′ of G is strictly finer than c if for each vertex v of G and each colour i there
exist some set I of colours such that {e ∈ E(v) : c(e) = i} = {e ∈ E(v) : c′(e) ∈ I}. A
very natural question is whether our main result, Theorem 2.1 also holds if we require
that edge-colouring c′ must be strictly finer than c.

Unfortunately, this stronger version of Theorem 2.1 does not hold in general. Con-
sider a balanced k-edge-colouring c of complete bipartite graph K1,k(k+1) and assign
k-lists to the edges such that for any k-subset L of {1, 2, . . . , k+1} and for each colour
i there is an edge e with c(e) = i and L(e) = L. As any list edge-colouring must use
at least two colours for each c-colour-class, no list edge-colouring is strictly finer than
c.

Note that there is a well-known stronger form of Lemma 3.2, namely, for any positive
integer k and any bipartite graph G along with a nested set-system on each colour class
there is a k-edge-colouring of G = (V, E) in such a way that beyond the consequence
of Lemma 3.2, we have that for any element X of one of the nested systems and for
any colour i in the colouring the number of i-coloured edges incident with X is either⌈

|E(X)|
k

⌉
or

⌊
|E(X)|

k

⌋
, where E(X) stands for the set of edges of G incident with X.

To prove this generalization, it is enough to modify the construction in the proof of
Lemma 3.2 in such a way that instead of direct sx and yt edges, we introduce a two
trees with roots s and t and leaves in the corresponding colour classes such that the
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edge cuts of these trees determine the nested set systems, and orient the edges of these
trees in the natural way. It is a natural question whether a stronger form of Corollary
3.1 is true, that is, if positive integer k and bipartite graph G with edge-lists of size
k is given there always exists a list edge-colouring such that for any vertex v of G no
more than dd(v)

k
e edges of the same colour is incident with v and for any set X of the

nested systems at most d |E(X)|
k

e edges of E(X) can have the same colour. We leave
this open question to the reader.
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