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a b s t r a c t

As a vertex-disjoint analogue of Edmonds’ arc-disjoint arborescences theorem, it was
conjectured that given a directed graph D with a specified vertex r , there are k spanning
arborescences rooted at r such that for every vertex v ofD the k directedwalks from r to v in
these arborescences are internally vertex-disjoint if and only if for every vertex v ofD there
are k internally vertex-disjoint directed walks from r to v. Whitty (1987) [10] affirmatively
settled this conjecture for k ≤ 2, and Huck (1995) [6] constructed counterexamples for
k ≥ 3, and Huck (1999) [7] proved that the conjecture is true for every kwhen D is acyclic.
In this paper, we generalize these results by using the concept of ‘‘convexity’’ which is
introduced by Fujishige (2010) [4].

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Let D be a directed graph with n vertices andm arcs, where we assume that D has no loop but may have parallel arcs. We
denote by V (D) and A(D) the vertex set and the arc set of D, respectively. For a ∈ A(D), let ∂+a and ∂−a be the tail and the
head of a, respectively. For v ∈ V (D), define

Γ +(v) := {a ∈ A(D) | ∂+a = v}, Γ −(v) := {a ∈ A(D) | ∂−a = v}.

For a subgraph H of D and v ∈ V (H), define

Γ +

H (v) := Γ +(v) ∩ A(H), Γ −

H (v) := Γ −(v) ∩ A(H).

For X ⊆ V (D), we denote by D[X] the subgraph of D induced by X . For B ⊆ A(D), let D\B be the graph obtained by removing
all the arcs of B from D. For v ∈ V (D), define D − v := D[V (D) \ {v}].

A directed walk P is an alternating sequence v0, a1, v1, . . . , al, vl of vertices v0, v1, . . . , vl and arcs a1, a2, . . . , al such that
ai = vi−1vi. In this paper, we allow vi = vj and ai = aj for distinct i, j. We call v0 and vl the initial vertex and the terminal
vertex of P , respectively. A directed walk with an initial vertex u and a terminal vertex v is called a (u, v)-walk. Notice that
a vertex v is a (v, v)-walk. A vertex v is said to be reachable from a vertex u in D, if there is a (u, v)-walk in D. A (u, v)-walk
P containing at least one arc is called a directed cycle, if u = v. A directed graph with no directed cycle is said to be acyclic. A
subset X of V (D) is said to be convex, if for every (u, v)-walk P such that u, v ∈ X , all the intermediate vertices of P are also in
X . Notice that the intersection of convex sets is convex. Suppose that we are given distinct (ui, vi)-walks Pi (i = 1, 2, . . . , k).
Walks P1, P2, . . . , Pk are said to be internally disjoint, if

Wi ∩ Wj = ({ui} ∩ {uj}) ∪ ({vi} ∩ {vj})
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for every i, j = 1, 2, . . . , k such that i ≠ j, where Wi and Bi represent the sets of vertices and arcs that Pi traversed,
respectively. If D is acyclic, then there is a topological ordering π : V (D) → {1, 2, . . . , n} such that π(∂−a) < π(∂+a) for
every a ∈ A(D). For v ∈ V (D), define π̂(v) := n + 1 − π(v)

An acyclic graph T is called an arborescence, if there is r ∈ V (T ) such that |Γ −

T (r)| = 0, and |Γ −

T (v)| = 1 for every
v ∈ V (T ) \ {r}. We call such an arborescence T an r-arborescence. For an r-arborescence T and v ∈ V (T ), we denote
by rTv the unique (r, v)-walk in T . We say that ri-arborescences Ti(i = 1, 2, . . . , k) are independent, if for every vertex v
belonging to any two of them, the walks from the roots to v in those two arborescences are internally disjoint, i.e., for every
i, j = 1, 2, . . . , k such that i ≠ j and every v ∈ V (Ti) ∩ V (Tj), riTiv and rjTjv are internally disjoint.

1.1. Edmonds’ theorem and its extensions

Edmonds [2] proved the following fundamental theorem about existence of arc-disjoint arborescences.

Theorem 1 (Edmonds [2]). Let D be a directed graph with a specified vertex r. There are k arc-disjoint spanning r-arborescences
if and only if for every v ∈ V (D) there are k arc-disjoint (r, v)-walks.

Kamiyama, Katoh and Takizawa [8] generalized Theorem 1 to themultiple roots case by using the concept of reachability.
Furthermore, Fujishige [4] extended the results of [8] by employing the concept of convexity instead of reachability
(for related topics see [1]).

In Theorem 1, an obvious necessary condition is also sufficient. So, as a vertex-disjoint analogue, the following question
naturally arises.

Question 1 (Frank [9, p. 235]). Let D be a directed graph with a specified vertex r. There are k independent spanning
r-arborescences if and only if for every v ∈ V (D) there are k internally disjoint (r, v)-walks.

Whitty [10] affirmatively settled Question 1 for k ≤ 2. Huck [6] constructed counterexamples for k ≥ 3. Furthermore,
Huck [7] proved that if D is acyclic, then Question 1 is true for every k.

1.2. Our problem and results

The goal of this paper is to generalize the results about Question 1 in the same manner as Fujishige’s extension of
Edmonds’ theorem. More precisely, we consider the following Question 2.

Question 2. Let D be a directed graph with (possibly not distinct) specified vertices r1, r2, . . . , rk and convex subsets
C1, C2, . . . , Ck ⊆ V (D) such that ri ∈ Ci. There are independent ri-arborescences Ti(i = 1, 2, . . . , k) such that V (Ti) = Ci
if and only if for every v ∈ V (D) there are internally disjoint (ri, v)-walks Pi(i ∈ I(v)), where I(v) is the set of i such that v ∈ Ci.

Question 2 is a generalization of Question 1 in the sense that there may be multiple roots and the arborescence need not
span V (D). By the result of Huck [6], Question 2 is in general not true for the case where there is a vertex contained in more
than two of C1, C2, . . . , Ck even if r1, r2, . . . , rk are identical. In this paper, we prove that Question 2 is true for the following
three cases.
Case 1. r1 = r2 = · · · = rk(=: r) and every vertex of V (D) \ {r} is contained in at most two of C1, C2, . . . , Ck.
Case 2. r1 = r2 = · · · = rk and D is acyclic.
Case 3. D is acyclic and every vertex of V (D) is contained in at most two of C1, C2, . . . , Ck.

If k = 2, then every vertex is automatically contained in at most two convex sets. Thus, the result for Case 1 generalizes the
result of Whitty [10] in the sense that each arborescence does not necessarily span all vertices. The result for Case 2 also
generalizes the result of Huck [7] in the same sense. The result for Case 3 is a proper generalization in the sense that a given
directed graph has multiple roots.

2. Case 1

In this section, we prove the following theorem.

Theorem 2. Let D be a directed graph with a specified vertex r and convex subsets C1, C2, . . . , Ck ⊆ V (D) such that r ∈ Ci and
every vertex of V (D) \ {r} is contained in at most two of C1, C2, . . . , Ck. There are independent r-arborescences T1, T2, . . . , Tk
such that V (Ti) = Ci if and only if for every v ∈ V (D) there are |I(v)| internally disjoint (r, v)-walks, where I(v) is the set of i
such that v ∈ Ci.
Proof. Since the only if part is immediate, we prove the other direction. If k = 1, then the theorem immediately follows
from the definition of a convex set. So, we assume that k ≥ 2. Let V1 be the set of vertices of V (D) that are contained in
exactly one of C1, C2, . . . , Ck. Define

X := {Ci ∩ Cj | i, j = 1, 2, . . . , k, i ≠ j, Ci ∩ Cj ≠ {r}}.

Since every vertex of V (D) \ {r} is contained in at most two of C1, C2, . . . , Ck, X ∩ Y = {r} for distinct X, Y ∈ X. For X ∈ X,
let IX be the unique pair {i, j} such that X = Ci ∩ Cj.
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By the definition of a convex set, for every X ∈ X and every v ∈ X , intermediate vertices of an (r, v)-walk are in X ,
i.e., there are two internally disjoint (r, v)-walks in D[X]. By this fact and the result of [10], there are two independent
spanning r-arborescences T X

i (i ∈ IX ) in D[X]. Notice that r-arborescences T X
i (X ∈ X; i ∈ IX ) are independent.

For i = 1, 2, . . . , k, let Di be a graph obtained from D[Ci] by shrinking Ci \ V1 into a new vertex ci. Since Ci is a convex
set, there is an (r, v)-walk in D[Ci] for every v ∈ Ci. So, for every v ∈ Ci ∩ V1, there is a (ci, v)-walk in Di, and thus there is a
spanning ci-arborescence T ′

i in Di. We can construct desired arborescences by combining T X
i (X ∈ X such that i ∈ IX ) and T ′

i
for each i = 1, 2, . . . , k. �

By using Theorem 2, we can obtain the following algorithmic result.

Theorem 3. Let D be a directed graphwith a specified vertex r and non-singleton convex subsets C1, C2, . . . , Ck ⊆ V (D) such that
r ∈ Ci and every vertex of V (D) \ {r} is contained in at most two of C1, C2, . . . , Ck. We can discern the existence of independent
r-arborescences T1, T2, . . . , Tk such that V (Ti) = Ci and find such arborescences if they exist in O(n3

+ m) time.

Proof. We first transform D so thatm = O(n2) by removing unnecessary parallel arcs in O(m) time. By using a well-known
technique (described, for example, in [3]), for v ∈ V (D) we can discern whether there are |I(v)| internally disjoint (r, v)-
walks in O(n2) time, where I(v) is the set of i such that v ∈ Ci. So, we can discern the existence of desired arborescences in
O(n3) time. Next we consider the time required for finding desired arborescences. Since we can construct X in O(n3) time,
we evaluate the time required for finding T X

i (X ∈ X; i ∈ IX ). It is known [5,7] that we can find arborescences T X
i (i ∈ IX ) in

O(|X |
3) time for each X ∈ X. Since


X∈X |X | ≤ 2n + |X|, what remains is to evaluate |X|. Since every vertex of V \ {r} is

contained in at most one element in X and X \ {r} ≠ ∅ for every X ∈ X, we have |X| ≤ n. So, the time required for finding
T X
i (X ∈ X; i ∈ IX ) is O(n3). �

3. Case 2

In this section, we prove the following theorem.

Theorem 4. Let D be an acyclic directed graph with a specified vertex r and convex subsets C1, C2, . . . , Ck ⊆ V (D) such that
r ∈ Ci. There are independent r-arborescences T1, T2, . . . , Tk such that V (Ti) = Ci if and only if for every v ∈ V (D) there are
|I(v)| internally disjoint (r, v)-walks, where I(v) is the set of i such that v ∈ Ci.

Proof. Since the only if -part is immediate, we prove the other direction. Our proof is based on the proof of Huck [7] for
Question 1 in the acyclic case. Let V0 be the set of v ∈ V (D) such that I(v) = ∅. For v ∉ V0, an (r, v)-walk contains no vertex
of V0 by the definition of a convex set. So, removing V0 does not affect the existence of |I(v)| internally disjoint (r, v)-walks
for v ∉ V0. So, without loss of generality, we can make the following assumption.

Assumption 1. For every v ∈ V (D), I(v) ≠ ∅.

Furthermore, by the definition of internal disjointness, we can make the following assumption.

Assumption 2. All the parallel arcs of D are in Γ +(r).

Since there are |I(v)| internally disjoint (r, v)-walks for every v ∈ V (D) \ {r}, we have

|Γ −(v)| ≥ |I(v)| (v ∈ V (D) \ {r}). (1)

So, it suffices to prove that if (1) holds, then there are desired arborescences. In the sequel, we assume that (1) holds. Notice
if (1) holds, then every vertex of V (D) is reachable from r by acyclicity of D and Assumption 1.

Let T be an r-arborescence T . A topological ordering π of T − r is said to be (D, T )-feasible, if π̂ is a topological ordering
of D \ A(T )[V (T ) \ {r}]. Moreover, T is said to be D-eligible, if there is a (D, T )-feasible ordering.

Claim 1. There is a D-eligible r-arborescence Tk such that V (Tk) = Ck.

Proof. We prove the claim by induction on n. For n = 1, the claim clearly holds. Assuming that the claim holds for
n = N ≥ 1, we consider the case of n = N + 1. Since D is acyclic, there is s ∈ V (D) such that Γ +(s) = ∅. Since every
vertex of D is reachable from r in D and n ≥ 2, we have s ≠ r . Define D′

:= D − s, V ′
:= V (D) \ {s} and C ′

i := Ci \ {s}. For
v ∈ V ′, let I ′(v) be the set of i such that v ∈ C ′

i . For every v ∈ V ′, I(v) = I ′(v) and Γ −(v) = Γ −

D′ (v) by Γ +(s) = ∅. So,

|Γ +

D′ (v)| ≥ |I ′(v)| (v ∈ V ′
\ {r}).

Thus, by the induction hypothesis, there is a D′-eligible r-arborescence T ′

k such that V (T ′

k) = C ′

k. Let π ′ be a (D′, T ′

k)-feasible
topological ordering. We will prove that an r-arborescence Tk such that V (Tk) = Ck and a (D, Tk)-feasible ordering π can be
constructed from T ′

k and π ′. If s ∉ Ck, then the proof is done by setting Tk := T ′

k and π := π ′.
If s ∈ Ck, then we need to add s to T ′

k as well as an appropriate arc a′ of Γ −(s) such that ∂+a′
∈ Ck. Define a vertex v′ as

follows. Let S be the set of vertices v of V such that there is an arc from v to s. If r ∈ S, then set v′
:= r . Otherwise, set v′
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to be the unique element of argmaxv∈S π ′(v), and a′ by the unique arc from v′ to s. Notice that S ≠ ∅ by Γ −(s) ≠ ∅. Since
every vertex of D is reachable from r in D, there is an (r, s)-walk containing v′, which implies v′

∈ Ck by the definition of a
convex set and s ∈ Ck. Thus, we can obtain Tk by adding a′ to T ′

k.
Now we explain how to construct π . If v′

= r , then it suffices to set π(s) := |Ck| − 1 and π(v) := π ′(v) for v ∈ C ′

k \ {r}.
If v′

≠ r , then define

π(v) :=

π ′(v′) if v = s,
π ′(v) if v ≠ s and π ′(v) < π ′(v′),
π ′(v) + 1 if v ≠ s and π ′(v) ≥ π ′(v′).

By the induction hypothesis, π is a topological ordering in Tk − r . Furthermore, since π(s) > π(v) for every v ∈

S \ {v′
}, π(∂−a) > π(∂+a) for every arc a of D \ A(Tk)[Ck \ {r}], which implies that π̂ is a topological ordering in

D \ A(Tk)[Ck \ {r}]. �

Claim 2. There are independent r-arborescences T1, T2, . . . , Tk such that V (Ti) = Ci.

Proof. We prove the claim by induction on k. For k = 1, since every vertex of D is reachable from r , there is a spanning
r-arborescence.

Assuming that the claim holds for the case of k = N ≥ 1, we consider the case of k = N + 1. By Claim 1, there is a
D-eligible r-arborescence Tk such that V (Tk) = Ck. For v ∈ V (D), let I◦(v) be the set of i = 1, 2, . . . , k − 1 such that v ∈ Ci.
Let D◦ be the graph obtained from D \ A(Tk) by removing v ∈ V such that I◦(v) = ∅ and arcs around such vertices. Since all
the parallel arcs of D◦ are clearly in Γ +

D◦(r), it suffices to show that

|Γ −

D◦(v)| ≥ |I◦(v)| (v ∈ V (D◦) \ {r}). (2)

Obviously,

|Γ −

D\A(Tk)
(v)| ≥ |I◦(v)| (v ∈ V (D◦) \ {r}). (3)

Notice that I◦(v) = ∅ if and only if I(v) = {k}. So, if there is no arc a ∈ A such that I(∂+a) = {k} and I(∂−a) ≠ {k}, then
(2) follows from (3). If there is such an arc a of A, then there is an (r, ∂−a)-walk in D containing ∂+a and ∂−a ∈ Ci for some
i = 1, 2, . . . , k − 1. Since ∂+a ∉ Ci, this contradicts the convexity of Ci. So, there can not be such an arc a.

By (2) and the induction hypothesis, there are independent r-arborescences T1, T2, . . . , Tk−1 in D◦ such that V (Ti) = Ci.
Now we prove that arborescences T1, T2, . . . , Tk are independent. Since T1, T2, . . . , Tk−1 are independent by the induction
hypothesis, we prove that Tk and Ti are independent for i = 1, 2, . . . , k − 1. For this, it suffices to prove that rTkv and rTiv
are internally disjoint for every v ∈ Ck ∩ Ci. Let π be a (D, Tk)-feasible topological ordering. By the definition of a convex
set, vertices of rTkv and rTiv are contained in Ci ∩ Ck. For an intermediate vertex w of rTkv, π(v) < π(w). Since π̂ is a
topological ordering in D \ A(Tk)[Ck \ {r}], π(v) > π(w) for every intermediate vertex w of rTiv. So, rTkv and rTiv are
internally disjoint. �

Theorem 4 follows from Claim 2. �

By using Theorem 4, we can obtain the following algorithmic result.

Theorem 5. Let D be a weakly connected acyclic directed graph with a specified vertex r and non-singleton convex subsets
C1, C2, . . . , Ck ⊆ V (D) such that r ∈ Ci. We can discern the existence of independent r-arborescences T1, T2, . . . , Tk such that
V (Ti) = Ci and find such arborescences if they exist in O(km) time.

Proof. By Theorem 4, we can test the existence of desired arborescences by checking if (1) holds in O(kn + m) time. If (1)
holds, then following the proof of Claim 1 we can find in O(m) time a D-eligible r-arborescence Tk such that V (Tk) = Ck.
Take every topological ordering π∗ of D − r . Then, start with T such that V (T ) = {r}, A(T ) = ∅, and the empty topological
ordering π . Following the topological ordering π∗ in decreasing order, we grow T and update the topological ordering π
in T − r as described in the proof of Claim 1. By using an appropriate data structure, we can execute each update in O(1)
time. Then, by recursively applying this operation for D \ A(Tk), we can find desired independent arborescences in O(km)
time. �

4. Case 3

In this section, we prove the following theorem.

Theorem 6. Let D be an acyclic directed graph with (possibly not distinct) specified vertices r1, r2, . . . , rk and and convex subsets
C1, C2, . . . , Ck ⊆ V (D) such that ri ∈ Ci and every vertex of D is contained in atmost two of C1, C2, . . . , Ck. there are independent
ri-arborescences Ti (i = 1, 2, . . . , k) such that V (Ti) = Ci if and only if for every v ∈ V (D) there are internally disjoint
(ri, v)-walks Pi(i ∈ I(v)), where I(v) is the set of i such that v ∈ Ci.
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Proof. Since the only if part is immediate, we prove the other direction. For v ∈ V (D), define J(v) be the set of i ∈ I(v) such
that v ≠ ri. For v ∈ V (D) such that v ∈ Ci, an (ri, v)-walk consists of arcs a ∈ A(D) such that ∂+a, ∂−a ∈ Ci, due to the
definition of a convex set. So, removing arcs for which Assumption 3 does not hold does not affect the existence of internally
disjoint (ri, v)-walks Pi(i ∈ I(v)). So, without loss of generality, we can make the following assumption.

Assumption 3. For every a ∈ A(D), there is i such that ∂+a, ∂−a ∈ Ci.

Furthermore, by the definition of internal disjointness, we can make the following assumption.

Assumption 4. Suppose that a, b ∈ A(D) are parallel, and let v be the tail of a, b. Then, |I(v) \ J(v)| = 2.

By the definition of internal disjointness, if for every v ∈ V (D) there are internally disjoint (ri, v)-walks Pi(i ∈ I(v)), then

|Γ −(v)| ≥ |J(v)| (v ∈ V (D)). (4)

By the definition of a convex set, ∂+a ∈ Ci for every v ∈ V (D), every i ∈ J(v) and every arc a of Pi entering v. So,

there is a ∈ Γ −(v) such that ∂+a ∈ Ci (v ∈ V (D); i ∈ J(v)). (5)

If (5) holds, since D is acyclic, then every vertex of Ci is reachable from ri in D[Ci]. We will prove that if (4) and (5) hold,
then there are desired arborescences. In the sequel, we assume that (4) and (5) hold. For v ∈ V (D), let I◦(v) be the set of
i = 1, 2, . . . , k − 1 such that v ∈ Ci, and let J◦(v) be the set of i ∈ I◦(v) such that v ≠ ri.

Definition 1. Let Tk be rk-arborescence such that V (Tk) = Ck. For i = 1, 2, . . . , k − 1, define

Xi :=


Ci ∩ Ck if ri ≠ rk,
(Ci ∩ Ck) \ {rk} if ri = rk.

Then, π1, π2, . . . , πk−1 such that πi is a topological ordering in Tk[Xi] are said to be (D, Tk)-feasible, if π̂i is a topological
ordering in D \ A(Tk)[Xi].

Definition 2. An rk-arborescence Tk such that V (Tk) = Ck is said to be D-eligible, if

(i) for every v ∈ V (D) and every i ∈ J◦(v), there is a ∈ Γ −

D\A(Tk)
(v) such that ∂+a ∈ Ci, and

(ii) there are (D, Tk)-feasible topological orderings π1, π2, . . . , πk−1.

Claim 3. There is a D-eligible rk-arborescence Tk such that V (Tk) = Ck.

Proof. We prove the claim by induction on n. For n = 1, the claim clearly holds. Assuming that the claim holds for
n = N ≥ 1, we consider the case of n = N + 1. If |Ci| = 1 for some i = 1, 2, . . . , k, then the proof is done. So, we
assume that |Ci| ≥ 2 for every i = 1, 2, . . . , k. Since D is acyclic, there is s ∈ V (D) such that Γ +(s) = ∅. Since every v ∈ Ci
is reachable from ri in D[Ci] and |Ci| ≥ 2, we have s ≠ ri. Define D′, V ′, C ′

i and I ′(v) in the same manner as in Claim 1. For
v ∈ V ′, let J ′(v) be the set of i ∈ I ′(v) such that v ≠ ri. For every v ∈ V ′, J(v) = J ′(v) and Γ −(v) = Γ −

D′ (v) by Γ +(s) = ∅.
So, by the induction hypothesis, there is a D′-eligible rk-arborescence T ′

k such that V (T ′

k) = C ′

k. Define X ′

1, X
′

2, . . . , X
′

k−1 for
C ′

1, C
′

2, . . . , C
′

k in the same manner as Xi in Definition 1. Let π ′

1, π
′

2, . . . , π
′

k−1 be (D′, T ′

k)-feasible topological orderings. We
will prove that an rk-arborescence Tk such that V (Tk) = Ck and (D, Tk)-feasible topological orderings π1, π2, . . . , πk−1 can
be constructed from T ′

k and π ′

1, π
′

2, . . . , π
′

k−1. If s ∉ Ck, then we can obtain Tk and π1, π2, . . . , πk by setting Tk := T ′

k and
πi := π ′

i .
If s ∈ Ck, then we need to add s to T ′

k as well as an appropriate arc a′
∈ Γ −(s) such that ∂+a ∈ C ′

k. Since by (5) there
is a′

∈ Γ −(s) such that ∂+a′
∈ Ck, if I(s) = {k}, then we can obtain Tk by adding a′ to T ′

k. By I ′(s) = ∅, Condition (i) of
Definition 2 is satisfied. Moreover, s ∉ Xi for every i = 1, 2, . . . , k, which implies Xi = X ′

i for every i = 1, 2, . . . , k. So, we
can obtain π1, π2, . . . , πk−1 by setting πi := π ′

i .
Assume that s is contained in Ck and (without loss of generality) Ck−1.We first consider the casewhere there is a′

∈ Γ −(s)
such that ∂+a′

∉ Ck−1. Since ∂+a′
∈ Ck by Assumption 3, we can obtain Tk by adding a′ to T ′

k. By (5), there is b ∈ Γ −(s)
such that ∂+b ∈ Ck−1. By ∂+a′

∉ Ck−1, b is an arc of Γ −(s) \ {a′
} = Γ −

D\A(Tk)
(s). So, Condition (i) of Definition 2 holds.

Next we consider Condition (ii) of Definition 2. For every i = 1, 2, . . . , k − 2, it suffices to set πi := π ′

i by s ∉ Xi. Define
πk−1(s) := |Xk−1| and πk−1(v) := π ′

k−1(v) for v ∈ Xk \ {s}. By ∂+a′
∉ Ck−1, we can easily prove that πk−1 is a desired

topological ordering.
Now we consider the case where ∂+a ∈ Ck−1 for every a ∈ Γ −(s). By (5), there is a ∈ Γ −(s) such that ∂+a ∈ Ck ∩ Ck−1,

and at least one of the following two statements holds.

(a) There are a, b ∈ Γ −(s) such that a ≠ b and ∂+a, ∂+b ∈ Ck ∩ Ck−1.
(b) There is a ∈ Γ −(s) such that ∂+a ∉ Ck.
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So, even if we add any arc a ∈ Γ −(s) such that ∂+a ∈ Ck ∩ Ck−1 to T ′

k, Condition (i) of Definition 2 holds. What remains
to show is how to choose a ∈ Γ −(s) such that ∂+a ∈ Ck ∩ Ck−1 so that Condition (ii) of Definition 2 is satisfied. For every
i = 1, 2, . . . , k − 2, whichever arc a ∈ Γ −(s) we add to T ′

k, it suffices to set πi := π ′

i by s ∉ Xi. So, we consider πk−1. Let S
be the set of v ∈ V (D) such that there is an arc from v to s. Define v′ as follows. If rk = rk−1 and rk ∈ S ∩ Ck, set v′

= rk.
Otherwise, set v′ to be the unique element of argmaxv∈S∩Ck π ′

k−1(v), and let a′ be the unique arc from v′ to s. We can obtain
Tk adding a′ to T ′

k. Define πk−1: Xk−1 → {1, . . . , |Xk−1|} by

πk−1(v) :=

π ′

k−1(v
′), if v = s,

π ′

k−1(v), if v ≠ s and π ′

k−1(v) < π ′

k−1(v
′),

π ′

k−1(v) + 1, if v ≠ s and π ′

k−1(v) ≥ π ′

k−1(v
′).

Then, we can prove that π1, π2, . . . , πk−1 are (D, Tk)-feasible topological orderings in the samemanner as in the last part of
the proof of Claim 1. �

Claim 4. There are independent ri-arborescences Ti(i = 1, 2, . . . , k) such that V (Ti) = Ci.

Proof. We prove the claim by induction on k. For k = 1, since every v ∈ C1 is reachable from r1 in D[C1], the claim holds for
k = 1. Assuming that the claim holds for k = N ≥ 1, we consider the case of k = N + 1.

By Claim 3, there is a D-eligible rk-arborescence Tk such that V (Tk) = Ck. In order to apply the induction hypothesis, we
need to transform D \ A(Tk) so that Assumptions 3 and 4 are satisfied. Let H1 be the graph by transforming D \ A(Tk) so that
Assumption 3 is satisfied. Moreover, let H2 be be the graph by transforming H1 so that Assumption 4 is satisfied.

We first prove that

|Γ −

D\A(Tk)
(v)| ≥ |J◦(v)| (v ∈ V (D)), (6)

there is a ∈ Γ −

D\A(Tk)
(v) such that ∂+a ∈ Ci (v ∈ V (D); i ∈ J◦(v)). (7)

For every V \ Ck and every v ∈ Ck such that |I(v)| = 1, (6) and (7) clearly hold. Let v be a vertex of Ck such that |I(v)| = 2
(say, given by I(v) = {k, i}). If v = ri, then (6) and (7) clearly hold. If v ≠ ri, then (6) and (7) hold since there is a ∈ Γ −

D\A(Tk)
(v)

such that ∂+a ∈ Ci by Definition 2.
Next we prove that

|Γ −

H1
(v)| ≥ |J◦(v)| (v ∈ V (D)), (8)

there is a ∈ Γ −

H1
(v) such that ∂+a ∈ Ci (v ∈ V (D); i ∈ J◦(v)). (9)

We say that a ∈ A \ A(Tk) is illegal, if there is no i = 1, 2, . . . , k− 1 such that ∂+a, ∂−a ∈ Ci, i.e., H1 is obtained by removing
all the illegal arcs from D \ A(Tk). By Assumption 3, ∂+a, ∂−a ∈ Ck for every illegal a ∈ A \ A(Tk). So, for every v ∉ Ck, there
is no illegal arc of Γ −

D\A(Tk)
(v), which implies that Γ −

H1
(v) = Γ −

D\A(Tk)
(v) for every v ∈ V \ Ck. Thus, since (6) and (7) hold, (8)

and (9) hold for every v ∈ V \ Ck. Since (8) and (9) clearly hold for every vertex v contained in only Ck, we consider v ∈ Ck
such that |I(v)| = 2 (say, given by I(v) = {k, i}). If ri = v, then (8) and (9) clearly hold. If ri ≠ v, then there is a ∈ Γ −

D\A(Tk)
(v)

such that ∂+a ∈ Ci by (7). Since a is not illegal, a ∈ Γ −

H1
(v).

We are now ready to prove that

|Γ −

H2
(v)| ≥ |J◦(v)| (v ∈ V (D)), (10)

there is a ∈ Γ −

H2
(v) such that ∂+a ∈ Ci (v ∈ V (D); i ∈ J◦(v)). (11)

Assume that there are parallel arcs of A(H1) whose tail is t ∈ V (D) such that |I◦(t) \ J◦(t)| < 2. Let h be the head of these
parallel arcs. By Assumption 4, rk = t and there is i = 1, 2, . . . , k − 1 such that ri = t . Since there is no illegal arc of A(H1),
we have h ∈ Ci. If |I◦(h)| = 1, then (10) and (11) clearly hold even if we remove all but one parallel arc between t and h, So,
we assume that h ∈ Cj for some j = 1, 2, . . . , k − 1 such that j ≠ i. If rj = h, then (10) and (11) clearly hold. If rj ≠ h, then
by (9) there is a ∈ Γ −

H1
(h) such that ∂+a ∈ Cj. Since j ≠ k, i, we have t ∉ Cj, which implies that ∂+a ≠ t . So, (10) and (11)

hold.
By (10), (11) and the induction hypothesis, there are independent ri-arborescences Ti (i = 1, 2, . . . , k − 1) in H2 such

that V (Ti) = Ci. In order to prove the claim, it is sufficient to prove that rkTkv and riTiv are internally disjoint for every
i = 1, 2, . . . , k − 1 and every v ∈ Ck ∩ Ci. Let π1, π2, . . . , πk−1 be (D, Tk)-feasible topological orderings. Vertices of rkTkv
(resp., riTiv) contained in Xi form a subwalk of rkTkv (resp., riTiv) whose terminal vertex is v by the definition of a convex set.
Also,πi (resp., π̂i) is a topological ordering in Tk[Xi] (resp.,D\A(Tk)[Xi]). Hencewe haveπi(v) < πi(w) (resp.,πi(v) > πi(w))
for every vertex w of rkTkv (resp., riTiv) contained in Xi \ {v}. So, rkTkv and riTiv are internally disjoint. �

Theorem 6 follows from Claim 4. �
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By using Theorem 6, we can obtain the following algorithmic result.

Theorem 7. Let D be a weakly connected acyclic directed graph with (possibly not distinct) specified vertices r1, r2, . . . , rk and
and non-singleton convex subsets C1, C2, . . . , Ck ⊆ V (D) such that ri ∈ Ci and every vertex of D is contained in at most two of
C1, C2, . . . , Ck. We can discern the existence of independent ri-arborescences Ti(i = 1, 2, . . . , k) such that V (Ti) = Ci and find
such arborescences if they exist in O(km) time.

Proof. By Theorem 6, we can test the existence of desired arborescences by checking if for every v ∈ V (D) there are
internally disjoint (ri, v)-walks Pi(i ∈ I(v)). As said in the beginning of this section, even if we transform the input graph
so that Assumptions 3 and 4 are satisfied, the existence (or non-existence) of such walks does not change. Note that we can
complete such a transformation in O(kn + m) time. By Theorem 6, we can discern the existence of desired arborescences
by checking if (4) and (5) hold. We can carry out this in O(m) time. Furthermore, we assume without loss of generality that
every vertex is contained in at least one convex set. Note that we can transform the input graph so that this condition is
satisfied, in O(m) time.

Now, we assume that (4) and (5) hold. Following the proof of Claim 3, we can develop an O(m) algorithm for finding
a D-eligible rk-arborescences Tk such that V (Tk) = Ck. Take every topological ordering π∗ in D. Assume that π∗(t) = n
for some t ∈ V (D). Here we prove that there is i such that ri = t . Assume that ri ≠ t for every i. By the definition of a
topological ordering, Γ −(t) = ∅, which contradicts the fact that every vertex is contained in at least one convex set and
(4) holds. Without loss of generality, we assume that t = rk. Then start with T such that V (T ) = {t}, A(T ) = ∅, and empty
topological orderings π1, π2, . . . , πk−1. Following the topological ordering π∗ in decreasing order, we grow T and update
π1, π2, . . . , πk−1 described as in the proof of Claim 3. We can execute each update in O(1) time. Hence, we can find desired
arborescences in O(km) time. �
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