
Operations Research Letters 41 (2013) 336–342
Contents lists available at SciVerse ScienceDirect

Operations Research Letters

journal homepage: www.elsevier.com/locate/orl

Tree-compositions and orientations
András Frank a,b, Csaba Király a,∗

a Department of Operations Research, Eötvös Loránd University, Budapest, Pázmány Péter sétány 1/C, H-1117, Hungary
b MTA-ELTE Egerváry Research Group, Budapest, Pázmány Péter sétány 1/C, H-1117, Hungary

a r t i c l e i n f o

Article history:
Received 7 February 2012
Received in revised form
13 March 2013
Accepted 18 March 2013
Available online 1 April 2013

Keywords:
Base-polyhedron
Edge-connectivity
Orientation
Submodular function
Tree-composition

a b s t r a c t

A tree-composition is a tree-like family that serves to describe the obstacles to k-edge-connected
orientability of mixed graphs. Here we derive a structural result on tree-compositions that gives rise to a
simple algorithm for computing an obstacle when the orientation does not exist.

As another application, we show a min–max theorem on the minimal in-degree of a given node set in
a k-edge-connected orientation of an undirected graph. This min–max formula can be simplified in the
special case of k = 1.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

Several results and algorithms in submodular optimization are
based on the following fact [6,13]. For every crossing submodular
function b for which the base polyhedron B(b) is non-empty, there
exists a unique fully submodular function b↓ for which B(b↓) =

B(b). The function b↓ is called the full (lower) truncation of b.
(For other definitions, see Preliminaries and the beginning of each
section.) The following result of [7] provides a relatively simple
formula for b↓. Here and in some other theorems, we assume
b(V) = 0. The general case can be derived from the case b(V) = 0,
though the formulas get a bit more involved.

Theorem 1.1. Let b be a crossing submodular set-function on the
subsets of a ground set V for which b(V) = 0 and B(b) ≠ ∅. Then, for
∅ ≠ Z ⊆ V ,

b↓(Z) = min


X∈T

b(X) : T a tree-composition of Z

. (1)

This result was originally proved by using the uncrossing
procedure. In Section 4 we exhibit a different approach in which
the minimizing tree-composition is given directly without using
uncrossing. This simplifies the way how a minimizing tree-
composition can be found algorithmically (see Section 5). The

∗ Corresponding author. Tel.: +36 1 372 2500 8582; fax: +36 13812174.
E-mail addresses: frank@cs.elte.hu (A. Frank), csabi@cs.elte.hu (C. Király).

0167-6377/$ – see front matter© 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.orl.2013.03.009
proof is based on a structural result on tree-compositions that can
be used to find a sub-tree-composition of a special family (see
Section 3).

In Section 6, after recalling the original applications of [7], we
give a newproof of a graphorientation theoremof [5]. In Section 7 a
new application is described in which we show that the maximum
size of a tree-composition of T complyingwith a 2-edge-connected
bipartite graph G = (S, T ; E) is equal to the minimum number of
edges entering T in a strongly connected orientation of G.

2. Preliminaries

All the graphs considered in this paper are loopless but may
contain parallel edges. Let G = (V , E) be an undirected graph.
For v ∈ V , the number of edges incident to v is denoted by d(v)

or dG(v). (We use this notation also for hypergraphs and also for
families that could be interpreted as hypergraphs.) For X ⊆ V we
denote by G[X] the subgraph induced by X and by i(X) the number
of edges in G[X]. For X, Y ⊆ V , we denote by d(X, Y) or dG(X, Y)

the number of edges connecting X − Y and Y − X . For a partition
P of the node set V , e(P) denotes the number of edges connecting
distinct members of P .

For a directed graph D = (V , A) and v ∈ V , ϱ(v) or ϱD(v)

denotes the in-degree of v and δ(v) or δD(v) the out-degree of v.
We denote by d(X), ϱ(X), δ(X) or dG(X), ϱD(X), δD(X) the degree,
in-degree and out-degree of a subset X ⊆ V , respectively. For a
given function x : A → R on the edge-set, ϱx(X) :=


{x(e) :

e enters X} and δx(X) :=


{x(e) : e leaves X} for X ⊆ V .

http://dx.doi.org/10.1016/j.orl.2013.03.009
http://www.elsevier.com/locate/orl
http://www.elsevier.com/locate/orl
mailto:frank@cs.elte.hu
mailto:csabi@cs.elte.hu
http://dx.doi.org/10.1016/j.orl.2013.03.009

A. Frank, C. Király / Operations Research Letters 41 (2013) 336–342 337
(a) The tree-representation of a tree-composition T
of Z where the node set of the tree is formed by a
partition of Z and a partition of V − Z and the dashed
edge of the tree represents the dashed member of T .
(For simpleness the other members of T are not
shown in this figure.)

(b) The thick directed edges give the
tree-representation of a tree-composition of T that
complies with the bipartite graph formed by the
thin edges.

Fig. 1. Tree-compositions.
Two subsets A and B ⊆ V are crossing if A − B ≠ ∅, B − A ≠

∅, A ∩ B ≠ ∅, V − (A ∪ B) ≠ ∅. A family F of subsets of V is a
crossing family if A ∩ B ∈ F and A ∪ B ∈ F for any two crossing
members A, B ∈ F . A family F is called cross-free if there are no
crossing pairs in F .

Let T = (U, A) be a directed tree. For an edge e ∈ A, let Ue
denote the component of T − e that contains the head of e. In [3]
Edmonds and Giles proved the following representation of cross-
free families:

Lemma 2.1. For every cross-free family F on a ground set V , there
exists a directed tree T = (U, A) and a map ϕ : V → U so that the
sets in F and the edges of T are in a one-to-one correspondence, as
follows. For every edge e ∈ A, the corresponding set F isϕ−1(Ue). �

We denote the edge of the tree representing a set F by eF .

Remark 2.2. 1. It is easy to see that for F ∈ F a representing
tree of F − {F} is T/eF with the map ϕ′ that arises from ϕ by
combining it with the natural identifying map π : U → U/eF .

2. It can be proved by induction that a directed tree F = (U, A)
admits a level function π : U → Z+ so that π(v) − π(u) = 1
for every uv ∈ A. If (T , ϕ) is a tree-representation of a cross-free
familyF on the ground set V andπ is a level function of T , then
one can get π(ϕ(v)) − π(ϕ(v′)) = dF (v) − dF (v′) for every
v, v′

∈ V after proving the statement when ϕ(v)ϕ(v′) ∈ A.

A family K on the ground set V is a composition of ∅ ≠ X ⊆ V
if there is an integer ∆ ∈ Z+ for which every element of X is
contained in exactly ∆ + 1 members of K and every element
of V − X is contained in exactly ∆ members of K . Note that a
composition of V is a regular hypergraph while a composition of
a proper subset ∅ ≠ Z ⊂ V becomes a regular hypergraph
by adding V − Z to it. The integer ∆ is called the ground-degree
of K and is denoted by ∆(K). Thus the ground-degree of an r-
regular hypergraph is r − 1. Observe that the difference between
the ground-degree and themaximum degree of a composition is 1.

Special compositions are the following. A partition of Z ⊆ V
is a family formed by disjoint sets Z1, Z2, . . . , Zt with

t
i=1 Zi =

Z . We call a partition of any subset of V a subpartition of V . If
{V1, V2, . . . , Vt} is a partition ofV , then {V−V1, V−V2, . . . , V−Vt}

is called a co-partition of V . Lemma 2.1 and Remark 2.2 imply the
following observation [8]:

Lemma 2.3. Let K be a cross-free composition of its ground set V .
Then K can be partitioned into partitions and co-partitions of V .
Proof. If K = ∅, then we are done. Assume that K ≠ ∅. By
induction, it suffices to show that K includes a partition or a co-
partition.

Let T = (U, A) be a tree representing K along with the map
ϕ : V → U . By Remark 2.2(2), all the nodes in ϕ(V) ⊆ U have
the same level in the tree. Since the tree has no edges between
two nodes on the same level and it has at least one edge, there are
at least two levels. Therefore, one of the minimum and maximum
level consists of nodes v for which ϕ−1(v) = ∅. If the level of v
is the minimum (maximum, respectively) and ϕ−1(v) = ∅, then
the edges exiting (entering, respectively) v represent a partition
(co-partition, respectively) of V . �

Let {Z1, Z2, . . . , Zt} be a partition of Z ⊆ V , and let
{Z1

i , Z2
i , . . . , Z ti

i } be a partition of V − Zi (i = 1, . . . , t). Then the
set-systemD := {V −Z j

i : 1 ≤ i ≤ t, 1 ≤ j ≤ ti} is called a double-
partition of Z . This D is a composition of Z with ground-degreet

i=1(ti − 1). If each ti = 1, then D is a partition of Z .
For ∅ ≠ Z ⊂ V , a cross-free double-partition T of Z on the

ground set V is called a tree-composition of Z if u ∈ ϕ(V − Z), v ∈

ϕ(Z) for each edge uv of a representing directed tree of T . By
Remark 2.2(2) and the definition of double-partitions, π(u) =

π(u′) = π(v) + 1 holds for every u, u′
∈ ϕ(Z) and v ∈ ϕ(V − Z)

where π denotes the level function of a representing tree (T , ϕ).
Thus ϕ(Z) and ϕ(V − Z) are disjoint. Moreover, ϕ−1(u) ≠ ∅ for
any node u of the tree since a tree is connected and each edge of
the representing tree connects ϕ(Z) and ϕ(V − Z). Therefore, a
tree-representation can be constructed by taking the members a
partition of Z and a partition of V −Z as its node set, mapping each
node with ϕ to the set containing it and taking the edges with tails
in ϕ(V − Z) and heads in ϕ(Z) (see Fig. 1(a)). From now on we
will use this tree-representation of a tree-composition. Note that
a cross-free family T with such a tree-representation is always a
tree-composition. To prove this, one needs to prove that T is a
double-partition. This follows from the fact that the edges of the
tree entering a node u ∈ ϕ(z) represents the complement of a
co-partition of V − ϕ−1(u). We will say that the partitions and
co-partitions of the ground set V are the tree-compositions of V .
While a double-partition may consist of Ω(|V |

2) elements, a tree-
composition always has at most |V | − 1 elements.

Assume that we are also given a bipartite graph G = (S, T ; E)
and V = S∪T . We say that a tree-composition T of T complies with
G if ϕ(s)ϕ(t) ∈ A for every edge st ∈ E with s ∈ S, t ∈ T , where
F = (U, A) is a directed tree representing T with the surjective
map ϕ : (S ∪ T) → U (see Fig. 1(b)).

Unless otherwise stated, we assume that a set-function is zero
on the empty set. For a vector x ∈ RV and X ⊆ V , letx(X) :=

338 A. Frank, C. Király / Operations Research Letters 41 (2013) 336–342

v∈X x(v). We also use the notation h(F) :=

q
i=1 h(Fi) for a

set-function h : 2V
→ R and for a family F := {F1, F2, . . . , Fq}

of subsets Fi ⊆ V . A set-function b : 2V
→ R ∪ {∞} is

(crossing) submodular if b(X) + b(Y) ≥ b(X ∩ Y) + b(X ∪

Y) for every (crossing) X, Y ⊆ V . A set-function p : 2V
→

R ∪ {−∞} is (crossing) supermodular if p(X) + p(Y) ≤ p(X ∩

Y) + p(X ∪ Y) for every (crossing) X, Y ⊆ V . In some cases
when it is important to highlight that the function is submodular
(respectively supermodular) on every pair of sets, we call it fully
submodular (respectively fully supermodular).

Let b be a set-function on V for which b(V) < ∞. The base-
polyhedron B(b) defined by b is as follows.

B(b) := {x ∈ RV
: x(X) ≤ b(X) (X ⊂ V), x(V) = b(V)}.

This polyhedron is used mainly when b is a fully (intersecting,
crossing) submodular function. For a supermodular function p, a
related polyhedron B′(p) is considered:

B′(p) := {x ∈ RV
: x(X) ≥ p(X) (X ⊂ V), x(V) = p(V)}.

For an arbitrary set-function h : 2V
→ R ∪ {+∞, −∞}

for which h(V) is finite, we define the complement h of h by the
following formula.

h(X) := h(V) − h(V − X).

Obviously, h(∅) = 0, h(V) = h(V) and h = h. The complement
p of a (crossing) submodular function b is (crossing) supermodular
and B′(p) = B(b). Therefore, the results on (crossing) submodular
functions can automatically be transformed into ones on (crossing)
supermodular functions by using the complement.

It is known that B(b) is a non-empty integer polyhedron
whenever b is fully submodular and integer-valued. A basic
theorem of Fujishige [13] characterizes non-emptiness of B(b) for
crossing submodular b.

Theorem 2.4 (Fujishige). Let b be a crossing submodular function on
the subsets of V for which b(V) is finite. The polyhedron B(b) is non-
empty if and only if both

i

b(Vi) ≥ b(V) and


i

b(Vi) ≤ b(V) (2)

hold for every partition F = {V1, . . . , Vt} of V . �

There is another important result on crossing submodular
functions. If b is a crossing submodular function on the subsets of V
and B(b) ≠ ∅, then there exists a fully submodular function b↓ for
which B(b) = B(b↓). This fact appeared implicitly in an algorithm
for finding submodular flows confined by crossing submodular
functions [6] andwas formulated explicitly by Fujishige in [13]. The
function b↓ is unique by the following theorem (see for example
in [2]).

Theorem 2.5. Let b∗ be a submodular function on the subsets of V .
Then b∗(Z) = max{m(Z) : m ∈ B(b∗)} for every Z ⊆ V . If b∗ is
integer-valued, then the maximum is achieved by an integer vector.
An analogous statement holds for supermodular functions. �

This unique submodular function is the full (lower) truncation of
b. It is also known [13,12,7] that if b(V) = 0 and B(b) ≠ ∅, then b↓

can be expressed by the following formula for every ∅ ≠ Z ⊆ V :

b↓(Z) = min{b(D) : D a double-partition of Z}. (3)

Similarly, if p is a crossing supermodular function on the subsets
of V and B′(p) ≠ ∅, then there exists a unique fully supermodular
p↑, called the full (upper) truncation of p, for which B′(p) = B′(p↑).
If B′(p) ≠ ∅, then p↑ can be expressed by the following formula
of [13] for every ∅ ≠ Z ⊆ V :

p↑(Z) = max{p(D) − ∆(D)p(V) : D a double-partition of Z}.
3. Tree-compositions

By a zs̄-set we mean a set containing z and not containing s.
Let Z be a non-empty proper subset of a ground set V . A family
Z of subsets of V is f Z-separating if it contains a zs̄-set for every
pair {z, s} of elements with z ∈ Z and s ∈ V − Z . Here, Z is
said to be minimal for this property if no proper subfamily of Z is
Z-separating.

Our first goal is to show that a crossing Z-separating family F
always includes a cross-free Z-separating subfamily Z. We prove
this by describing a direct construction of Z that does not rely on
the uncrossing technique. Since F is crossing, the intersectionMzs̄
of all zs̄-sets of F belongs to F for every choice of z ∈ Z, s ∈

V − Z . Also, if some members of F form a connected hypergraph
on a subset U ⊂ V , then U belongs to F . It follows for every
s ∈ V − Z that the connected components of the hypergraph
Hs := (V , {Mzs̄ : z ∈ Z}) intersecting Z form a subpartition Ps
of V − s. By construction, Ps ⊆ F and Ps covers Z .

Theorem 3.1. Let Z be a non-empty proper subset of a ground set V
and let F be a crossing Z-separating family of subsets of V . Then F
includes a cross-free Z-separating subfamily. Namely, Z :=


{Ps :

s ∈ V − Z} is such a subfamily.

Proof. Since Ps is a subpartition of V − s covering Z for each
s ∈ V − Z , the family Z is Z-separating. We have to prove that
Z is cross-free.

Claim 3.2. Let s1, s2 ∈ V − Z and z ∈ Z be elements for which
Mzs̄1 ≠ Mzs̄2 . Then s1 ∈ Mzs̄2 and s2 ∈ Mzs̄1 .

Proof. Suppose by contradiction that, say, s1 ∉ Mzs̄2 . Since Mzs̄1 is
a minimal zs̄1-set in F , Mzs̄1 ⊆ Mzs̄2 . But Mzs̄2 is also a minimal
zs̄2-set inF fromwhichMzs̄1 = Mzs̄2 , contradicting the hypothesis
of the claim. �

For a contradiction, suppose thatZ contains two crossing sets F1
and F2. Since the members of Ps for a given s ∈ V − Z are disjoint,
there are distinct elements s1, s2 ∈ V − Z so that F1 ∈ Ps1 and
F2 ∈ Ps2 .
Case 1. s2 ∈ F1 and s1 ∈ F2. Then there is an element z ∈ Z ∩ F1 for
which s2 ∈ Mzs̄1 . Since s2 ∉ Mzs̄2 , we have Mzs̄1 ≠ Mzs̄2 and hence
Claim3.2 implies that s1 ∈ Mzs̄2 . Since F2 is a connected component
of Hs2 containing s1, we conclude thatMzs̄2 ⊆ F2, and in particular,
z ∈ F2. As F1 and F2 are crossing, F1 ∩ F2 ∈ F , contradicting the
minimality ofMzs̄1 .
Case 2. s2 ∉ F1 or s1 ∉ F2. By symmetry, we may assume that
s2 ∉ F1. By Claim 3.2,Mzs̄1 = Mzs̄2 for every z ∈ F1 ∩ Z . Hence, as F1
is a connected component of Hs1 , F1 = ∪(Mzs̄1 : z ∈ F1 ∩ Z) =

∪(Mzs̄2 : z ∈ F1 ∩ Z) and therefore there is a component of
Hs2 including F1, contradicting the assumption that the connected
component F2 of Hs2 crosses F1. �

Remark. In the construction of the subpartition Ps for a given s ∈

V−Z , we considered the connected components of the hypergraph
Hs intersecting Z . One may feel that it would be more natural, and
certainly simpler, to define a subpartitionP ′

s ofV−sby considering
the maximal members of F not containing s and intersecting Z .
Fig. 2, however, shows that the family Z′

:=


{P ′
s : s ∈ V − Z} is

not cross-free.

We claim that a tree-composition T of Z is a cross-free
Z-separating family. Indeed for s ∈ V − Z and z ∈ Z , there is
an undirected path between ϕ(s) and ϕ(z) on the representing
tree that contains at least one edge with the proper direction
(namely the edge of the path exiting ϕ(s)) that represents a zs̄-set.
Moreover, T is minimal since an edge uv of the tree represents the
only zs̄-set for z ∈ ϕ−1(v) and s ∈ ϕ−1(u). The following result
shows that the converse is also true.

A. Frank, C. Király / Operations Research Letters 41 (2013) 336–342 339
Fig. 2. A family of 4 sets where themaximal zs̄-sets do not form a cross-free family.

Theorem 3.3. For a non-empty proper subset Z of V , a minimal
cross-free Z-separating family Z is a tree-composition of Z.

Proof. By Lemma 2.1, Z has a tree-representation (T , ϕ) where
T = (U, A) is a directed tree. Since Z is Z-separating, we must
have ϕ(s) ≠ ϕ(z) whenever s ∈ V − Z and z ∈ Z .

Claim 3.4. No edge of T enters ϕ(s) for every s ∈ V − Z. No edge of
T leaves ϕ(z) for every z ∈ Z.

Proof. We prove only the first half as it immediately implies the
second one by reversing the orientation of T and complementing
each member of Z.

Assume for a contradiction that there is an edge f = uϕ(s) ∈ A
of T entering ϕ(s). Let Zf be the member of Z which is represented
by f . By Remark 2.2(1), T ′

:= T/f represents the family Z′
:=

Z − {Zf }. The minimality of Z shows that Z′ is not Z-separating,
that is, there are elements z ∈ Z and s′ ∈ V − Z such that Zf is the
only member of Z for which z ∈ Zf and s′ ∈ V − Zf . It follows that,
going along the unique (undirected) path P of T from ϕ(s′) to ϕ(z),
the only forward edge is f . Therefore, each edge of the subpath of
P connecting ϕ(s) and ϕ(z) is oriented toward ϕ(s), implying that
Z does not contain a zs̄-set, a contradiction. �

Let A′
⊆ A denote the subset of edges of T leaving ϕ(V − Z).

Let s ∈ V − Z and z ∈ Z and consider the unique path P of
T connecting ϕ(s) and ϕ(z). By Claim 3.4, its first edge f at ϕ(s)
leaves ϕ(s) and hence Zf is a zs̄-set where Zf denotes the member
of Z represented by f . Therefore, the minimality of Z implies that
A′

= A, that is, every edge of T leaves ϕ(V − Z). Analogously, every
edge of T enters ϕ(Z). Therefore, T is a tree such that each of its
edges is of form ϕ(s)ϕ(z) for some s ∈ V − Z and z ∈ Z , that is, Z
is a tree-composition of Z . �

By combining Theorems 3.1 and 3.3, we obtain the following
corollary.

Theorem 3.5. For a given non-empty proper subset Z of V , a crossing
and Z-separating familyZ of subsets of V includes a tree-composition
of Z. �

4. Computing the full truncation of b

As an application of Theorem 3.5, we provide a simple proof of
Theorem 1.1.

Proof. Since a tree-composition is a special double-partition by
definition, (3) implies that b↓(Z) ≤ min{


F∈T b(F) : T a tree-

composition of Z}, therefore, we need to show a tree-composition
for which equality holds.

Obviously, b↓(V) = b(V), and b(V) = min{b(T) : T a tree-
composition of V } by Theorem 2.4. Hence from now on we can as-
sume that Z is a proper subset of V .

B(b) = B(b↓) by definition. Theorem 2.5 implies that there is
an elementm of B(b) for whichm(Z)(:=


z∈Z m(z)) = b↓(Z). Call

a subset X ⊂ Vm-tight if m(X) = b(X) and let F be the family
ofm-tight sets. Then F is a crossing set system by submodularity:m(X) + m(Y) = b(X) + b(Y) ≥ b(X ∩ Y) + b(X ∪ Y) ≥ m(X ∩

Y) + m(X ∪ Y) = m(X) + m(Y) whenever X, Y ⊆ V are crossing.
Claim 4.1. There exists an m-tight ts-set for every s ∈ V − Z, t ∈ Z,
so F is Z-separating.

Proof. If there is an s ∈ V − Z, t ∈ Z for which no m-tight ts-set
exists, then for ε := min{b(X) − m(X) : X is ats-set} the vector
m′ for which m′(s) := m(s) − ε, m′(t) := m(t) + ε, m′(v) :=

m(v) (v ∈ V − {s, t}) would belong to B(b) but would not belong
to B(b↓) that is a contradiction. �

By Theorem 3.5 there is a tree-composition T of Z consist-
ing of m-tight sets. Thus for this tree-composition,


X∈T b(X) =

X∈T m(X) = ∆(T)m(V −Z)+(∆(T)+1)m(Z) = ∆(T)m(V)+m(Z) = ∆(T)b(V) + m(Z) = 0 + b↓(Z). �

With a similar proof one can get the following.

Theorem 4.2. Let p be a crossing supermodular function for which
B′(p) ≠ ∅. Then

p↑(Z) = max
p(T) − ∆(T)p(V)


,

where the maximum is taken over all tree-compositions T of Z. �

5. Algorithmic aspect

With the bi-truncation algorithm [12,16] one can compute the
value of the full truncation of a crossing sub- or supermodular
function on a set Z ⊆ V provided a subroutine is available that
computes min{b(Y) − a(Y) : Y ⊆ X} and the minimizing set
for a vector a ∈ RV and a subset X ⊆ V . In several applications
this minimizing oracle can be obtained via a flow-algorithm hence
its running time is usually ϑ = O(|V |

3). If B(b) ≠ ∅, then the
algorithmoutputs a vectorm ∈ B(b)withmaximumvalue ofm(Z),
hencem(Z) = b↓(Z) by Theorem 2.5. However, the algorithm does
not compute the minimizing tree-composition.

Now we will give an algorithm for computing the minimizing
tree-composition in formula (1) if we are given a vector m ∈

B(b) with maximum value of m(Z). The proof of Theorem 1.1
implies that if m(Z) is maximum for m ∈ B(b), then the
m-tight sets form a crossing Z-separating family F . By using the
method described in the beginning of Section 3, one can get a
cross-free Z-separating family Z if the minimal m-tight sets are
computable. Therefore, assume that the minimizing oracle used in
the bi-truncation algorithm can compute also the minimizing set
of min{b(Y) − a(Y) : v ∈ Y ⊆ X} for a vector a ∈ RV and a
subset X ⊆ V in running time ϑ . Then the minimal zs̄-set can be
calculated using this oracle with a := m, X := V − s and v := z. To
get Z one needs to run the minimizing oracle O(|V |

2) times and
after that some search algorithm is needed that runs in O(|V |

3)
time. Thus we get Z in O(|V |

2ϑ + |V |
3) time. After that we need

to omit some elements of Z to get a minimal Z-separating family
that needs O(|V |

4) running time. The family we get will be a tree-
composition of Z by Theorem 3.3. Therefore, the total running time
of calculating the minimizing tree-composition is O(|V |

2ϑ + |V |
4)

that is O(|V |
5) in practice if the minimizing oracle is given by a

flow-algorithm.

Remark. With the bi-truncation algorithm one can get a double-
partition that minimizes (3). One can also read out an algorithm
from the proof of Theorem 1.1 given in [7] to obtain a minimizing
tree-composition, but this algorithm needs to uncross the double-
partition provided by the bi-truncation algorithm. The uncrossing
method means that we keep replacing two crossing members of
F with their union and intersection until the current family gets
cross-free. An uncrossing step increases the value of


F∈F |F |

2,
and hence the running time of the uncrossingmethod on a double-
partition of size Ω(|V |

2) is more than the running time of the bi-
truncation algorithm. More precisely, the bi-truncation algorithm

340 A. Frank, C. Király / Operations Research Letters 41 (2013) 336–342
(for finite-valued b) runs in time O(|V |
2ϑ + |V |

3) where ϑ is the
running time of theminimizing oracle used in the algorithm, while
the uncrossing procedure for such a family needs O(|V |

7) running
time. (If b can have infinite values, then the running time of the bi-
truncation algorithm is O(|V |

3ϑ).) With an adaptation of Fleiner’s
method [4], this bound for the running time of the uncrossing
procedure can be lowered to O(|V |

5).

6. Orientations

A graph G = (V , E) is k-edge-connected if dG(X) ≥ k for
every ∅ ≠ X ⊂ V . A digraph D = (V , A) is k-edge-connected
if ϱD(X) ≥ k for every ∅ ≠ X ⊂ V . By Menger’s theorem, this
is equivalent to the following: for any two nodes u and v there
is k edge-disjoint paths from u to v. A 1-edge-connected digraph
is called strongly connected. Robbins’ theorem [18] states that a
graph G has a strongly connected orientation if and only if G is
2-edge-connected. A natural extension to mixed graphs was given
by Boesch and Tindell in [1].

A significantly deeper extension of Robbins’ theorem is due
to Nash-Williams [17] who proved that a 2k-edge-connected
graph has a k-edge-connected orientation. Perhaps surprisingly,
the problem of finding a k-edge-connected orientation of a mixed
graph is much more complex since in this case the necessary and
sufficient condition relies on tree-compositions.

Suppose that M = (V , E ∪ F) is a mixed graph that consists of
an undirected graph G = (V , E) and a digraph H = (V , F). We
want to find an orientation

−→
G = (V ,

−→
E) of G so that the digraph

(V ,
−→
E ∪F) is k-edge-connected. This is equivalent to requiring that

the orientation of G covers hk where

hk(X) :=


k − ϱH(X) if ∅ ≠ X ⊂ V ,
0 if X ∈ {∅, V },

and an orientation
−→
G is said to cover h if ϱ−→

G (X) ≥ h(X) for all
X ⊆ V .

For a graph G = (V , E), a set-function h : 2V
→ R is

(crossing) G-supermodular if h(X) + h(Y) ≤ h(X ∩ Y) + h(X ∪

Y) + dG(X, Y) for every (crossing) X, Y ⊆ V . It is easy to see that
hk is crossing G-supermodular, hence the following theorem of [7]
gives a necessary and sufficient condition to the k-edge-connected
orientability problem for mixed graphs.

For an edge e = uv and for a family F let we(F) denote the
maximum of the number of uv-sets and the number of the vu-sets.

Theorem 6.1 ([7]). Let G = (V , E) be a graph and let h : 2V
→

Z∪{−∞} be a crossing G-supermodular function forwhich h(V) = 0.
There is an orientation of G covering h if and only if
e∈E

we(T) ≥h(T), (4)

holds for every tree-composition T of each subset of V . �

Theorem 6.1 was derived in [7] from the submodular flow
feasibility theorem. Submodular flows were introduced and
investigated by Edmonds and Giles in [3]. Let D = (V , A) be a
directed graph, f : A → Z ∪ {−∞}, g : A → Z ∪ {∞} two
integer-valued bounding functions for which f ≤ g . Moreover, we
are given a crossing submodular set-function b : 2V

→ Z ∪ {∞}

for which b(∅) = 0 and b(V) is finite. A function (or vector)
x : A → R is called a submodular flow or subflow confined by
b if Ψx(Z) := ϱx(Z) − δx(Z) ≤ b(Z) for every Z ⊆ V , where
ϱx(Z) :=


{x(uv) : u ∈ V − Z, v ∈ Z, uv ∈ A}, δx(Z) :=

{x(uv) : u ∈ Z, v ∈ V − Z, uv ∈ A}. Since Ψx(V) = 0 we
can assume that b(V) = 0. A subflow x is feasible if f ≤ x ≤ g .

The basic case of the submodular flow feasibility theorem is
when b∗ is fully submodular and integer-valued with b∗(∅) =
b∗(V) = 0 was proved in [6]: given a digraph D = (V , A) and
bounding functions f : A → Z, g : A → Z with f ≤ g , there is
an integer feasible submodular flow confined by b∗ if and only if

ϱf − δg ≤ b∗. (5)
By combining this result with Theorem1.1, one obtains the general
characterization:

Theorem 6.2 ([7]). Let b be a crossing submodular function forwhich
b(V) = 0. There is an integer feasible submodular flow confined by b
if and only if

ϱf (Z) − δg(Z) ≤b(T) (6)

for every nonempty Z ⊆ V and every tree-composition T of Z. �

Note that if b is fully supermodular, then there are several
algorithms for finding a feasible (integer) submodular flow (for a
survey see [14]). These algorithms can also be applied to compute
a feasible subflow when b is crossing submodular. But, in the case
when no feasible submodular flow exists, extra work is needed
to compute a violating tree-composition (see [7,10]). With the
algorithmdescribed in Section 5, it is simpler to find this and hence
the present method simplifies the finding of an obstacle if a mixed
graph has no k-edge-connected orientation.

In [5] it was proved that in the special case when h ≥ 0, (4) is
required only for tree-compositions of V , that is, for partitions and
co-partitions of V . Here we show how Theorem 6.1 implies this
special case.

Theorem 6.3. Let G = (V , E) be a graph and let h : 2V
→ Z+ be

a crossing G-supermodular function for which h(V) = 0. There is an
orientation of G covering h if and only if

e(P) ≥

q
i=1

h(Vi) and e(P) ≥

q
i=1

h(V − Vi) (7)

hold for every partition P = {V1, V2, . . . , Vq} of V .
Proof. As the necessity of (7) is straightforward, we only prove
its sufficiency. Assume that G has no orientation covering h. By
Theorem 6.1 there is a tree-composition T of X ⊆ V with

e∈E we(T) <h(T). ThenT ′
:= T ∪{V−X} is a composition ofV .

Assume for a contradiction that we(T
′) > we(T) for an edge e =

uv. Then emayhave exactly one endpoint, say u, inV−X . However,
in this case, dT (u) = dT (v) − 1, thus after subtracting the number
of sets containing both u and v, we get that the number of vū-sets
ismore than the number of uv̄-sets in T . Hencewe(T

′) = we(T), a
contradiction. Thus


e∈E we(T

′) =


e∈E we(T). Therefore, since
h is non-negative,


e∈E we(T

′) =


e∈E we(T) <h(T) ≤h(T ′).
By uncrossing T ′, we get a cross-free composition K of V

for which


e∈E we(K) < h(K) holds since h is crossing-G-
supermodular. By Lemma 2.3, K can be partitioned into partitions
and co-partitions of V and hence at least one of them violates
(7). �

Note that T ′ has only O(|V |) members hence the running time
of the uncrossing procedure is less than the running time of the bi-
truncation algorithm. Hence with the present method one can find
an orientation covering h or a partition violating (7) in the running
time of the bi-truncation algorithm. This is the best known running
time for this problem that can also be achieved by the algorithm
that can be read out from the following proof of Theorem 6.3 given
in [9]:
Proof. Let p(X) = h(X) + i(X). It can be shown that p is crossing
supermodular and that an integer vector in the base-polyhedron
B′(p) is the in-degree vector of an orientation covering h. A little
calculation shows that (7) implies the conditions of Fujishige’s
theorem (see Theorem 2.4). Hence there exists an integer vector
z ∈ B′(p). By the Orientation lemma of Hakimi [15] there exists an
orientation of Gwith in-degree vector z, completing the proof. �

A. Frank, C. Király / Operations Research Letters 41 (2013) 336–342 341
7. Tree-compositions of bipartite graphs

A theorem of [11] gives a min–max formula for the minimum
in-degree of T in a strongly connected orientation of a bipartite
graph G = (S, T ; E). We sharpen this theorem by using the notion
of tree-compositions, as follows.

Theorem 7.1. Let G = (S, T ; E) be a 2-edge connected bipartite
graph. Then

min

ϱ−→

G (T) :
−→
G strongly connected


= max


|T | : T a tree-composition of T complying with G


.

We are going to derive this theorem from the following more
general result.

Theorem 7.2. Let G = (V , E) be a graph and let h : 2V
→ Z+ be a

crossing G-supermodular function with h(V) = 0 for which (7) holds.
For a given subset ∅ ≠ T ⊂ V ,

min

ϱ−→

G (T) :
−→
G covers h


= max

h(T) +i(T) − ∆(T)|E| − i(T) : T

a tree-composition of T

.

In Section 6 the problem of finding an orientation covering
a G-supermodular function was formulated as a submodular
flow problem. Therefore, the fundamental result of Edmonds and
Giles on total dual integrality of the linear system describing a
submodular flow polyhedron implies a min–max result for the
minimum of ϱ−→

G (T). The point in Theorem 7.2 is that a min–max
formula could be given in a relatively simple and compact form.

Proof. In the second proof of Theorem 6.3, and let p := i+h it was
shown that B′(p) ≠ ∅ follows by (7) for p = i + h. Observe that an
integer vector x ∈ B′(p) for whichx(T) = min{m(T) : m ∈ B′(p)},
forms the in-degree vector of an orientation of G covering h for
which ϱ(T) is minimal. Thus the theorem follows basically from
Theorems 2.5 and 4.2. �

Theorem 7.2 can be used to prove the most important
corollaries of Theorem 6.3. For example (with h(X) := k for ∅ ≠

X ⊂ V) we can find a k-edge-connected orientation of a 2k-edge-
connected graph in which the in-degree of a given subset of nodes
T ⊆ V is minimal. We get the following theorem:

Theorem 7.3. Let G = (V , E) be a 2k-edge-connected graph, and let
∅ ≠ T ⊂ V . Then

min

ϱ−→

G (T) :
−→
G k-edge-connected


= max

i(T) + k|T | − ∆(T)|E| − i(T) : T

a tree-composition of T

. � (8)

Proof of Theorem 7.1. Consider the case of Theorem 7.3 when
G = (S, T ; E) is a bipartite graph and k = 1. In this case we show
that there is a tree-composition of T complyingwith Gmaximizing
(8). Note that if one edge e of G is induced by uT (e) members of a
tree-composition T of T , then uT (e) ≤ ∆(T) since its endpoint in
S is covered by ∆(T) members of T . If T is a tree-composition
that complies with the graph, then uT (e) = ∆(T) for every
e ∈ E. Let the deficit of an edge be ∆(T) − uT (e) and γ (T) :=

F∈T ∆(T)|E| − i(F). Therefore, γ (T) is the sum of the deficits.

Note also that i(T) = 0.
LetT be a tree-composition of T maximizing (8) forwhichγ (T)

is minimum. Let F = (US ∪UT , A) be the directed tree representing
T along with the map ϕ : V → US ∪ UT .

Claim 7.4. T is complying with G.

Proof. For a contradiction, assume that ϕ(s∗)ϕ(t∗) ∉ A for s∗ ∈

S, t∗ ∈ T , s∗t∗ ∈ E. Let P be the undirected path of length 2r + 1
between ϕ(s∗) and ϕ(t∗). Shrink the set V (P) ∩ UT in F and let
F ′ be the resulting tree and T ′ the tree-composition of T that
is represented by F ′. It is easy to see that |T ′

| = |T | − r and
γ (T ′) ≤ γ (T)−r , since the deficit of the edge s∗t∗ becomes 0 from
r and the deficit of the other edges does not increase. Therefore,i(T) + |T | − ∆(T)|E| = |T | − γ (T) ≤ |T ′

| + r − (γ (T ′) +

r) =i(T ′) + |T ′
| − ∆(T ′)|E| thus T ′ is also a maximizing tree-

composition of T with smaller deficit, a contradiction. �

This completes the proof of Theorem 7.1. �

Finally, we note that using Theorem 7.1 one can simplify
formula (8) for k = 1 with the following idea. Let G = (V , E)
be a 2-edge-connected graph, ∅ ≠ T ⊂ V and C be the set
system formed by the components of G[T] and G[V − T]. Now the
graph G/C (that is the graph that arises from G by contracting each
member of C) is bipartite and a strongly connected orientation of
G determines a strongly connected orientation of G/C. Conversely,
any strongly connected orientation of G/C can be extended to a
strongly connected orientation ofG. This follows immediately from
a theorem of Boesch and Tindell [1] stating that a mixed graph
has a strongly connected orientation if and only if there is no cut-
edge and there is no one-way cut. Therefore, it suffices to find a
strongly connected orientation of the bipartite graph G/C where
the in-degree of T/C is minimum.

Acknowledgments

The authors received a grant (no. CK 80124) from the National
Development Agency of Hungary, based on a source from the
Research and Technology Innovation Fund. The research was
supported by the MTA-ELTE Egerváry Research Group.

References

[1] F. Boesch, R. Tindell, Robbins’s theorem for mixed multigraphs, American
Mathematical Monthly 87 (1980) 716–719.

[2] J. Edmonds, Submodular functions,matroids, and certain polyhedra, in: R. Guy,
H. Hanani, N. Sauer, J. Schönheim (Eds.), Combinatorial Structures and their
Applications, Gordon and Breach, New York, 1970.

[3] J. Edmonds, R. Giles, A min–max relation for submodular functions on graphs,
Annals of Discrete Mathematics 1 (1977) 185–204.

[4] T. Fleiner, Uncrossing a family of set-pairs, Combinatorica 21 (2001) 145–150.
[5] A. Frank, On the orientation of graphs, Journal of Combinatorial Theory. Series

B 28 (3) (1980) 251–261.
[6] A. Frank, An algorithm for submodular functions on graphs, Annals of Discrete

Mathematics 16 (1982) 97–120.
[7] A. Frank, Orientations of graphs and submodular flows, Congressus Numeran-

tium 113 (1996) 111–142.
[8] A. Frank, Z. Király, Graph orientations with edge-connection and parity

constraints, Combinatorica 22 (2002) 47–70.
[9] A. Frank, T. Király, Z. Király, On the orientation of graphs and hypergraphs,

Discrete Applied Mathematics 131 (2) (2003) 385–400.
[10] A. Frank, Z. Miklós, Simple push-relabel algorithms for matroids and

submodular flows, Japanese Journal of Industrial and Applied Mathematics 29
(2012) 419–439.

[11] A. Frank, A. Sebő, É. Tardos, Covering directed and odd cuts, Mathematical
Programming Studies 22 (1984) 99–112.

[12] A. Frank, É. Tardos, Generalized polymatroids and submodular flows,
Mathematical Programming 42 (1988) 489–563.

[13] S. Fujishige, Structures of polyhedra determined by submodular functions on
crossing families, Mathematical Programming 29 (1984) 125–141.

[14] S. Fujishige, S. Iwata, Algorithms for submodular flows, IEICE Transactions on
Information and Systems E83-D (2000) 322–329. Special Issue on Algorithm
Engineering: Surveys.

342 A. Frank, C. Király / Operations Research Letters 41 (2013) 336–342
[15] S.L. Hakimi, On the degrees of the vertices of a directed graph, Journal of the
Franklin Institute 279 (4) (1969) 290–308.

[16] T. Naitoh, S. Fujishige, A note on the Frank–Tardos bi-truncation algorithm
for crossing-submodular functions, Mathematical Programming 53 (1992)
361–363.
[17] C.St.J.A. Nash-Williams, On orientations, connectivity and odd vertex
pairings in finite graphs, Canadian Journal of Mathematics 12 (1960)
555–567.

[18] H.E. Robbins, A theorem on graphs with an application to a problem of traffic
control, American Mathematical Monthly 46 (1939) 281–283.

	Tree-compositions and orientations
	Introduction
	Preliminaries
	Tree-compositions
	Computing the full truncation of b
	Algorithmic aspect
	Orientations
	Tree-compositions of bipartite graphs
	Acknowledgments
	References

