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Given a directed graph G, a covering is a subset B of edges which meets all direcied cuts
of G. Equivalently, the coniraction of the clements of B makes G strongly connected. An O¢:#)
primal-dual algorithm is presented for finding a minimum weight covering of an edge-weighted
digraph. The algorithm also provides a constructive proof for a min-max theorem due 1o Lucchesi
and Younger and for its weighted version.

1. Introduction

The purpose of this paper is to present a polynomial-bounded algorithm
for making a directed graph strongly connected by contracting a minimum number
of edges, or more generally a set of edges of minimum total cost. At the same time
the algorithm proves an important theorem of Lucchesi and Younger [8] and also
its extension due to Edmonds and Giles [1].

We are given a connected digraph G=(F, E) with a non-negative integer
cost function 4 on the edge set E. We say G is strongly connceted if, for arbitrary
vertices x and y of V, there exists a directed path from x to y. As is weli known,
G is not strongly connected if and only if there is no edge leaving X, for some non-
empty proper subset X of V. Such a set X is said to be a kernel and the nen-empty
set D(X) of edges entering X is called a directed cut, or dicut (determined by X).

An cdge set BCLE s called o conering if every dicut uses at least one clement
of B. The cost d(B) o B is D (d(e): eC B). Obviously, B is a covering il and only
if by contracting its elements G becomes strongly connccted. So we want to find
a minimum cost covering. The Lucchesi—Younger theorem concerns this mini-
mum when d(g)=1I:

Theorem A. The minimum cardinality of a covering is cqual to the maximum number
of (edge) disjoint directed cuts.

For a bricf proof, see Lovisz [7]. For the gencral case we need a definition,
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(2.10) For a closed kernel X, K(X) consists of disjoint 1-strict dicuts, the union of
which is D(X).

(2.11) Lemma. Let B' be another covering. If X is closed with respect to B and
on (X)=pa(X) then X is also closed with respect to B'.

Proof. For the strict partition of X we have op(X)=Zop(X)=Zc(X)=gp (X)=
= o (X), therefore the X, are strict with respect to 8. By (2.9) the lemma follows. §

3. Dicuts and potentials

By a potential p we mean_an integer valued function on V.
For an edge (x))CE let d(xy)=d(x))—p(»)+p(x). Suppose that we have
a covering B and a potential p for which the following optimality criteria hold:

(3.1) (a) For every blue edge (xy), d(xy) = 0.
(b) For every white edge (xy}, d(xy)=0. .
(c) For every yi P(x), p(y) = p(x).

In this case we can produce a family X of dicuts which, together with B,
salisly (2.2) (a9, (b) and (¢). For a dicut D, x;, will denote the number of its copies
occuring in K.

Since any constant can be added to p without destroying the optimality
criteria, we can assume that the minimum value of p is zero. Denote by 0=po<
wpy ... <p, the different values of p. Define V= {x: p(x)=p;} for i=1,2, ..., m.
Then B=F,C ¥ and one can see by (2.8),

(3.2) Criterion (3.1)(c) is equivalent to the fact that each Vi is a closed kernel.

Let xp=Z(p;—p;_;) where the summation is taken over those indices ¢ for
which DeXK(V). (The empty sum is zcro).

We assert that K and B satisfy the requirements. By (2.10) X consists of
I-strict kernels, thus (2.2)(c) holds. If ¢ is a blue {or white) edge then, by the optimal-
ity criterion (a) ((b), resp.), e occurs in at least (at most, resp.) d{e) dicuts among
the D(V), whence, by (2.10), (2.2)(a) {(b), resp.) holds.

4. Improving a covering - potential pair

The above argument shows that to prove Theorem B all that is necessary
is to construct a covering B and a potential p satisfying the optimality criteria.
The core of aur procedure is the following.

{4.1) Algorithm.

Input: A covering B, a potential p, and a blue edge (ab) such that (3.1)(b) and (c)
hold but (aby vielates (a).

Ouiput: A covering B’ and a potential p’ such that (3.1)(b) and (¢) hold again, (ab)
does not violate (a) and if an edge violates (3.1)(a) then it violated (3.1)(a) with
respect to B and p.
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Assume this algorithm is available. Repeat it successively until there exists
no blue edge violating (3.1)(a). At the beginning B may be the edge sct of a spanning
tree and p=0. Then after no more than |Bi=n—1 applications of aigorithm
(4.1) (where n=|V|), we get a covering B and a potential p which satisfy alt three
optimality criteria.

We define an auxiliary digraph H=(V, A) (dcpending on G, B and p) as
follows. Let A consist of the following three not necessarily disjoint parts Ay, Ay
and Ag. (H may contain multiple cdges.)

(4.2 Ay = {(xy): (xp)EB, d(xy) = 0}
Ay = {(yx): xP)EE—B, d(xy) = 0}
{(xy): YEP(), p(3) = p(0)}-

We refer to the elements of Ag, 4, and Ay as blue, white and red edges, respectively.
Let us try to find a directed path from b to @ in H. There may be two cases.

il

Ay

Case 1. There is no directed path from b to @ in Jf. That is, al I'={y: y
can be reached from & in A} Change p as [ollows.
P i x¢T
p(x)+d8 if xcT,
where d=min {3,, 85, Oy, Sr) and §,=d(ab), Sy=min (—d(x3): (x1)€ B, (x))

leaves T3, dw=min {d(xy): (xWCE—B,(xy) emters T} dg=min {p(y)—p{x):
x€T, yeP(x)— T}

“4.3) Pix)=

(The minimum is defined to be e when it is taken over the cmpty sct.)
Note that the definition of T implics that:

(44) In H there is no edge leaving T.
{4.5) Claim. =0,
Proof. 8,0 is equivalent to the fact that (ab) violates (3.1)a) (with respect to
B and p). 85>0. Otherwise d(xy)=0 for some cdge (x¥)€ff leaving T. Then
(xy)EAy, contradicting (4.4). &, =0, "Otherwise d{xp)=0  for some cdge
(x)€ E—B entering T2 Then (yx)eAy, contradicting (4.4). d,~0. By (3.H{©)
p(M:zp(x). Thus S0 would imply p(p)=p(x), ic. (xy) would be a red edge
leaving 7, contradicting (4.4). §

For the new & (x))=d(x»)—p'(¥)+p (x) we have

d(xy)+8 if (xp) leaves T,
(4.6) dx=1d(xy)—=86 if (xy) emters T,
dixy)- otherwise.
Claim, If, for a blue edge, (3.1)(a) was true then it continues 1o okl.
Proof. Let (xy)eB and d{xp)=0. I, indircctly, d’{x))=0 then because of {4.5)

and (4.6), (xy) leaves T and thus —d(x))=8,=4, i.c., by (4.6), d'(xr)50, a con-
tradiction. |
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A family K of not necessarily distinct dicuts is called d-independent if no
edge ¢ occurs in more than d(¢) members of K.

Theorem B. The minimum cost t, of a covering is equal to the maximum cardi-
nality vy of a d-independent fumily of directed cuts.

This result has been obtained by Edmonds and Giles from a much more
general minimax relation concerning submodular functions, but it can also be
derived from Theorem A by elementary construction. In another paper [3} I shall
show the method described here can be extended to get an algerithmic proof of
this general theorem of Edmonds and Giles. So we shall have an algorithm having
specializations (besides the present onc) as the weighted matroid intersection algo-
rithm, the minimum cost circulation algorithm, the so called independent flow
problem {4] and so on.

The previously used methods for proving the Lucchesi—Younger theorem
were based on the same fundamental principles and were not algorithmic in character.
The prescnt approach is quite different,

2. Optimality criteria for coverings

We say that an edge e=(xy) enters a subsct XV if its head p is in X
but the tail x is not. An cdge feaves X if it enters V—X.

For FSE, the indegree pp(X) (outdegree 5¢(X)) means the number of
edges in Fentering (leaving) X. A simple counting shows that:

(2.1) 0p(X)40p(¥) = gp(XUY) 4o (XNY), for kernels X, Y.

Let F*={(xy): (yx)¢ F}. 1t will be convenient to consider ' to be a kernel. Two
kernels X and Y are intersecting if XN ¥ »p. If, in addition, XU Y#V then they
arc crossing.
We shall be referring to a covering B throughout the algorithm. The edges
of the current 8 will be called blue cdges, the remaining edges of G white edges.
For the quantities in Theorcm B, obviously v,=1,, To prove the equality
we shall construct a covering B and a family K of dicuts such that:

(2.2) (a) Every blue edye e is in exactly d(¢) dicuts from K.
() Every white edge e is in at most d(¢) dicuts from K.
() gp(X)=1 for XK.

Our method will vield a B and a K satisfying (b), (c) and the following condition:
(a") Every blue edge ¢ is in at least d{e) dicuts from K.

However, in this case we can immediately achicve (a); namely, whenever e< B and
cisin k>d(e) dicuts from K, we omit k—d(e) of these dicuts. The family X will
be produced by potentials, which we shall define aftcr presenting some simple
notions and propositions.

Denote by c(X) (XS V) the number of weak components of G— X

(2.3) Lemma, For any kernels X, Y we have ¢(X)+c(¥)=c(XNY)+e(XUT).
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Proof. Let us consider G as an undirccted graph. Denote the set of edges with both
end-vertices in F—X by B(X). For the rank of B(X) in the cycle matroid of G,
we have r(B(X))=|V—X|—e(X). Furthermore, B(XYUY)=B(X)NE(Y) and
B(XNTY)=B(X)UB(Y). (The fact that X and ¥ ar¢ kernels and thus these is no
cdge between XY and ¥—.X is exploited in the seeond equality.) Now the lemma
follows since r is submodular. J

It can be seen that, for a kernel X, the dicut D (X} is the union of c(X) dis-
joint dicuts, the kernels of which are the complements (concerning V) of the com-
ponents of ¢—-X. We say these dicuis belong to X and denote their sct by L{V).
Trivially,

(2.4) For a kernel X and covering B, op(X)=c(X).

A kernel X (and the dicut D(X)) is said to be strict (with respeet to B) if
0s(X)=c(X). If, furthermore, c¢(X)=1 then X is [-strict (with respect to B).
Note that ¥ is always strict and:

(2.5) For a strict X, L(X) consists of |-strict dicuty which partition (X)),
(2.6) Lemma, For intersecting strict kernels X, Y, both XY and XUY arc strict.

Proof. From (2.1}, (2.3) and (2.4) we have o(X)-c{¥)=pu(X}+op(¥)=p, (YY)
+op(XUN=Ze (XN +c(XU = (X)+c(¥) which implies gz(XN)Y)}=c(XNY)
and gz(XUY)=c(XUY). §

Repeated applications of (2.4) yiclds:

(2.7) If a set of strict kernels forms a connected hyporgraph then their wiion is
strict again.

Let woc denote the intersection of all strict kernels containing a fixed verlex
x€ V. (Since ¥ is strict, P(x) is well-defined).
From (2.4} we can sec that:

(2.8) P(x} is the (unique) least strict set comtaining x, and yCP(x) for any
edge (x))C L.

In § 5 we shall show how P(x) can be clfectively delermined.
A kernel X is called closed (with respect to B) if x€ X implies P(x)E X,

(2.9} Lemma, A kernel X is closed if and only if it is the union of disfoint stvict kernels.

Proof. The “if " part is trivial. Conversely, consider the hypergraph £ on X formed
by the sets P(x) (x€X). The union of these scts is X and, by (2.7}, the components
of H provide the rcquired partition of X. J

The (unique) partition X3, X3, ..., X obtained in the proof s called the
strict partition of X.

Let K(X)=U{L(X): i=1,2,...,k}. Since the dicuts D(X,) arc disjoint
and partition D(X) we get by (2.5):

4%
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Claim. (3.1)(b) remains valid.

Proof. If (xy)c E— 8 then d{xy)=0 and the indirect assumption d’(xy)<0 imply,
by (4.5) and (4.6), that (xy) enters T. Then d(xy)=dp =4, ie., by (4.6), 4’ (x)=0,
a contradiction. J

Claim. (3.1)(c) remains valid.

Proof. Let y€ P(x) (P(x) does not depend on the potential change) and assume, on
the contrary, p'(p)=p’(x). Then xe€T and ycP(x)—T. Thercfore p’ (¥)=p(»)
and p'(x)=p(x)+3, whence p(p}—p(x}=85. On the other hand, p{(¥)—p(x}
s=dpi=d, a contradiction. |

If 6=4, then (ab) satisfies (3.1)(a) and thus algorithm (4.1) ends.

If §=§, then repeat algorithim (4.1) with the input B, p” and (ab). We observe
that in the new auxiliary graph H’ the cdge sct spanned by T is the same as in H.
Morecover, the definition of § assures that H’ contains at least one edge leaving
T (which is in Ay, A ot Ag according as 4 is cqual to &g, &y or ). Consequently
the set I of vertices which can be reached by a directed path from b in A’ properly
includes T. Thus, after at most n—1 iterations, cither d=46, or acT (case 2) is
achieved.

Case 2. In If a can be reached from b, Let {7 be a ba-path of minimum number
of edges. (We shall use only that U=(x,=b, x4, ..., X,=a) does not span a red
“cut ofl” edge, i.c. (%,x;4;) (j=2) is not a red edge.)

Since {ab)c Ay, U and (ab) form a directed circuit Cin H. Let Cg and Gy
denote the set of blue and white edges of C respectively, Now the elements of Cy
{(Cr) correspond to blue (white) edges of G (where Cy denotes Cyp with orientation
reversed).

Ilet B=B—CpUCH. In other words, change the colors of those edges
of & which correspond to the blue and white edges of C.

(4.7) Lemma, B’ is a covering.
Proof. For a kernel X, denote ¢,(X) (5,(X)) the number of red edges of U entering
(leaving} X. Then we have

(4.8) op (X) = ¢p(X)+e.(X)—6,(X).

This is quite clear when g,{X)=45,{X)=0, and hence the general case
can also be proved by a simple induction on g,(X)+38,(X).

let e{X)=gz(X)}-c(X). Then £(X)=0 and the cquality holds just if X
is strict with respect to B. From (2.1) and (2.3) we get

(4.9)  s(X)+e(Y) = e(XNY)+e(XUY) for intersecting kernels X, Y.

To prove the lemma we have to verify that g, (X)=c(X) for each kernel X,
This follows from (4.8) and the inequality £(X)=4,(X). Before proving the latter,
let us consider a kerncl X with &,(X)=0. )

Let (xy) be a red edge of U leaving X such that p(y)} (=p(x)) is as great as
possible and if there is more than onc edge of this type then (xy) is the first one
of U (starting from b). Let X’'=XUP(x) (P(x) concerns B).

(4.10) Claim. 5,(X") = 6,(X)—1.
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]
Proof. Because no red edge leaves P(x) and (xp) docs not leave X, we have §,(X")
=4,{X)—1. On the other hand, if (s?) is another red edge of U leaving X then
1§ P(x) (i.e. (s¢) leaves X', too): in the contrary casc, by (3.1)(c), p(1)=p(x) and
thus, because of the maximality of p(y), p(¢)=p(x). Consequently, (x¢) would be
a red (cut off) edge spanncd by U, which contradicts the minimal property of U, §

Claim. ¢(X) =4 (X).

Proof. We use induction on 8,(X). Since £(X)=0 wc can assume §,{V)=0. From
4.9), e(X)=e(X)+e(P(x))z=e(XNP(x))+&(X)=c(X’). By (4.10) we can apply
the induction hypothesis for X” and get e(X)=c(X)=5,{X)=0,(X)—1, that s,
e(X)=6,(X) which proves the claim. |}

This o&:anm the proof of Lemma (4.7). [
Let us consider what has happened to the optimality critcria.

Claim. (3.1){a} is valid for the new blue edges.
Proof. If (x)) is a new blue edge of G then (yx) was a white cdge of / and thus
d(xy)=0, as required (scc (4.2)). i

Claim. (3.1)(D) remaing valid.
Proof. If (xy) is a new white edge of G then (xy) was a blue cdge of I and thus
d(xy)=0, as required, ||

Claim. (3.1)(c) remains valid,

Proof. We suppose again that the minimum of p is zero. By (3.2) it suflices to prove
that V,={x: p(x)=i} is a closed kernel with respeet to B, for cach positive value
i of p. By the definition of Ay and ¥, ¢, (V)=35,(F)=0. From these and (4.8)
we obtain gg(¥;)=0p (V). Apply Lemma (2.11). §

We have now completed the correctness prool of algorithm (4.1) and con-
sequently the proof of Theorem B, |

5. Complexity

At this point we examine how P(x) can cilectively be determined. We are
given an arbitrary covering B. Using (2.6), it can casily be checked that:

(5.1) A kernel X is strict if and only if X is the non-copty intersection of some
L-strict kernels.

Let B={g,=(x;3): i=1,2,...,I}. Let G; denote the graph obtained from
G by adding a set (B—e,)* of new edges (i.e. the new edges are the reversed clements
of B—¢g). Let Pi(x)={y: y can be reached from x in ;). Therefore, using the
well-known labeling technique [2], P;(x) can be produced in at most cn? steps.
Let R(x)=N{Pi(x): i=1,2, ..., I}

{5.2) Lemma, P{x)=R(x).
Proof. P;(x) is either ¥ or a l-strict set. Because of (5.1), P(x) is the intersection
of 1-strict kernels containing x and thus P{x)< R(x). On the other hand, if there
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exists a vertex y in R(x)—P(x), then xcX, y¢ X for some I-strict kernel X. If ¢
is the only edge of B entering X then P (x)S X, i.c. y¢ P,(x), a contradiction. []

Lemma (5.2) enables us to construct P(x) in O(n®) steps for a fixed x. So
determining all P(x)’s requires at most O(n'} steps.

It is conceivable that there may be a better way to find all P(x)’s. 1t would
be very useful to have a procedure of complexity f(n)=#* (or perhaps =n?) since,
as we shall see, computationally this is the crucial part of the algorithm.

The other part of the algorithm (4.1} finds a ba-path in H. To this end we
can again apply the labeling technique. In Case 1 the sct T"is just the set of vertices
having received 2 label during the labeling algorithm. In Case 2 the ba-path U
produced by the labeling algorithm is automatically free of cut off edges.

The labeling algorithm uses at most cu?® steps. Moreover, if é=48, occurs
in the course of the algorithir and we apply (4.1) again with the modified potential,
then the labels calculated previously can be used (7'c 7). (Note that, in this case
the new auxiliary graph arises simply from the old one by joining some new edges
leaving T and deleting some old ones entering T.)

Therefore the whole algorithm (4.1) needs at most cr®+f(n) steps. Since
(4.1) is applied at most (m—1) times, the complexity of the algorithm developed
here is cstimated to be n{c*-tf(w))=cn®.

Finally, given an optimal pair B, p, we have to construct the corresponding
optimal family of dicuts (cf. § 3). This can be done in O(#*) steps as follows. The
parts of the strict partition of cach V; arc precisely the components of the graph
G,=(V;, E) where E;={(x)): yeP(x), x, ye V;}. Therefore these parts can be
determined in O{n?) steps, hence D(F)) can be partitioned into l-strict dicuts in
O™ steps. The O () bound follows by observing that there are no more than
n scts F.

6. Formal description of the algorithm

Step 0. (Start) Let B be a covering and p be a potential which satisfy (3.1)(b) and
(c). At the beginning, B may be the edge set of a spanning tree and p=0.
We call the elements of B and E— B blue and white, respectively.

Step 1.

1.0 Determine P(x} for ali x¢ V.

1.1 If every blue edge satisfics (3.1)(a)}: Halt. The current covering 8 is
optimal.

1.2 Select a blue edge e=(ab) violating (3.1)(a).

1.3 Construct the auxiiiary graph A and try to find a ba-path in H by the
labeling technique (using the labels defined but not yet removed pre-
viously). If this path U exists, go to Step 3.

Step 2. (potential change)
2.0 Let T be the set of labeled vertices. Calculate § and let p{x):=p(x)+d
for xcT.
2.1 If §=35, remove all the Iabels and go to l.L
2.2 Go to 1.3,
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Step 3. (covering change)
Let C=U-+e and denote Cp and Cy the sct of blue and white cdges of
C, respectively. Let B:=B—CplUCy. Go to L0

Remark. We note that the algorithm works without regard to the integrality of
the cost function d. The only difference is that p may assume non-integral values
as well. In this case Theorem B must slightly be modificd as follows.

Theorem C. [1] The minimum weight of a covering is equal to the maximum sum
X x, where the non-ncgative variables x, are associatcd with the directed cuts
D so that the cost d(e) of any edge e is at least the sum of variables associated with
dicuts containing e.

Remark. Recently I have learnt that C. L. Lucchesi [9] and A. V. Karzanov {5]
gave polynomial algorithms for Theorem A.
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