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AN ALGORITHM FOR SUBMODULAR FUNCTIONS
ON GRAPHS

Andris FRANK*

Research Institute for Telecommunication, Budapest, Hungary 1026

A constructive method is described for proving the Edmonds—Giles theorem which yields
a2 good algorithm provided that a fast subroutine is available for minimizing a submodular

set function.

The algorithm can be used for finding a maximum weight common independent set of two
matroids, for finding a minimum weight covering of directed cuts of a digraph, and, as a new
application, for finding a minimum cost k strongly connected orientation of an undirected

graph.

As a theoretical consequence of the algorithm, we prove a combinatorial feasibility
theorem for Edmonds—Giles polyhedron and then we derive a discrete separation theorem
which says, roughly, an integer valued submodular function B and an integer valued
supermodular function R can be separated by an integer valued modular function provided

that R = B.

0. Introduction

In [2] Edmonds and Giles have proved a quite general min-max relation for
submodular functions on graphs. This result includes such specializations as
Hoffman’s circulation theorem, Edmonds’ polymatroid intersection theorem [1]
and the Lucchesi-Younger theorem [15,16] on directed cuts. Despite this
generality, the proof is not too difficult to understand, but it is far from being
constructive. One of the purposes of the present paper is to describe an
algorithmic proof of the Edmonds—Giles theorem. This proof yields a poly-
nomial bounded algorithm provided that a fast subroutine is available for
minimizing a submodular set function. It should be noted that such subroutines
indeed exist for the specializations mentioned above.

Recently, Grétschel, Lovész and Schrijver [11] developed a procedure for
minimizing an arbitrary submodular function. Their algorithm, which uses the
ideas of the ellipsoid method, is a good one. It also implies a rather surprising
result, namely, the number of sets X whose value b(X) is explicitly needed
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during the algorithm can be bounded above by a polynomial function of n, the
cardinality of the ground set. I think it is a great challenge for combinatorial
optimization to find a ‘proper’ combinatorial algorithm for minimizing a
submodular function (‘proper’ means that the algorithm may use integer
arithmetic only and no approximation procedure).

Actually, the method of Grotschel et al. is suitable for algorithmically solving
the Edmonds-Giles problem itself. Hence in this sense the present algorithm is
not the first one. However our method which operates with such classical
combinatorial devices as augmenting path, labelling technique etc., also pro-
vides a proof for the Edmonds-Giles theorem while the method of Grotschel et
al. does not lend itself to such a proof. In fact, their method essentially makes
use of the theorem itself.

Since the Edmonds—Giles theorem implies Edmonds’ matroid intersection
theorem as well as Lucchesi-Younger theorem on the maximum number of
edge-disjoint directed cuts, the specializations of our procedure obviously
provide algorithms for these cases. These specializations are rather important
for their own sake, so it seems to be worthwhile to work out the details and
exploit the special advantages for these cases. See [7,8]. As a further ap-
plication of the method we shall show how to find the cheapest k-strongly
connected orientation of a 2k-edge-connected undirected graph if the two
possible orientations of any edge may have different costs, (The existence of
such an crientation was proved by Nash-Williams [17]. See also [5].)

A theoretical consequence of our algorithm is a combinatorial feasibility
theorem from which a discrete separation theorem will be derived. This states,
roughly, that the integer valued super- and submodular functions r and b can
be separated by an integer valued modular function provided that r < b. This
theorem can be considered as a counterpart of the well-known ‘continuous’
result that a concave and a convex function on a convex, compact set in R" can
be separated by a linear function if the concave function nowhere exceeds the
convex one.

Another corollary gives a common generalization of the augmenting circuit
theorem from network flow theory and its counterpart in matroid intersection
theory [12, 13].

1. Preliminaries

Throughout the paper we work with a finite ground set V of n elements. If
A C V, the complement of A is denoted by A. Sets A, B C V are co-disjoint if
A and B are disjoint. Sets A, B C V are intersecting if none of ANB, A-B,
B— A is empty. If, in addition, AU B# V, then A and B are crossing. A
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family & of subsets of V is intersecting (crossing) if ANB, AUBE & for all
intersecting (crossing) members A, B of &. A set function p is submodular on
A, B if b(A)+ 5(B)=b{ANB)+ b(A U B). If equality holds the function is
modular on A, B. A function r is supermodular if —r is submodular. A set A is
called a ub-ser if u€ A, v & A.

Let G =(V, E) be a directed graph with n vertices and m arrows. (We use
the term ‘arrow’ rather than directed edge.) Multiple arrows are allowed but
loops not. An arrow uv enters (leaves) BC V if B is a vii-set (uf-set). For
H C E, py(B) stands for the number of arrows in H entering B.

Set p(B) = pe(B) and define 8y (B) = pu(B). For a single element set we use
p(v) instead of p({v}).

Often we shall not distinguish between 2 subset H of E and its incidence
vector x. For example, p,(B) = py(B).

Let # be a crossing family of subsets of V and A’ be a (0, 1) matrix the
rows of which correspond to the members of &, the columns correspond to the
elements of E and

—1 if e leaves F,
ag,=1+1 if e enters F,
0 otherwise.

Let b’ be an integer-valued function on % submodular on crossing members
of F'. Without loss of generality we can assume that V& F. Let d be a
nonnegative vector in RE, that is, d is a weighting of the arrows. The theorem
of Edmonds and Giles can be formulated as follows,

Theorem 1. The linear programming problem

max dx

st. O0=sx=<1, A'x<s)p’, )
has an integral optimal solution provided that it has a feasible solution at all. If,
in addition, d is integer-valued there exists an integral optimal solution to the
dual linear programming problem.

Remark. Actually, Edmonds and Giles proved their theorem in a more general
form. They allowed 4 to have negative components and the bounds for x were
arbitrary, not necessarily 0 and 1. It should be noted however, that the three
special cases mentioned earlier (Edmonds’ matroid polyhedron theorem, the
Lucchesi-Younger theorem and graph orientation) are consequences of this
apparently weaker version. Moreover, if d# 0, the algorithm can simply be
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modified without losing the polynomial bound. If in (1) the more general
constraint f < x < g is prescribed (f, g integer-valued) the algorithm can also be
extended to handle this case. That transformation assures finite termination
and so provides a proof for the general form of the theorem. However in this
case the polynomial bound may be destroyed as is the case in network flow
theory where the out-of-kilter algorithm is not a good algorithm. In order to
get a proper good algorithm for this general case some scaling technique seems
to be needed [3]. Here we do not go into details in this direction but only
mention how the general problem (in principle) can be converted into form (1).

(a) If d(e) <0, replace e = uv by &’ = vu. Set f'(e') = —g(e) and g'(e") = ~f(e)
and d'(e")= —d(e). If d(e)=0, set f'(e) = f(e), g'(e) = gle), d'(e) = d{e).

(b) Set f(e)=0 and c(e)= g'(e)— f'(e) for each arrow e and set b'(X)=
b(X)~Z (g'(e): e enters X)+ Z (f'(e): e leaves X) for X € F'.

(c) Replace any arrow e by c(e) parallel arrows. The new problem is now
equivalent to the original one and is of form (1).

First we shall prove Theorem 1 and give an algorithm for the even more
special case when the family of subsets in question is intersecting and the
function on the family is submodular on each intersecting pair. In Section 8 we
show how this proof and algorithm extends to general crossing families.

2. Intersecting families

In order to avoid confusion, instead of F', let & denote an intersecting
family of subsets of V and assume that 8 € ¥, VE . Let b be an integer-
valued function on &%, submodular on intersecting sets and #(V)=0. Let A be
defined in the same way as matrix A’. Consider the. dual pair of linear
programs:

max dx

st. 0<x<1, Ax<b, 3]
and

min by + 1z 3

st. y,z=0, (y, NVTWH_ =d,

where the components of y and z correspond to the elements of & and E,
respectively, and I denotes the identity matrix (of appropriate size).
The complementary slackness conditions are
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x{e)=>0-ya, + z{e)=d(e),
z{e)>0-x(e)=1,
y(F)>0-akx = b(F),

where a, denotes the column vector of A belonging to e and a¥ stands for the
row vector of A belonging to F. One can see that y determines uniquely the
optimal vector z, namely z(e)= d{e)— ya,, if this value is positive and 0
otherwise. Thus henceforth we shall refer to the dual solution only by the
vector y.

Since we are interested in 0-1 vectors x the optimality criteria are as follows:

x(e)=1-ya <d(e),
x(e)=0~-ya =d(e), @
y(F)>0-sa¥x = b(F).

Starting with any integral feasible solution to (2), the algorithm will construct
vectors x and y satisfying (4). The method is based on two ideas. The first one
makes it possible for the dual program to be handled with the help of a
so-called potential which is a | V]-dimensional vector (unlike the usually much
higher dimensional vector y). At the end of the process the optimal y will be
simply reconstructed from the potential. The second idea is a generalization of
the classical augmenting path method. Roughly speaking, we shall use an
augmenting system of disjoint paths rather than one augmenting path for
performing a single augmentation. This set of paths will be determined by
introducing appropriate auxiliary arrows: a path in the extended graph will
define disjoint paths in the original one.

Let us fix a feasible 0-1 solution x to (2) and denote a¥x by o, (F) or briefly
o(F). This is a function on ¥ depending on x and a simple counting argument
shows that o is modular, ie., o(K)+ o(L)= o(K N L)+ o(K U L). The feasi-
bility of x means that o(F) =< b(F) for each F € &.

A member F of ¥ is called b-strict (with respect to x)} or briefly strict when it
is not ambiguous if oo(F) = b(F). For example, V is always strict since o(V) =

b(V)=0.

Lemma 2. If K and L are intersecting strict members of ¥, then KN L and
K U L are also strict.

Proof, 5(K)}+ b(L)=o(K)+ao(L)=a(KNL)+ (KU L)=sKNL)+ KU
LYy=b(K)+ b(L) from which o(KNL)=s(KNL) and o(KUL)=b(KUL)
follow, as required. [J
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Denote by P(v) the intersection of all strict sets containing a vertex v of G.
(P(v) depends on x.)

Lemma 3. (a) P(v) is strict.
(b) If a family of strict sets forms a connected hypergraph, the union is again

strict. .

Proof. Both statements are direct consequences of Lemma 2. [

3. Potentials

Assume, besides x, we have a vector p in RY called a potential such that

x(ur)=1->d(ur)=0, ) (5a)
x(uv) = 0—- d(uv) =<0, (5b)
u € P(v) = p(u)=p(v), (5¢)

where d(uv)= d(uv)— p(v)+ p(u).

Since adding a constant to each component of p does not affect (5} it can be
assumed that the minimum component of p is 0. Let the different potential
values be 0= pp<py<---<p. If k>01let V,={u:pw)=p}, i=12,... ,k

Lemma 4. (5c) is equivalent to the fact that each V; partitions into strict sefs.

Proof. For v € V;; (5¢) implies P(v)C V, thus the components of hypergraph
{P(v): v € V}} -partition V. Denote by #(V;) the set of these components.
Lemma 3(b) states that the members of Z(V;) are strict.

The reverse direction is obvious. [

The notation ¥(V;) introduced in the proof will also be needed later.

For F € %, define y(F)=Z (p; — pi-1), where the summation is taken over
those indices for which F &€ #(V;). (Here the empty sum is defined to be
zero.}

Claim. For any arrow e = uv, p(v) — p(u) = va..

Proof. Let  (5;) denote the number of sets in X (V;) which are entered (left} by
e. Obviously both § and s; are 0 or 1. Now we have
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ya, = M (y(F): e enters F)— M (y(F): e leaves F)

M AM (p; — pi-1: F € K(V))): e enters MV

- M AM (B: - P1: F € X (V))): e leaves mv

k

P
= .uM Lpi— pic)— W sipi — pic1)

2 (B~ P e enters V)= 3 (i~ pixt ¢ leaves V)

p(v)—p(u) if p(v) > p(u),
0 if p(v)=p(u),
—(p(u)— p(v)) if p(v)<p(u).

Here we made use of the fact that 4 =5 whenever v €V, or u,vg V,
Furthermore, if p(v)> p(u) then the second sum is empty, while p(u)> p(v)
implies that the first sum is empty. OJ

By this claim and the definition of y we need a (-1 feasible vector x and a
potential p satisfying (3).

We shall refer to an arrow uv as a 1-arrow (with respect to the given vector
x) if x(uv)=1 while uv is a 0-arrow if x(uv)=0.

The algorithm will maintain (5a) and (5¢) and the number of arrows violating
(5b} will gradually reduce.

4. Inner algorithm and proof
The core of our procedure is the following.

Inner algorithm
Input. x : 01 feasible solution to (2),
P : potential,
e = agb: O-arrow,
so that (5a) and (5¢) hold but e violates (5b).
Output. x': 0-1 feasible solution to (2),
p': potential,
so that (5a) and (5c) continue to hold, e does not violate (5b) and any arrow can
violate (5b) only if it violates (5b) with respect to x and p.
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Assume this algorithm is available. At the beginning let p=0 and x be an
arbitrary 0-1 feasible solution to (2). Repeat the Inner Algorithm until there
are no more arrows violating (5b). After no more than |Ej applications of this
algorithm its output will satisfy all the three criteria in (5).

To describe the Inner Algorithm, define an auxiliary digraph H = (V, A)
(depending on the current x and p) as follows. Set A= AgU AwU Ag where

Ap = {uv: uv is a l-arrow and d(uv} =0},
Ay = {ou: uv is a O-arrow and d(uv)= 0},
Agp={uv: u € P(v) and p(u) = p(v)}.

(Note that A may contain parallel arrows.) Refer to the elements of Ap, Aw
and Ag as blue, white and red arrows, respectively.

Try to find a directed path in H from a to b. There may be two cases.

Case 1. b& T = {v: v can be reached from a in H}. Obviously,

(134] there is no arrow in H leaving T.
Revise the potential as follows:

_fp(v) fveET,
ﬁﬁevl “ﬁﬂcv+m wmcm.ﬂ_,

where 8 = min(8,, 8p, 6w, Or), where

8, = d(ab),
85 = min{d(uv): uv is a 1-arrow of G leaving T},
5w = min{—d(uv): uv is a O-arrow of G entering T}

and
&g = min{p(u) - p(v): v€ T, u € P(v)N T}.

(Here the minimum is defined to be plus infinity when it is taken over the
empty set.)

Claim. 8§ >0.

Proof. Since e violated (5b), 8, > 0. If d(uv)=<0 for a l-arrow wv leaving T,
then uv would be a (blue) arrow in H leaving T, contradicting (P), therefore
8 >0. If d(uv)=0 for a O-arrow uv entering T, then vu would be a (white)
arrow in H leaving T, contradicting (P), so 8w > 0. Finally, from (5c), p(u)=
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p(v) whenever u € P(v), that is 8g = 0. If there were u and v with v& T,
u € P(v)N T and p(u) = p(v), then uv would be a (red) arrow in H leaving T,
contradicting (P). [

The revised function d'(uv) is

d(uv)— 8 if uv leaves T,
d'(uv)= d(uv)+8 if uv enters T, : (6)
d(uv) otherwise .

Claim. (5a) continues to hold.

Proof. For a l-arrow uv, d(uv)=0. If, indirectly d'(uv) <0, then uv leaves T
by (6). Now d(uv)= 8z = §, that is, d'(uv) =0, a contradiction. (]

Claim. If (5b) was true for a 0-arrow uv, it continues fo hold.

Proof. Since d(uv)=0, the indirect assumption d'(uw)> 0 and (6) would imply
that uv enters T. Now —d(uv)=8w=8, that is, d'(uv)=d(uv)+8=0, a
contradiction. O

Claim. (5¢) confinues fo hold.

Proof. Note that P(v) does not depend on the potential change. Let u € P(v)
and suppose indirectly that p’(u)<p'(v). Then v&T, u€P@)NT, thus
p'(1)=p(u) and p'(v)= p(v)+ 8. Hence 25 p(r)< 8. On the other hand
p(u)— p(v)= 8z = 8, a contradiction. [J

If & = 8., the arrow e = ab satisfies (5b), and thus the solutions x" = x and p’
satisfy the requirements of the Inner Algorithm.

If & < §, then repeat the Inner Algorithm using, as inputs, the same x, the
revised potential p:= p’ and the same arrow e = ab which still violates (5b).
Observe that the arrow set induced by T in the new auxiliary digraph H' is the
same as it was in H. Moreover, the definition of § ensures that H' contains at
least one arrow leaving T' (which is blue, white or red according as & is equal to
85, Bw or 8g). This implies that the set T' = {v: v can be reached from a in H'}
propetrly includes T. Consequently, after at most |V] -1 iterations, either the
equality § = 8, will hold or vertex b will be reached from a. This is Case 2.

Case 2. There is a directed path from a to b in H. Let U be a shortest path.
(Actually, we shall use only the fact that there is no red ‘shortcut’ arrow to U,
that is, if the vertices of [J in order are a = vg, vy, - . ., tx = b, then vy, (j=2)
must not be a red arrow.)
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Since ba is a white arrow in H, UJ and ba form a directed circuit in H. This
may include blue, white and red arrows. Let E; be the set of arrows in G which
correspond to the blue or white arrows of that circuit. Define a new vector x’ as
follows:

. [l-x(e) ife€E:,
uﬁmvl rﬁmv oﬂroniwmw.

(That is, a 1-arrow in E; becomes a O-arrow, while a 0-arrow will be a J-arrow.)
We shall prove that x' and p':=p satisfy the requirements of the Inner
Algorithm. For a member F of F let pdF) (8:(F)) stand for the number of red
arrows of U entering (leaving) F.

Lemma 5. x' is a feasible solution to (2).
Proof. The proof consists of proving 2 number of claims.
Claim. a%*x' = atx+ pdF)— 8.F ).

Proof. This is quite easy when p{(F)= 8(F y=10 and, in general, follows by a
simple induction on p(F)+ 84F). O

We have to prove that a¥x'<b(F). By the claim it suffices to prove that
plF)< g(F), where e(F)= b(F)— o,(F) (recall that o.(F) = atx). Now e(F}is
submodular on intersecting members of F.

Let uv be a red arrow of U entering F such that p(w) (= p(v)) is as large as
possible, and if there are more such arrows let uv be the last one on the path U
(starting from a}.

Claim. p{F U P(v))=p(F)— 1.

Proof. Since no red arrow enters P(v) and uv does not enter F U P(v),
p(FUP@)<pl(F)— 1 On the other hand if st is another red arrow of U
which enters F, then we claim that s  P(v) (that is, st enters F U P(v) as well):
in the contrary case p(s)= p(v) by (5¢) thus the maximal choice of p(v) implies
p(s)= p(t) = p(v). However, this implies that sv is a red arrow. Because of the
choice of uv, st precedes uv on the path U (starting from a) thus sv is a red
shortcut arrow to U, a contradiction. O

Claim. p(F)< &(F) for any FE #.

Proof. By induction on p(F). Observe that “e(F)=0 for each FEF” is
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equivalent to “x is a feasible solution to (2)" and e(F)=0 if and only if F is
strict (with respect to x). Let p,(F) > 0 and let uv be defined in the same way as
in the previous claim. Then

e(F)= e(F)+ e(P(v))= e(FNP)+e(FUP@)=1+s(F U P(v))
=1+ p(FUP(v))= pdF).

Here we used the submodularity of &, the induction hypothesis for FU P(v)
and the previous claim. [J

This completes the proof of the lemma. [J

After proving the lemma, let us investigate what happened to the optimality
criteria. Since ab has become a 1-arrow it does not violate (Sb). If uv is a new .
1-arrow, then vu was a white arrow in H so d(uv)=0. If up is a new 0-arrow
then uv was a blue arrow in H thus d(uv)= 0. That is, (5a) continues to hold
and new 0-arrow violating (5b) has not arisen.

Claim. (5¢) holds with respect to x' and p’.

Proof. From Lemma 4 we know that V; is the union of disjoint strict sets
Xy, Xa, ..., X, where each X is strict with respect to x. Since no red arrow
leaves any strict set and no red arrow enters V; (for a red arrow uy we had
p(u) = p(v)) we have p{X;)= 8.(X;) = 0 whence a%x' = a%x, that is, each X is
strict with respect to x'. Apply again Lemma 4. [

The current primal solution x is 0-1 valued throughout the algorithm
regardless the integrality of the objective function 4. If, in addition, d was
integral, then the current potential p is also integral throughout the process, and
hence so is the dual solution (y, z). These observations complete the proof of
Theorem 1, when the set system F in question is intersecting. O

5. Steps of the algorithm

Before describing the algorithms in detail some remarks are needed about
the steps and the number of steps of the algorithm. In order to apply the
algorithm we have to be able to determine the set P(v) for each vertex v, in
any intermediate stage. To this end suppose we have an oracle which can

decide, for any primal solution x and vertices u, v whether or not

O . . _
©) there exists a strict vid-member of F.
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A simple argument shows that P(v) consists of those vertices u for which the
answer is no. This means that, in constructing the auxiliary digraph H belong-
ing to a given stage of the algorithm, Agr can be defined as Ag=
{uv: p(u) = p(v) and there is no strict vi-set}.

If oracle (O} is available and its run needs at most g steps, then P(v) can be
determined in at most gn steps for a fixed vertex v. For all v this means ng
steps.

Another part of the algorithm tries to find a directed path from a to b in the
auxiliary digraph H. This can be done with a well-known labelling technique. If
this is accomplished by a breadth-first search then a shortcut free path will
automatically be produced, if it exists. If no path exists from a to b in H, the
set of labelled vertices will just be T. The labelling procedure needs at most n?
steps. Moreover, if 8 < 8, occurs during the algorithm and the Inner Algorithm
is started again with the same x and p:=p’, then the labels determined
previously may be used again (recall that TC T". In this case the new
auxiliary digraph arises simply from the old one in such a way that some arrows
from T to T are added while some arrows from T to T are deleted. Therefore
the overall complexity of the Inner Algorithm can be bounded by O(n*+ n'g).

The Inner Algorithm will be applied at most |E| times. From the optimal
primal solution x and potential p the optimal dual solution can be obtained in
at most O(n®) steps since the components of the hypergraph {P(v): v € Vi} can
be obtained in O(n?) steps and we have at most n different Vi's. Consequently,
the optimal primal-dual solutions to linear programms {2) and {3) can be
obtained in at most O(mn?g + n®) steps provided that a starting 0-1 feasible
solution to (2) and oracle (O) is available.

In order for (O) to be available we need a subroutine for minimizing a
submodular function, namely minimize e(F) (= b(F)— ox(F)) over the vii-
members F of &. If the minimum is negative, the current vector x is not
feasible, if the minimum is zero, then there exists a strict wvi-set, if the
minimum is positive, then u € P(v).

Algorithm for intersecting F
Input. G directed graph,
%: intersecting family, & C 2,
b: F—Z integer-valued function, submodular on intersecting
pairs,
d: E— R* nonnegative objective function,
x: 01 feasible solution to {2).
x: optimal 0-1 solution to (2),
y, z: optimal solution to (3), which is integral if d is.

Output.
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Step 1.

1.0. Determine P(uv), for each v € V.

1.1. If every O-arrow satisfies (5b), the current x is optimal. Go to Step 4.

1.2. Select an arrow e = ab violating (5b).

1.3. Form the auxiliary digraph H = (V, A) and try to find a directed path
from a to b by the labelling technique (making use of labels deter-
mined but not deleted previously). If a path U exists go to Step 3.

Step 2 {Change in potential).

2.0. Let T be the set of the labelled vertices. Count & and set
p(v):= p(v)+ 8 whenever v T.

2.1. If 6 = 8, delete all the labels and go to 1.1.

22. Goto 13,

Step 3 (Change in x). Denoting by E, the set of arrows of G corresponding
to the blue and white arrows of the circuit L7 + ba, set

_[1-x(e) ife€E,,
x(e):= ro& otherwise .
Go to 1.0.
Step 4 (Forming the optimal solution (y, z) to (3)).
4.0. Let the different values of p be O=py,<p;<---<p. Set V=
{w: pwy=plfori=1,2,...,k
4.1. For each i, determine the components of the hypergraph {P(u): u €
V;}. Denote by # (V) the set of these components.
4.2. For F € &, set y(F)= Z (p; — p:-1), where the summation is taken over
those indices i for which F € ¥(V;). (The empty sum is zero.)
43. For a l-arrow e, set z(e)= d(e)— ya., for a O-arrow e set z(e)= 0.
Halt. ,

6. Starting feasible solution
In this section we investigate the problem of finding a 0-1 feasible solution to
(2). It is assumed again that & is an intersecting family and b is submodular on
intersecting members of F.
Feasibility Theorem. There exists a 0-1 feasible solution to (2) if and only if
S bhX)=-6(UX), 0
i

for disjoint members X1, X5, ..., Xi of F.
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Proof. Necessity. For a feasible solution x we have ThX)=Za(X)=
(U X)=-8(UX). .

Sufficiency. A simple trick due to Hoffman {18] will enable us to reduce the
problem to that investigated before. Extend the graph G = (V, E) by adding a
new vertex r and |E| new arrows as follows. For each vertex v € V join 8(v)
parallel arrows from r to ». For each FEF let b'(F)=b(F)+Z,zr 8(v).
Obviously &' is submodular on intersecting members of % Furthermore, since
S(F)=Z,er 8(v) and b(F)= —8(F ) by (7), it follows that b’ is nonnegative.

Let us consider the linear program (2) with respect to the extended graph G’
and the new function »' whereas & remains the same. A simple argument
shows that

the original program has a feasible solution if and only if the new
(A) program has a feasible solution x = (x, x3) in which x(e)=1 for
cach new arrow e.

Here the components of x; and x; correspond to the original and new arrows,
respectively.

Let the new objective function be d(e}=1if e is a new arrow and d(e)= 0if
e is old. Since b'=0 the identically zero vector is an appropriate starting
feasible solution. Apply the algorithm with this starting solution. By (A) what
we have to prove is that the value of the optimal solution to the new program is
just |E|. The algorithm provides a primal solution x and a potential p which
satisfy (5). Suppose indirectly that xa(ru) = 0 for a new arrow ru. Observe that
only the new arrows violated (5b) at the beginning of the algorithm, therefore
p(r) = 0 throughout the algorithm. Furthermore, x,(ruz) = 0 and (5b) imply that
p(u)> 0. Therefore the set X = {v: p(v)> 0} is non-empty. From Lemma 4 X
is a disjoint union of some strict sets X That is X = L X, and b'(X;) = o.(X)).
Moreover, no original 1-arrow enters X and no original O-arrow leaves X
because of (5a) and (5b), respectively. Thus %, 0 (X)) = —8(X). Furthermore,
since xy(ru) =0 we have o (X)<Z (8(v):vtE€X ). Consequently, Z;0:(Xi)=
2 0,(Xi) + Zi o (X)) < —8(X) + () vEX) from which Z b(X;)+
TE@EvEX)=Eb(X)<Z(B(v):vEX)- §(X), that is, Z;5(X)<—-8(X),
contradicting the hypothesis of the theorem. [J

7. A discrete separation theorem
In this section we shall make use of the simple observation that, for (2} to

have a feasible solution, it suffices to require (7) only for those families of
disjoint members Xy, Xa, ..., Xi of F where X; U X; € ¥ implies that b(X;)+
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(X)) < b(X;UX;) (i#)). Indeed, if (7) were not true in general under this
weaker restriction, then £ b(X;) < -8(L X)) for some family {X,, Xa,..., X}
Let k be as small as possible such that this inequality holds. Now, for some X,
and X, say X; and X3, X ,UX;E€ F and b(X))+ b(X3)= b(X, U X)), whence
{X,U X5, X5 ..., X} would also violate (7). But this family consists of k — 1
sets only, contradicting the minimality of k.

Let % be a family of subsets of S closed under union and intersection. Let R
and B be two integer-valued functions on % which are super- and submodular
on any two members of ¥, respectively.

Discrete Separation Theorem. If R(X) < B(X) whenever X € X, there exists an
integer-valued modular function m such that R(X)<m(X)= B(X) for each
XelX

Proof. We can suppose that (N{X: X € %) # . For otherwise join an extra
vertex to each member of ¥. Let (8, '} and (8", ¥") be two copies of (S, X)
and join k parallel arrows from any s'€ $' to s” € §” and from 5" to s’, where
is a big number. Here ‘big’ means that the outdegree function & satisfies:

-8(X")= B(X), (Ba)
S(X")=R(X), (8b}
S(X'UY")=R(Y)- B(X), (8¢c)

for any X, Y € %. Obviously, increasing k, §(X") increases since X # # and so
does (X’ U Y") whenever X # Y. Thus, for sufficiently large k, (8a), (8b) and
{8c) (for X # Y) will hold. If X =Y then 8(X"U X")=0 for any k, however
0= R(X)— B(X) follows from the hypothesis.

Denoting by E the set of arrows and by V=8 US§" we have a directed
graph G =(V, E) and a family % =%"U X" U{V} on its vertices. (Note that
the fact @ & & in (2) requires the assumption {1(X: X € ¥) # §.) Furthermore
set b(X")=B(X) for X' €X' and b(X")=—-R(X) if X"€ X" and b(V)=0.
Using the remark done at the beginning of this section, the Feasibility Theorem
requires just the truth of (8a), (8b) and (8c). Therefore, by the Feasibility
Theorem we have an integer-valued feasible solution x. Let us define m(K) =
0. (K") = p(K)— 8,(K") for KE ¥. Then m satisfies the requirements of the
theorem. [

Remark. The main content of the Separation Theorem is that the separating
modular function is integer-valued. Actually, the existence of a not necessarily
integer-valued separating function follows simply from the classical real
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separation theorem since a submodular (supermodular) function on ¥ C 2% can
be extended to a convex (concave) function on R¥ so that the convex function
nowhere exceeds the concave one. '

In our treatment the Feasibility Theorem—and so the Separation Theorem—
was a by-product of a more or less complicated algorithm. Of course there exist
simpler proofs of them which do not use arrow-weights. In [6] we proved
directly a theorem in terms of orientations of an undirected graph, which is
equivalent to the Feasibility Theorem. However in that paper the Separation
Theorem was not explicitly mentioned. In [9] we refine the proof of {6] by
extending a method of Lawler and Martel {this volume, pp. 189-200] and prove a
feasibility theorem for the general case (when f < x < g). Hence we have a good
algorithm not depending on f and g and this allows us to obtain the separating
maodular function in polynomial time.

For an instance of applicability of the Discrete Separation Theorem we show
how Edmonds’ matroid intersection theorem [1] follows from it. An equivalent
version of Edmonds’ theorem states that two matroids M, and M, on S, with
the same rank r, have a common base if and only if 5;(X)+ b(S— X)=r for
any X S, where b, is the rank function of M, i = 1, 2. To see the sufficiency,
let ¥ consist of all subsets of S, set B(X)= 5(X) and R(X)=r— by(S — X).
Since B(X)= R(X), by the Discrete Separation Theorem, an integer-valued
modular function m separates B(X) and R(X). It is an easy exercise to check
that m is 0-1 valued on the vertices and the set X ={x: m(x)= 1} is just a
common base.

Another casy consequence of our separation result is a theorem on poly-
matroids due to Giles [10]. Let b; and b, be two submodular functions on all
subsets of S such that b;(#) =0 and b, is monotone increasing, that is b,(X)=
b{Y)for X2 Y,i=1,2.

Theorem 7. If x =0 is an integer-valued vector (x € Z") such that x(T)=
by(T)+ boAT) for each TC S, then x = x,+ x, for some nonnegative integer-
valued vectors x; and x, for which x;(T)< b,(T) for each TC S and i =1,2.
(Here x(T') stands for Z (x(s): s€ T).)

Proof. Apply the Discrete Separation Theorem to the functions R(T)=
x(T)— bi(T) and B(T)= bo{T) where bi(T) = minxcr (b(X)+x(T-X)). O
8. Crossing families

In this section we prove the Edmonds—Giles theorem for the more general
case of crossing families and show how the algorithm of Section 5 can be
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extended. The idea behind this extension is that, with a crossing family %' and
function b’ on %' submodular on crossing members of %', one may associate an
intersecting family &% and a function b on % submodular on intersecting
members of # so that the sets of feasible solutions to (1) and (2) coincide. Then
we can apply the algorithm developed for solving (2).

We shall need a theorem due to Lovész [14].

Theorem 8. Let " C 2V be a crossing family (8, V& F), b" be a function on "
submodular on any iwo crossing members of ', Define F={X: X = UX,# V,
XEF  XNX =0 and b(X)=minEZ F'(X): X eF, X=UX, XNX=
0 FX YEFand XUYZV, then XUY, XNYEF and b(X)+ b(Y)=
B(X U Y)+ b(X NY). (Note that F'C F and b"(X) = b(X) for X € &)

Proof. Let X, YE% be such that XUY#V. Then X=UX, b(X)=
T b"(X;) for some disjoint members X; of F and Y =UY, b(Y)=Z b"(Y))
for some disjoint members Y; of F".

If we have some members A; of #" which form a connected hypergraph and
their union is not V, then this union is in %". Therefore the components
formed by the hypergraph {X;}U{Y}} are disjoint members of ", thus X U Y
is in & Furthermore X NY =U(XNY: X,N Y;#@) whence XNYE F

We need the following lemma.

FLemma 9. Suppose that the members A;,, A,,...,Ayand B,, B,,..., B, k, I =
1, of #" partition A and B, respectively, {A;} U {B;} forms a connected hyper-
graph and AUB#V. Then AUBEF and Zb"(A)+Zb'(B)=
F'AUBYT BANB),

Proof. The first part of the lemma is simple (for a similar observation see
Lemma 3). To see the inequality we proceed by induction on k + / The case
k +1=2 is obvious so assume k + !> 2. Deleting an appropriate edge of a
hypergraph, say A,, the resulting hypergraph remains connected. Now the
induction hypothesis holds for A'= A - A, and B; thus

TH H
Mvaﬁ}.v+MW.Awav.‘T»‘Cm.v+E\ﬁ)mwv.
i=1 i=A
Adding b"(A;) to both sides we get

S b"(A)+ S b'(B,) = b"(A'U B)+ b"(A,) + B(A'N B).

Since A’U B and A, are crossing members of ¥” we have
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B"(A’U B)+ b"(Ag)= b"(A’U B U Ap)+ b"((A’ U B)N Ay)
= b"(AUB)+ P (BNAY).

Furthermore, A'N B and A; N B are disjoint. Thus
B"(BN A+ bB(A'NB)=b(ANB).
From the last three inequalities the lemma follows. [

Let Cy, G, ..., C, be the components of the hypergraph {X;} U{Y;}. Apply-
ing Lemma 9to A=XNGC and B=YNG, h=1,2,..., m, we get

bX)+ B(Y) =3 AM (XN G)+ 3 b(% N Qv

h=1 i
= W GXUYINGCI+XNYNG))
=1
WWAXC Y)+hXNY).
This completes the proof of Theorem 8. [
In fact, what we need is the following version of Lovasz’s theorem.

Lemma 10. Let F C 2V be a crossing family, b' be a function on F' submodular
on any two crossing members of ¥'. Define

F={X:X#0, X=NX, X €F X NnX=0U{V}.

In other words ¥ —{V?} consists of non-empty sels arising as the intersection of
some pairwise co-disjoint members of #'. Let b(X)=min(Z b'(X;): X = NX,

xeF, XnX =0)and b(V)=0. . .
Then F is an intersecting family and b is submodular on any two intersecting

members of F.

Proof. Apply Loviasz’s theorem for %" = {X: X € #} and b"(X)=b(X). O

Denote by P; and P, the polyhedra defined by (1) and (2) respectively. Now,
for (1), b' is the given function on %’ while b and & for (2) are defined as in

Lemma 10.

Lemma 11. P,=P.,.
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Proof. Since ' C F and b(F')< b'(F") for '€ %' we have P;D P, On the
other hand, for a vector x in P, and for F € % we have

BF)=2 b'(X}=3 b(X) =3 0u(X:) = 0:(F) 9)

for some X; € #', where F= (X, and X, N X; = §. (9) shows that x€ P,. O

Lemma 12. For F € ¥ —{V} the following statements are equivalent:
(a) Fis b-strict;
(b) Fis the intersection of some b'-strict members of F',
{¢) F is the intersection of some pairwise co-disjoint b'-strict members of F'.

Proof. (a)— (c) simply follows from (9). (c)— (b) is trivial. To see (b)— (a), let
F=F where each F, i=1,2,...,¢ is a b'-strict member of &F'. If among
these sets F; there are two which cross, then they can be replaced by their
intersection which is a b'-strict member of %', Thus if we assume ¢ to be
minimal, then the sets F; are pairwise non-crossing and since their intersection F
is non-empty they are pairwise co-disjoint. Thus b(F)<Z b'(F)=Z 0,(F) =
o,(F). From this and (9), b(F) = 0..(F), as required. Note that this replacement
operation yields a polynomial procedure, [

Taking into consideration Lemmas 10 and 11, in order to solve (1), it suffices
to solve (2) with respect to b. The only difficulty arising from this approach is
that of how one can work with the new function b when originally only b’ is
specified and from an algorithmic point of view the definition of b is rather
complicated, Fortunately, we do not need the explicit values of & at all. We
have seen that, in order to apply the algorithm of Section 5, only oracle {O) has
to be available. The following lemma shows that this is indeed the case
provided that the same oracle is available concerning the given % and b'.

Lemma 13. Given x € P, (= P,) and u, v € V, there exists a b-strict vii-set in F
if and only if there exists a b’-strict vii-set in F,

Proof. Let F'€ # be a b'-strict vid-set. Then b(F)= b (F) = o,(F )< b(F"),
i.e., F'is b-strict. Conversely, let F € # be a b-strict vii-set. By Lemma 12, F
is the intersection of some b’-strict members of F'. One of them is a vi-
set. [

Lemma 13 shows that, in order to get a primal solution x and a potential
which satisfy all three optimality criteria, the algorithm developed for intersec-
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ting families can be applied without any change for a crossing family as weil.
The only difference occurs in Step 4 when the optimal dual solution is formed.

Performing Step 4 we shall have an optimal dual solution y to (3). From this
we have to get an optimal solution to the dual of (1). For any FEF with
y(F)>0, F is a b-strict member of &, Let y'(X;):= y(F ) for each X; where the
sets X; are pairwise co-disjoint b'-strict members of #' whose intersection is F
(see Lemma 12(c)).

It can immediately be seen that this vector y’ is an optimal solution to the
dual of (1). At this point the proof of Theorem 1 has been completed. In order
to complete the algorithm we must be able to find algorithmically the sets X;
mentioned above. The remainder of this section is devoted to this purpose.

Lemma 14. A b-strict set F, for which the hypergraph {P{u): u € F} is con-
nected, can be obtained constructively as the intersection of pairwise co-disjoint
b'-strict members of F'.

Proof. Let u be a vertex of F. By Lemma 13, P(u)={v: there is no b'-strict
ub-set}. With the help of oracle {O) we can produce P(u) as the intersection of
some b'-strict members of %'. By Lemma 12 we can algorithmically obtain
P(u) as the intersection of pairwise co-disjoint b’-strict members of F.

Now suppose that X, Y are two crossing b-strict members of % and we have
obtained co-disjoint b'-strict members X; and Y; of &' such that X = (1X; and
Y=MNY, Then XUY=(W(Z: Z=X,UY; X; and Y] are crossing). Here
any set Z is b'-strict thus Lemma 11 applies again. That is, we can get XU Y
too as the intersection of pairwise co-disjoint b’-strict members of F'. Now
Lemma 14 follows since {P(u): u € F} is connected. [

Together with the potential p provided by the algorithm let V; be defined as
in Section 4. Recall that ¥ (V,) was the collection of components of the
hypergraph {P(u): u € Vi}. If y(F)>0, then F€ UX (V) and apply Lemma
14.

Having finished the algorithmic proof of Theorem 1, we state the cor-
responding Feasibility Theorem for crossing families. The proof proceeds along
the same line as that of the first Feasibility Theorem, so it is omitted,

Feasibility Theorem B. There exists a 0-1 solution to (1) if and only if
2 b (X;) = —8(U X)) for disjoint non-empty sets X, Xa, ..., X where each X; is
the intersection of pairwise co-disjoint members X; of #.j=1,2,.. ., k.
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9. Augmenting circuits

A basic result of network flow theory states that a feasible circulation is of
minimum cost if and only if it admits no augmenting circuit with negative
weight. In matroid theory a similar theorem, concerning two matroids on a
weighted ground set, states that a common independent set of k elements is of
maximum weight if and only if there is no augmenting circuit with negative
weight in an appropriately defined auxiliary digraph (see [12, 13]). Here we
show that these theorems are specializations of our more general result. For
another general augmenting circuit result, see [19].

Let x be a feasible wL mw_cmoz to (1). Form a digraph D = (V, A) depending
on x as follows. Set A = A, U Ay U Ag where

Ay ={vu: uv is a 0-arrow},
Aw = {vu: uv is a O-arrow},

Ag = {uv: there is no b'-strict vii-set in F'}.

d(e) ifee A,
d'(e)=) ~d(e) ifec Ay,
0 if e huﬂ .

Augmenting Circuit Theorem. An integer valued 0-1 solution to (1) is optimal if
and only if there is no negative circuit in D with respect to the valuation d',

Proof. Let x be optimal. Starting with this x, apply the algorithm. We shall get
a potential p such that x and p satisfy the optimality criteria. Let C be any
circuit in D with vertices xy, xa, . . ., x. The length A(C) of C is =X, d'(xx141)
{where xpy=1%)). If xx: € A, then xx., is a l-arrow, thus d'(xx.,)=
d(xX:01) = p(Xe4r) — p(x;). If X%, € Ay, then x4, is a (-arrow, thus d(x;.1x) <
p(x:)= p(xs), that is, d'(xxi41}= p(xi)— p(x). Finally, if xx., € Ag, then
p(x)<p(xi1), that is, d'(xX.)=p(xa)—p(x;). Now we have AC)=
ZE1 d'(6%141) 2 Z (p(%41) - p(x)) = 0.

Conversely, suppose x is not optimal. Again apply the algorithm starting
with this x and the identically zero potential as inputs. Performing the
algorithm, since x is not optimal, Case 2 will occur sometimes, say when the
Inner Algorithm is applied for x, 2 potential p and a O-arrow ab. There is a
path from & to & in the auxiliary digraph H with vertices a = x1, x5, ..., x, = b.
If xx., is a blue arrow in H, then xx.., € Ag and d'(xxi1) = d(xxi)) <
X)) — NAB.V. If xx;., is a white arrow in H, then x..x is a 0-arrow. Thus
XX € Aw and d(x.41%) = p(x)— p(x;41) whence d'(xx;.1) < p(Xi1)— pix;). If
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XX € Ag, then xx., € Ag and d'(xX.,)= 0. Finally ba € Ay and d'(ba) <
p(a)— p(b) (since ab violated (5b), that is d{ab)> p(b)— p(a)). Hence the
length A(C) of the circuit C=x,X;....% % is 2k d(xx.g)<

Zhaplx)—px)=0. O

If we consider the more general form of (1) when d is not restricted to be
nonnegative and f = x < g is required, then the same theorem is true provided
that the auxiliary graph D = (V, A) is defined as follows. A= AgU Aw U Ay

where

Ap = {uv: x(uv)> f(uv)},
Ay = {ou: x(uv) < g(uv)},
Ap = {uv: there is no b'-strict viz-set F'}

and the costs are

d(e) ife€ Ag,
d'(e)=1-d(e) if e€ Aw,
0 if Nmkﬁw.

10. Orientations

In this last section we present a new application of Edmonds—Giles theorem
which, somewhat surprisingly, concerns undirected graphs. Let H = (V, A) be
an undirected graph. The following theorem is due to Nash-Williams [17] (see

also [5]).

Theorem 15. H has a k-strongly connected orientation if and only if H is
2k-edge connected.

(A directed graph is k-strongly connected if p(X)2k for 0C X C V)

Suppose that the two possible orientations v and vu of an edge may have
different costs ¢(uv) and ¢ (vu). We are interested in a minimum cost k-strongly
connected orientation of H.

By means of c(uv) define a directed graph G = (V, E). Let E consist of those
arrows uv for which c{uv) > c(vu) and if c(uv)= c(vu), then one of uv and vu
(it does not matter which one) also belongs to E. Furthermore, let d(uv)=
c(uv)— c(vu). Then G is an orientation of H with nonnegative costs on its

arrows.
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Our purpose is to reverse some arrows of G so that the new digraph will be
k-strongly connected and the total weight of reoriented arrows will be maxi-
mum. Such a reorientation can be described by means of a 0~1 vector x where
x(e}is 1if e is to be reoriented and 0 otherwise, Set ' ={X:0C X C V} and
b'(X) = p(X}— k where p(X) is the indegree function of G.

Consider the linear program (1) for this G, % and &' and observe that a 0—1
vector x is a feasible solution to (1) if and only if it defines a k-strongly
connected reorientation of G. Therefore our algorithm can be applied if we
show that, in this case, oracle (O) is available. This is indeed the case since the
oracle requires a subroutine to decide whether or not there exist k + 1
arrow-disjoint paths from u to v in a directed graph which is a simple flow
problem.

By means of a similar transformation we can algorithmically find a minimum
cost k-strongly connected orientation of H which satisfies some additional
constraints. For example, it can be required that the indegree of any vertex v
should satisfy the inequality f(v)<p(v)=<g(v) where f and g are given in
advance.

References

{1] J. Edmonds, Submodular functions, matroids and certain polyhedra, in: R. Guy, H. Hanani
and J. Schonheim, eds., Combinatorial Structures and their Applications (Gordon and Breach,
New York, 1970),

[2] J. Edmonds and R. Giles, A min—max relation for submodular functions on graphs, Annals of
Discrete Mathematics 4 (North-Hoiland, Amsterdam, 1979).

[3] J. Edmonds and R.M. Karp, Theoretical improvements in algorithmic efficiency for network
flow problems, J. ACM 19 (1972).

{4] RL. Ford and D.R. Fulkerson, Flows in Networks (Princeton University Press, Princeton,
1962).

£5] A. Frank, On the orientation of graphs, J. Combin. Theory Ser. B 28(3) (1980) 251-261.

[6] A. Frank, On disjoint trees and arborescences, in: L. Lovasz and V. T, S6s, eds., Proc. Algebraic
Methods in Graph Theory (North-Holland, Amsterdam, 1981) pp. 159-169.

[7] A. Frank, How to make a directed graph strongly connected? Combinatorica 1(2) (1981).

[8] A. Frank, A weighted matroid intersection algorithm, J. Algorithms 2 (1981) 328-336.

[9] A. Frank, Finding feasible vectors of Edmonds-Giles polyhedra, J. Combin. Theory Ser. B,
subtnitted.

[10] R. Giles, Submodular functions, graphs and integer polyhedra, I, Th., University of Water-
loo, Waterloo, Ontario, 1975,

[11] M. Gritschel, L. Lovész and L. Schrijver, The ellipsoid method and its consequences in
combinatorial optimization, Combinatorica 1(2) 1981.

[12] S. Krogdahl, A combinatorial proof of Lawler’s matroid intersection algorithm, unpublished
manuseript, 1975.

[13] E.L. Lawler, Combinatorial Optimization: Networks and Matroids (Holt, Rinehart & Winston,
New York, 1976).

[14] L. Lovése, Flats in matroids and geometric graphs, in: P.J. Cameron, ed., Combinatorial Surveys:
Proc, 6th British Combinatorial Conference {Academic Press, New York, 1977).



120 A. Frank

[15) L. Lovész, On two minimax theorems in graph theory, J. Combin. Theory Ser. B 21(2)
(1976) 96-103.

[16] C. Lucchesi and D. Younger, A minimax theorem for directed graphs, J. London Math. Soc.
17(2) (1978).

[17] C.StJ.A. Nash-Williams, Well-balanced orientations of finite graphs and unobstrusive odd-
vertex-pairings, in: Recent Progress in Combinatorics (Academic Press, New York, 1969).

[18] A. Hoffman, Some recent applications of the theory of linear inequalities to extremal
combinatorial analysis, Proc. Sympos. Appl. Math. 10 (1960).

[19] R. Burkard and H. Hamacher, Minimal cost flows in regular matroids, Math. Programming
Stud. 14 (1981) 32-47.

{20] E.L. Lawler and C.U., Martel, Flow network formulations of polymatroid optimization
problems, Annals of Discrete Mathematics 16 (1982) pp. 189-200.



