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Tree-Representation of Directed Circuits
Andrés Frank and Tibor Jordén

ABSTRACT. We prove that a strongly connected directed graph Q=
(V,E) has & spanning tree T so that each fundamental circuit belonging
to T'is a directed circuit if and only if G has precisely |E|—[V|+1 directed
circuits. Another characterization of such directed graphs will also be
provided in terms of forbidden minors.

1. Introduction, Preliminaries

A join (strong join) J of an undirected graph is a subset of edges
so that |J N C| £ |C|/2 (|J N C| < |C|/2) for every circuit C of the
graph.

The investigations of joins was initiated by P. Sole and T. Zaslavsky
while the problem of determining a maximum strong join is due to D.
Welsh [1990] . In [Frank, 1992] a min-max theorem was provided for the
maximum cardinality of a join along with a polynomial time algorithm
to compute the largest join. A. Fraenkel and M. Loebl [1991] proved that
the maximum strong join problem is NP.complete even if the graph is
planar and bipartite. We proved in [Frank, Jorddn and Szigeti, 1992]
that for every graph the maximum cardinality of a strong join is at most
[(IV| —1}/2] and provided an algorithm to decide if a given bipartite
graph is extreme, that is, it attains this bound.

Suppose that a bipartite graph B = (U, V; F') has a perfect match-
ing M so that for every element € of M an edge parallel to ¢ also belongs
to G. In this case clearly no element of M may belong to any strong join
and the maximum strong join problem can be reformulated as follows.
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Define a directed graph G = (V, E) so that uv € E if uv' € F where
v' denotes the node in U for which vv' € M. It is not difficult to prove
that B is extreme if and only if G has a spanning tree T so that every
fundamental circuit belonging to T is a directed circuit. (A fundamental
circuit is one having precisely one non-tree edge). We shall call such a
tree a circuil-representing free or, in short, a CR-tree. It is also true that
the set of edges in B corresponding to the edges of a CR-tree of (7 is
a maximum strong join of B. The digraph Dy on two nodes with two
parallel edges in both directions clearly has no CR-tree.

The purpose of the present paper is to provide characterizations for
digraphs having a CR-tree as well as a polynomial time algorithm to find
a CR-tree if there is any.

Let G = (V, E) be a directed graph. For X C V let §(X) denote
the number of edges leaving X. G is called strongly connected if there
is a directed path from % to v for every u,v € V. This is equivalent to
saying that 6(X) > 1 for every § # X C V. We call a set X tight if
8(X) = 1. Let T be a spanning tree of G and € = ry an edge of 7.
Then T — € has two components. Define T'(€) to be the node-set of the
component of T' — e containing . It is easy to see that T is a CR-tree if
and only if T'(e) is tight for every edge e of T'.

By an ear-decomposition of G we mean a sequence P ;= {Py, Ps,
..y Py} where Pj is a circuit of G, each other P; is a path in & so that
each edge of G belongs to precisely one P; (3 = 1,...,t) and precisely
the end-nodes of P; (i = 2,...,%) belong to P; U...U P;_;. Each path
F; is supposed to be simple except that the two end-nodes may coincide.
The number £ of paths is called the length of the decomposition.

It is well-known that a digraph G has an ear-decomposition if and
only if G is strongly connected. Moreover, for any strongly connected sub-
graph H = (U, A) of G any ear-decomposition of H is the starting seg-
ment of an ear-decomposition of G. The length of an ear-decomposition
depends only on the graph and equals |E| — |V| + 1. It also follows
easily that every strongly connected digraph G = (V, E) has at least
|E| — |V| + 1 directed circuits.

2. Characterizations of CR-trees

Let G = (V, E) be a strongly connected digraph. We call a simple di-
rected path P := {vg,e1,v1,€2,...,€k, 0%} unique if P is the only
simple path from v; to v;. We consider the empty set and a path {vg}
as trivial unique paths.
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PROPOSITION 2.1 A non-trivial path P is unique if and only if there
is a family {X1,...,Xy} of tight sets for which X; C Xz C ... C X,
and e; leaves X for everyi, 1 <1 < k.

Proof. Suppose first the existence of such a family. Let, indirectly, P' be
another simple path from v; to vi. Then there is a first edge €; of P not
belonging to P’. Since there is an edge ¢ of P’ leaving X;, we conclude
that o(X;) > 2, contradicting the tightness of Xj.

Assume now that P is unique. For each 7,1 < i < k let X; denote
the set of nodes reachable from {v1,...,v;—1} without using the edge
€i. From the definition X; C X;;1. We claim that v; g X; for i <
J» or equivalently, there is no path in G — ¢; from {vy,...,v;_1} to
{viy- .., Vk41} Indeed, if such a path P' existed, choose it minimal and
let 3 and ¢ denote the first and last node of P’, respectively. By the
minimality no internal node of P' belongs to P. Hence by replacing the
segment of P from $ to ¢ by P' we would obtain another simple path
from v; to ¥i41, contradicting the uniqueness of P.

Since the only edge leaving X; is e;, each X is tight and the family

{X1,..., X} satisfies the requirements.
oo

Note that the proof above can easily be turned into a polynomial-
time algorithm that either finds two distinct paths from v; to v or
constructs the family {X1,..., X%} in question.

Let us call an edge e = 2y € F uni-eyclicif € is contained in exactly
one directed circuit and multi-cyclic otherwise, We call an edge € = 2y
essential if G — € is not strongly connected. Otherwise ¢ is non-essential.
In other words, € = ¢y € E is uni-cyclic if there is a unique path from
¥ to ¢ and e is essential if {z,e,y} is a unique path. Therefore these
properties can be tested in polynomial-time.

PROPOSITION 2.2 Every directed subpath of a CR-tree T is unique.

Proof. Let P := {vg,e1,v1,¢€a,...,€k,Vs} be a subpath of T. Recall
that T'(e) denotes the node-set of the component of T’ — ¢ containing the
tail of e. Since T is a CR-tree, the only edge leaving T'(e) is e, that is,
T(e) is tight for each € € T. Hence the family {T(¢;) : i = 1,...,k}
satisfies the properties in Proposition 2.1 and therefore P is unique.

O

THEOREM 2.3 Let T be a spanning tree of a strongly connected
digraph G = (V, E). The following are equivalent.
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(a) T is a CR-tree,
(b) Every directed circuit is a fundamental circuit,
(c) Every non-tree edge is uni-cyclic.

Proof. (a—b) Let T' be a CR-tree. Suppose (b) fails to hold, that is,
there is a directed circuit € which is not fundamental. Then, for an edge
e = 2y € C—T, the subpath of T from ¥ to z is directed but not unique
as ' — e is another path from ¢ to 2. This contradicts Proposition 2.2.

(b—c) Let C be an arbitrary circuit containing a non-tree edge €. By
(b) C is the fundamental circuit belonging to e, that is, e is uni-cyclic.

(c—a) If (a) is not true, then there is a non-tree edge ¢ = zy so0
that its fundamental circuit is not directed. Then there exists a circuit
C containing e and this € contains another non-tree edge f = uv. Since
both e and f are uni-cyclic, both paths €' — ¢ and C — f are unique. By
Proposition 2.1 there is a tight set X (resp., Y) so that € enters X (f
enters Y') and f (e) is the only edge leaving X (Y'). Therefore no edge
leaves X UY and X NY. Since & is strongly connected, X UY =V
and XNY =0, that is, X = V — Y. We can conclude that e is the only
edge entering X and f is the only edge leaving X contradicting the fact
that T is a spanning tree.

00O

8. Graphs with CR-trees

In this section we provide three characterizations for digraphs G =
(V, E) having CR-trees. We can assume that there is no cut-edge in G.
Indeed, any cut-edge ¢ belongs to every spanning tree and to no directed
circuit. Hence G has a CR-tree precisely if G/¢ has a CR-tree where G/e
denotes a digraph arising from G by contracting e.

A second observation is that G cannot have a CR-tree if & is not
strongly connected. Indeed, let T" be a CR-tree of G. Every edge of G—T
belongs to a directed circuit, namely to its fundamental circuit. Since
there is no cut-edge, every element of I' belongs to a certain fundamental
cireuit. Hence G is strongly connected.

Henceforth we assume that G is strongly connected.

THEOREM 3.1 A strongly connected digraph G = (V, E) has a CR-
tree if and only if the set K of multi-cyclic edges forms a forest. Moreover
if K is a forest, any spanning tree including K is a CR-tree.
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Proof. Suppose first that T is a CR-tree of (7. By Theorem 2.3 every
non-tree edge is uni-cyclic, that is, K is a subset of T, and hence K is a
forest.

Conversely, suppose that K is a forest. Let T be any spanning tree
including K. Now property (¢) in Theorem 2.3 holds and hence T is a
CR-tree.

0od

Since we can check in polynomial time if an edge is uni-cyclic or
not, Theorem 3.1 suggests an algorithm to decide if a digraph has a CR-
tree. A disadvantage of the theorem is that the necessity of the condition
is not very straightforward. We provide two other characterizations to
overcome this drawback. We will need the following:

PROPOSITION 3.2 IfP is a unique path in G and G has a CR-tree,
then G has a CR-tree including P.

Proof. Let P := {vg,e1,v1,€2,...,€k, Uk} . By Proposition 2.1 every
subpath of P is unique. By induction we may assume that there is a
CR-tree T' of G containing each ¢; (i = 1,...,k — 1). By Theorem 2.3
each non-tree edge is uni-cyclic.

If ex € T, we are done. So suppose that ¢ & T and let C denote the
fundamental circuit belonging to eg. Since T is & CR-tree, C is directed.
By Proposition 2.1 there is a tight set X containing v1,...,v; and not
containing vy . There is a (unique) edge f € C'— P entering X. Because
€j is the only edge leaving X and G has only fundamental circuits, f
is uni-cyclic. Hence T" := T — f 4 e is a tree containing all uni-cyclic
edges. By Theorem 2.3 T is a CR-tree and includes P,

O

For a strongly connected digraph G = (V,E) denote k(G) :=
{E| = {V]|+ 1. Let P := {P, P3,...,P;} be an ear-decomposition of
G and let G; ( = 1,...,1) denote the union of the first 7 members of
P. By induction it follows that x£(G;)} = i for 1 < ¢ < £. Since G; is
strongly connected, every P; is a subset of a directed cirenit C; of G;.
Let R; :=C; ~ F; (i =2,3,...,1). Clearly, each G; has at least k{Gi)
directed circuits.

THEOREM 3.3 For a strongly connected digraph G = (V,E) the
following are equivalent:
{8) G has a CR-tree,
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(b) G has precisely kK(G) directed circuits,
(¢) R; is a unique path in G;_1 (i =2,3,...,1).

Proof. The equivalence of (b} and (c) is straightforward.

(@ = b) If G has a CR-tree T, then every directed circuit of G is a
fundamental circuit by Theorem 2.3. Since there are £(G) non-tree edges
in G, the total number of directed circuits is RAQV.

(b — @) Apply induction on ¢ = £(G). If K(G) = 1, then G is a circuit
and G — e is a CR-tree of G for any edge ¢ of G. Let £(G) > 1 and
assume, by induction, that Gy_1 has a CR-tree T;_; and R, is unique
in G¢_1. By Proposition 3.2 there is a CR-tree T;_; of G;_; including
B, ThenT :=T;_; UP; — e is a CR-tree of G for any edge e of F.
o0od

Finally, we exhibit a minor-type characterization. Let us introduce
three operations of a strongly connected graph G = (V, E).

(o ) Contracting a multi-cyelic edge ¢,
() Deleting a non-essential edge f,

(7) Restriction to a strongly connected induced subgraph G, = (V', E').

PROPOSITION 3.4 I G has a CR-tree, then each of the operations
(o ), (B), () results in a strongly connected digraph having a CR-tree.

Proof. Let Go, Gg, G+ denote the resulting digraphs. Clearly, each of
them is strongly connected. Let T be a CR-tree of G. By Theorem 3.1 ¢
belongs to T'. Hence T'/e is a CR-tree of G,.

By Proposition 2.2 every edge of T is essential. Hence f ¢ 1" and
T is a CR-tree of G'g, as well.

Finally, we show that the restriction " of T to V' is a CR-tree.
This is clearly true if 7" is a tree. Suppose 7" is not connected and let
X CV'beaset, ) # X # V, so that there is no edge of T connecting
X and V' — X. Since G is strongly connected, there is an edge € from
X to V' — X. Let C be a directed circuit in G, containing . Now C
is not a fundamental circuit of 7, therefore & cannot have a CR-tree by
Theorem 2.3, a contradiction.

000

Recall that D denotes the digraph on two nodes with two parallel
edges in both directions.
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THEOREM 3.5 A strongly connected digraph G = (V, E) has a CR-
tree if and only if Dy cannot be obtained from G by successively applying

operations AQY om v 3 3@

Proof. Since D3 has no CR-tree, the preceding proposition prove the
Yonly if” part.

Suppose now that G is a counter-example to the "if” part with
a minimum number of edges. Then G has no CR-tree and cannot be
reduced to I)y. Therefore

none of G, Gg, G can be reduced to D,. (%)

Let P := {P, P,..., P,} be an ear-decomposition of (7, as before. We
use the notation of Theorem 3.3. Now ¢ > 1. Let ¢ and y denocte the first
and last node of P, respectively.

CLAIM 1 =z # y and there are two paths Q1, Q2 in Gy from y to
z.

Proof. G;_; arises from G by operation (). The minimality of G and
(*) imply that G;_; has a CR-tree. It follows that R, cannot be unique
in G4 for otherwise there is a CR-tree T of G;—; including R; (by
Proposition 3.2) and then 7' U P, — ¢ would be a CR-tree of & for any
edge ¢ € P,

(I

CLAIM 2 Both Q) and Q2 consist of one edge.

Proof. Suppose, indirectly, that @, say, has more than one edge. Let €
and f be the first and last edge of Q;, respectively. Then it is easy to
check that at least one of these edges, say e, has the property that in G'/e
there are at least two paths from y to z. G \m arises from from Gy_3 /e
by adding P;. By Theorem 3.3 G'/e does not have a CR-tree.

On the other hand ¢ is multi-cyclic in G since € belongs to a circuit
of G¢—1 and belongs to a circuit including P;. By (*) and the minimality
of G, Gg := G /e has a CR-tree, a contradiction.

O

Let e; denote the only edge of Q; (i = 1,2) and let §) be a path
in G¢_1 from 2 to y. The union of P, and @ is a circuit C. Clearly
every edge of P; and @) is multi-cyclic. First erase all nodes not in C (by
operation (7))- Apply then operation (a) to all but one edges of P, and
of Q. This way we get a digraph on two nodes with at least two parallel
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edges in both directions. In such a graph all edges are non-essential. Thus
Dy can be obtained by operation (), contradicting the assumption on

G,
OOt
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