DIMACS Series in Discrete Mathematics
and Theoretical Cotnputer Science
Volume 49, 1999

FINDING MINIMUM WEIGHTED
GENERATORS OF A PATH SYSTEM

ANDRAS FRANK

ABSTRACT. In a recent paper the author [5] described a short algorithmic
proof of a min-max theorem of E. Gy6ri [8] on minimum generators of a sys-
tem of subpaths of an underlying path. A. Frank and T. Jordan [4] generalized
Gy0ri’s theorem in several ways; the underlying path was replaced by a circuit,
generators were extended to weighted generators, and minimum cost genera-
tors were also treated for node-induced cost-functions. The original proof
method however was not constructive and the only known algorithm so far
to solve the optimization problems in question relied on the ellipsoid method.
In this paper a constructive proof is described which gives rise to a purely
combinatorial strongly polynomial algorithm.

1. INTRODUCTION

Let P = (vo,j1,v1,J2,v2,-..,Jn,Un = Ug) be a directed circuit, that is, each
directed edge j; has tail v;_; and head v;, and the nodes vy,...,v, are distinct.
Let V := {vg,...,vn} and E := {J1,..., jn} denote the node set and edge set of P,
respectively. Let F* := {uv : u,v € V,u £ v} denote the set of all directed edges
on the node set V. Suppose that a non-negative integer-valued weight-function
p: E — 7, is given.

Let P be a system of distinct subpaths of P. We use the convention that the
edge set of P; will be denoted by the same letter P;. The node set of P; is denoted
by V(F;). For a path J, let f(J)} and {(J) denote the first and last nodes of .J,
respectively. Also, for a (directed) edge e = uv let f(e) := u and I(e) := v.

We say that a system G of subpaths of P generates a path J if J is the union
of some members of G. G generates P or G is a generator of P if every member
of P is generated by G. Let «(P) denote the minimum cardinality of a generator
of P. More generally, a family G of (not-necessarily distinct) subpaths of P is a p-
generator or a weighted generator of P if, for every path J € P and edge j € J,
G contains at least p(j) paths containing j and included in J. Let v,(F) denote
the minimum cardinality of a p-generator of P. Clearly, for p = 1, a p-generator is
a generator. One of our main concerns will be to find algorithmically a minimum
weighted generator.

To formulate a min-max theorem for 7, we need the following terminology. Let
J € P be a path and j an edge of J. We say that the pair (J, j) is a path-edge
_ pair. Let R denote the set of all path-edge pairs (J, j) for which j € J € P. A

1991 Mathematics Subject Classification. 05C40, 80B10, 90C35.
Key words and phrases. combinatorial algorithms, path systems.

Research supported by the Hungarian National Foundation for Scientific Research Grant,
OTKA T17580,

©) 1999 American Mathematical Society
129

130 ANDRAS FRANK

member (J, 7) of R is called essentijal, or an essential pair if there is no member
J' (# J) of P for which j € J' C J. Let £ denote the set of essential pairs of R.
We will say that an essential pair (J,) is sitting at J. Weight p(7)} is called the
weight of (J,j) and denoted by p(J,j). (Hopefully, no confusion may arise from
this kind of notation that symbo! p is used for a weighting on ¥ and for a weighting
on the set of path-edge pairs, as well.)

Let (J, 7)™ denote the set of nodes of J preceding edge j, and let (J, 7)* denote
the set of nodes of J following j. That is, (J,)~ and (J,7)7 form a partition of the
node-set V(J) of J. For any edge ¢ = uv € E*, ¢ covers (J,7)ifu e (J,7)" and
v € (J,7)T. For a non-negative integer vector z : £* — Ziy,let p.(J,7) =3 (2(e) :
e covers (J, 7). The deficiency of a path-edge pair (J,7) is defined by h,{J,7) :=
max(0, p(j) — p;(J, j)). The deficiency of z is h(z) := 3 (h,(J,) : (J,5) € &).

If the deficiency of (J, ;) is zero, z is said to p-cover (J, 7). Otherwise (J,7) is
called deficient. We say that z is a p-covering or a weighted covering of R if
0:(J,J) = p(7) holds for every path-edge pair (J,7} € R. The size of a p-covering
zof Ris 2(E*) := 3 (2(e) : e € E*).

There is a natural correspondence between p-generators of P and p-coverings of
R. Namely, from a p-covering z we can obtain a p-generator by associating with
each edge uv € E* z(e) copies of the subpath of P from u to v, and conversely,
from a p-generator G we obtain a p-covering z by letting z(uv) be the number of
paths in G from u to v. By this correspondence, z(E*) = |G| and hence ~,(P) is
the minimum size of p-covers of the set R of path-edge pairs.

Two path-edge pairs (1, 1), (J,) are called independent if (I,)) N(J,j})" =0or
(Z,4)"N(J, j)* = @ which is equivalent to saying that no edge in E* can cover both of
them. A set of represented paths is called independent if its members are pairwise
independent. Let o,,(P) denote the maximum total weight of an independent subset
of R. For p = 1, o, is abbreviated by ¢. Because two independent path-edge pairs
cannot be covered by one edge, z(E*) > ¢,(P) holds for every p-covering z of
R, or equivalently, every p-generator of P has at least op(P) members, and hence
o5(P) < 1,(P).

Actually, here we always have equality:

Theorem 1.1. For a set P of subpaths of a directed circuit (V. E) and for a weight
functionp: E - Z_,

7p(P) = %(P),

that s, the mazimum total weight of an independent subset of R is equal to the
minimum size of a p-covering of R.

This result was proved by Frank and Jordsn [4] in a more abstract form con-
cerning coverings of bi-supermodular functions. The special case of Theorem 1.1
when no member of P contains edge j,, of P, that is, when P may be considered as
a set of subpaths of an underlying directed path P — Jn Was proved by A. Lubiw
[10]. When p = 1, Lubiw’s theorem specializes to a theorem of Gy®éri [8] which has
actually been the starting point of this area.

Gy®ri’s original proof for his theorem is not constructive but its ideas could be
used to develop a combinatorial algorithm. That was achieved by D.S. Franzblau
and D.J. Kleitman [7]. For a clear explanation and simplification of their algorithm,
along with a computer code, see [9]. The algorithm of Franzblau and Kleitman was
extended by A. Lubiw {10] to the weighted case. A completely different approach,

FINDING MINIMUM WEIGHTED GENERATORS OF A PATH SYSTEM 131

relying on Dilworth’s theorem, was introduced in {5] to obtain a short algorithmic
proof of Gyéri’s theorem.

The proof of Theorem 1.1 in [4] is not constructive. Although the same paper
describes a polynomial time algorithm to compute the two extrema in question,
that algorithm relies on the theorem itself and uses the ellipsoid method. The main
purpose of the present work is to extend ideas of [5] to develop an alternative proof
of Theorem 1.1 which is constructive and gives rise to a strongly polynomial (purely
combinatorial) algorithm to compute o,(P) and v,(P). A slight modification of
the algorithm will allow us to solve a min-cost version of the weighted generator
problem, as well.

The main min-max theorem of [4] on covering bi-supermudular functions by a
minimum number of directed edges (whose special case is Theorem 1.1) remains
algorithmically unsolved (apart from an ellipsoid-method based algorithm). In
particular, no combinatorial polynomial time {exact) algorithm is known for the
other important special case of the general model when the objective is adding
a minimum number of new edges to make a given directed graph k-connected.
However, for the even more special problem when the starting digraph is (k — 1)-
connected, that is, when the connectivity of the digraph is required to be increased
by one by adding a minimum number of new edges, it was possible to develop such
an algorithm [6].

Throughout we use the notational convention for any given function ¢ : § - R
and subset X C § to denote 3 (g(x): z € X) by g(X).

2. PREPARATIONS

Let (K, <) be a partially ordered set and p : K — Z, a weight function. Two
elements K, L of K are called comparable if K < L or L € K, otherwise they
are uncomparable. By a chain (respectively, antichain) we mean a subset con-
sisting of pairwise comparable (resp., uncomparable) elements. A family C of (not
necessarily distinct) chains is said to cover (K, p) or that C is a chain-covering of
(X, p) if every element K € K belongs to at least p{K) members of C. The number
{C| of chains is called the size of the chain-covering of (K, p). The weight p(.A)
of a subset A C K is > (p(K): K € A). In the algorithm we are going to describe,
a weighted version of Dilworth’s theorem plays a fundamental role.

Theorem 2.1 (Weighted Dilworth). In a partial order (K, <) with a weight func-
tion p, the minimum size of a chain-covering of (K,p) is equal to the mazimum
weight of an antichain. Moreover, there is a set {Cy,...,Cc} of k < |K|? distinct

chains along with positive integer coefficients v,,. .., so that the family consisting
of v copies of every chain C; (i = 1,...,k) s a minimum size chain-covering of
p. O

This form immediately follows from the original version of Dilworth’s theorem
(where p = 1) by replacing each element K by p(K) pairwise uncomparable el-
ements. Ford and Fulkerson (3] described an elegant way to deduce Dilworth’s
theorem from that of Kénig. An analogous reduction can be used to formulate
the weighted Dilworth problem as a maximum flow problem and therefore both a
minimum chain-covering of p and a maximum weight antichain can be computed
in (strongly) polynomial time via a max-flow min-cut algorithm. We will refer to
this algorithm as the weighted Dilworth algorithm (see the Appendix). Note
that the second half of the theorem follows from this max-flow approach.

132 ANDRAS FRANK

With the help of this (rather standard) technique even the following minimum
cost version becomes algorithmically tractable. Suppose that, in addition to the
weight function p, we are given two cost functions dy and d; on K. The cost of a
chain with minimal element K and maximal element L is defined by d;(K)+d;(L).
We will refer to the algorithm computing a minimum cost chain-covering of p as
the min-cost weighted Dilworth algorithm. (See the Appendix).

We will work with a particular partial ordered set (£, =) which is defined, as
follows. For two essential pairs (1,1} and (J,) let (1,4) < (J,5) if (I,4)~ C (J,5)~
and (I,9)* 2 (J,)%, If (1,4} = (J,7) but (I,4) # (J,5), we write (I,7) < (J, 7).
‘Two essential pairs are crossing if they are neither comparable nor independent.
(That is, two uncomparable essential pairs are either independent or crossing). Note
that the essential pairs sitting at the same edge form a chain. A subset K of £ is
called cross-free if it contains no two crossing members.

Claim 2.2. If a function z : E* — Z, p-covers &, then z p-covers R, as well.

Proof. Tt is enough to prove that if (J,j) is a path-edge pair not p-covered by
z so that |.J} is minimum, then (.J,7) is essential. If there is a path J' € P with
j € J' C J, then, by the minimality of J, 9.(J’,) > p(j). Since every edge covering
(J', §) covers (J, j), as well, we obtain that ¢,(J,7) > 0.(J',) > p(j), contradicting
the assumption that z does not p-cover (J,), that is, (J, 7) is indeed essential. O

The claim implies that in order to p-cover R it suffices to p-cover £.

Claim 2.3. The members of a chain C of (€,=X) can be covered by one edge. If C
is a family of chains and p'(K, k) denotes the number of chains in C containing
(K, k) ((K,k) € £), then there is an integer vector z : E* — Z so that o,(K, k) >
P'(K,k) for every (K, k) € £ and so that the size z(E*) of z is |C]|.

Proof. If (K, k) and (J, j) are the minimal and maximal members of C, respectively,
then any edge uv with v € (K, k)™, v € (J,7)* covers each member of the chain
C. The second half follows easily from the first. Namely, for each chain C in C
choose an edge ec covering the members of C, define 2o : E* — Z, by zc(ec) =1
and zc(e) = 0 otherwise, and finally define z :== 3 (2¢ : C € C). This function z
satisfies the requirements. 3

The following claim is staightforward.

Claim 2.4. Let (K, k) and (J,7) be two crossing essential pairs. Then both (K, §)
and (J, k) are essential. O

Lemma 2.5. Let (K, k) and (J,j) be two crossing essential pairs. If an essential
pair (X, x) crosses neither of them, then (X, x) crosses neither (K,j) nor (J k).

Proof. First assume that (X,z) is comparable with both (K, k) and (J,7). It is
not possible that (K, k) < (X,z) < (J,7) or (J,j) =< (X,z) < (K, k) since then
(K, k) and (J, j) would be comparable and not crossing. Therefore either (X, z) >
(K,k),(J,§) or (X,z) % (K,k),(J, 7). By symmetry we may assume that (X, z) >
(K,k),(J,7). But in this case (X,z) = (K,j) and (X,z) = (J,k), that is, (X, z)
does not cross (K, j) and (J, k).

Second, assume that (X, z) is independent from both (K, k) and (J,7). Then
z ¢ K UJ and hence (X, z) is independent from both (K, j) and (J,k).

In the third case (X, z) is independent from one of (K, k) and (J,), say from
(K, k), and comparable with the other, (J,7). Then z ¢ K and hence (X,z) is

FINDING MINIMUM WEIGHTED GENERATORS OF A PATH SYSTEM 133

independent of (K, j). If (X,z) < (J,5), then (X,z) < (J k). If (X,2) = (J,5),
then (X, z) > (J, k). 0

3. ALGORITHMIC PROOF OF THEOREM 1.1

-We have seen that ¢,(P) < v,(P). In order to prove equality, it suffices to find

a p-covering z of R and an independent subset A of £ for which z(E*) = p(A) (=
> (p(A4) : A € A)). Below we describe a constructive proof of the existence of such
z and A, and indicate how this proof can be turned into a strongly polynomial time
algorithm.
PHASE 1. Compute a cross-free subset K of £, as follows. At the beginning, let
K be empty. Choose a total ordering of the elements of &£ so that (K, k) precedes
(J,7) whenever p(K, k) > p(J,). Consider the elements of £ in this order and put
one into K if it does not cross any previously chosen member of K.

Let (K1,k1), (K3, k2),...,(Kn,kn) denote the members of the final X where

the indices reflect the order in which the members have been put into K. For each
(J,7) € £~K there is a member of K crossing (J,7), and let ¢(J, §) denote the least
index ¢ for which (Kj, k;) € K crosses (J, j).
PHASE 2. With the help of the weighted Dilworth algorithm determine a max-
imum weight antichain A of £ and a minimum cardinality chain-covering C of
(K, p) (for which |C| = p(4)). By Claim 2.3, there is an integer-valued p-covering
z: B — Zy of K with size |C|. If z p-covers £ as well, then by Claim 2.2 we have
found a required p-covering of R and the algorithm (as well as the proof of the
theorem) terminates.

So suppose that there are deficient essential pairs. We are going to improve the
current p-covering z of K step by step without changing its size so as to obtain a
final p-covering of K which p-covers the whole Ep, as well, (and hence Ry, t00).

Let (J,j) be a deficient essential pair which is latest in the sense that tHJ, 7)
is maximum. Let (K, k) := (Ky15) keean). By Claim 2.4, (J,k) and (K,j) are
essential.

Claim 3.1. Both (J,k) and (K, j) are p-covered by z.

Proof. Suppose indirectly that (J,k) is not covered by 2. (The proof for (K, j) is
analogous). Since every member of K is p-covered, we have (J.k) ¢ K. Since (J,5)
is latest, ¢’ 1= t(J, k) < #(J,). Here we cannot have equality because (K, k) and
(J, k) are comparable and not crossing. Now (K, ki) crosses neither (K, k) (since
both are in K) nor (J, j) (by the definition of ¢(J, 7)) but (K;/, ;) does cross (J, k),
contradicting Lemma 2.5. W

By reversing the edges, if necessary, (and thereby interchanging (X,z)~ and
(X,z)* for every (X,x) € R), we may assume that f(k) € (J,7)" and I(k) €
(J,5)"

Claim 3.2. There is an edge) = wyv; € E* with u; € (J,7)" N{K,k)", vy €
(.3} N(K, k)t so that z(e1) > 0. There is an edge es = upvy with us € (K, k) —
(J,3) vz € (J,3)Y N(K kYT so that z(e) > 0.

Proof. We claim that p(k} > p(j) for otherwise (J,j) would precede (K ,k) in the
total ordering of £ introduced in Phase 1, that is, during the construction of K pair
(J,7) would have been considered earlier than (K, k) and then, by the definition of
t = t(J, 5), (J,7) would have been chosen to belong to K.

134 ANDRAS FRANK

By p(k) > p(j) we have p(J, k) = p(K,k) > p(J,j). Since z does not p-cover
(J,3) but, by Claim 3.1, it p-covers (J, k), there must be an edge e; required by the
Claim. Similarly, since z p-covers (K, j), an edge s required by the Claim must
exist. O

EXTREME CHOICE OF e; AND e;. Choose edges e, and e, ensured by the
previous claim so that e; is minimal and e, is maximal in the sense that the subpath
of P from u; to v; is as small as possible and the subpath of P from uy to v, is as
large as possible. (This particular choice of e; and ey will not be used in the proof
of the theorem. It will play a role in getting a strongly polynomial upper bound
for the number of steps of the algorithm.)

FLIPPING OPERATION. Let § := min(2(e1), z(e2)) and let &} := u v, €} := usv;.
Revise z by letting 2'(e1) := 2(e1) -6, 2'(e2) := z(e2)—6,2(€}) := z(e}))}+6, 2 (eh) :=
z(e2) + 6, and let 2'(e) := z(e) otherwise. Note that 2/(K*) = 2(E*), that is, the
size of 2’ and z is the same. We call this revision of z a flipping operation or, in
short, a flipping at e; and e;.

FIXING A LATEST DEFICIENT PAIR (J,j). Aslong as (J,) is deficient, choose
edges €) and e as described in eztreme choice, and apply a flipping operation at
er and es.

PHASE 3. As long as there are deficient pairs, choose a latest deficient pair (J, 7}
and fix it.

In order to conclude the proof of the theorem, it suffices to show that the de-
ficiency of 2’ obtained by applying one flipping is smaller than that of z, that is,
h{2') < h(z). (We will prove this by assuming only the properties of e, and e,
given in Claim 3.2 and not using the extreme choice of e1,e2.)

Claim 3.3. 0./(X,z) > g.(X,z) for every essential pair (X,z) and g.(J,j) >
0:(J,).

Proof. As the second part is straightforward, we prove only the first. Obviously, if
ez covers (X, x), then €] or) covers (X,x). It is also trivially seen that if both
ey and e, cover (X,x), then so do €] and e}. Finally, if (X,z) is covered by e,
then (X,z) must be covered by at least one of ¢, and e} for otherwise we have
k € X C K contradicting that (K, k) is essential. O

By this claim 2" is also a p-covering of K for which h(2’) < h(z). Therefore, after
a finite number of flippings, a vector z, is obtained with h(zo) = 0, that is, zp is a
p-covering of £ and its size is equal to the total weight of an independent set A of
essential pairs, as required for the theorem. O

By now we have finished the description of the steps of the algorithm and proved
its finiteness. Our next goal is to get a polynomial bound on the number of steps.
To this end first we show that Phase 3 terminates after at most n* flippings.

Claim 3.4. The precedure of fizing a latest deficient pair (J, j) terminates after at
most n(n — 1) flippings.

Proof. When a flipping is carried out at e; and e, at least one of the z-values z(e;)
and z{e;) becomes zero. By the extreme choice of e; and e, their z-values cannot
increase during the subsequent flippings as long as (J,7) is deficient. Therefore
after at most, |E*| = n(n — 1) flippings (J, j) must become p-covered.]

FINDING MINIMUM WEIGHTED GENERATORS OF A PATH SYSTEM 135

Claim 3.5. [£| < n?

Proof. Let P; denote the set of paths in P with first node v;. For every edge e € P
there is at most one member X of P; for which € € X and (X, e) is essential. That
is, there are at most n essential pairs (X, e) with f(X) =v;. Hence |£| <n?. O

Combining Claims 3.4 and 3.5 we obtain that after at most n? flipping operations
Phase 3 terminates with a p-covering z of R for which z(E*) = p{A).

A. Benczir, J. Férster, and Z. Kirdly [2] proved that any cross-free set of essential
pairs, and hence X, can have at most nlogn members. Since there are max-flow
min-cut algorithms of complexity O(p?®), where p is the number of nodes of the
network, Phase 2 will terminate in O(nm + n?,/nlogn) steps. Note that if one
uses only the naive upper bound |K| < |€| < n?, then the number of steps in Phase
2 could be estimated only by O(n?).

Since |£] < n? Phase 1 can be carried out in O(n?) steps, we can conclude
that the complexity of the whole algorithm is O(n*). Benczir et al. [2] made
further simplifications for the unweighted case {p = 1) and obtained an algorithm
of complexity O(n?%log®? n).

4. MINIMUM COST WEIGHTED p-COVERINGS

Our next goal is to show how a slight modification of the algorithm above helps
us compute a minimum cost p-covering of R for a node-induced cost function. The
only change in the whole algorithm occurs in Phase 2 where finding a minimum
cost chain-covering of (X', p) will be demanded rather than a minimum size.

Suppose we are given two cost-functions df : V — Ry and d; : V — R,.. The
cost d(e) of an edge e = uv € E* is defined by d(e) := d(u) 4+ di(v). (This is
why we call such a cost-function node-induced). For a function z : E* — Z,
let the cost of z be defined by d(z) := > (z(uv)d{uv) : uwv € E*). (When dy =
1,dy = 0, the cost d(2) is the size of z.) Extend the domain of d; and d; to the
set of path-edge pairs, as follows. Let dg(K, k) := min(d(u) : v € (K,k)”) and
di(K, k) := min{dy(u) : u € (K, k)*). Note that ds is monotonously decreasing
and d; is monotonously increasing in the sense that if (J,7) < (K, k), then
df(K,k) < dg(J,j) and di(K, k) > ds(J, 7). Define the cost of a chain C by d(C) :=
df(K,k) + di(L,1) where (K, k) and (L,l) are the minimal and maximal elements
of C, respectively.

Let K be the cross-free family determined by Phase 1. It follows from the defini-
tions that for any edge e ¢ E* the members of K covered by e form a chain of cost
at most d(e), and conversely (similarly to the proof of Claim 2.4) any chain C of K
can be covered by an edge e of cost d(C). Therefore a minimum cost p-covering of
K can be determined by computing a minimum cost chain-covering of (K, p) which,
in turn, can be done in Phase 2 with the help of the min-cost weighted Dilworth
algorithm (to be outlined in the Appendix). Hence we can find a minimum cost
integer-valued p-covering z of K.

Finally, apply Phase 3. The correctness of the algorithm (that is, that the final
p-covering of £ is of minimum cost) follows from the easy observation that if 2’
denotes the function obtained from z by a flipping operation, then d(z') = d(z),
that is, the cost of z and 2z’ are the same. (This is the place where we exploit that
d is node-induced and not a general cost-function.)

We remark that the above cost function can be made slightly more general by
allowing a specified subset F' C E* of edges to be used freely, that is, with cost

136 ANDRAS FRANK

zero. Everything above (proof and algorithm) remains unchanged if one works with
the subset of represented pairs not covered by any element of F (including that £
and K are also restricted in this way.)

APPENDIX: (MIN-COST) WEIGHTED DILWORTH ALGORITHM

Ford and Fulkerson [3] showed how to derive Dilworth’s theorem from Kénig’s
theorem on maximum matchings in bipartite graphs. Since a maximum matching
can be efficiently computed, this reduction made it possible to compute in polyno-
mial time a minimum chain decomposition of a partially ordered set along with a
maximum antichain. In Section 2 we bave formulated the weighted Dilworth theo-
rem. Here we show how the reduction technique of Ford and Fulkerson extends to
the weighted case. For the closely related problem of finding a minimum flow in a
network satisfying lower bound requirements on the arc-flows, see [1].

Let (K, <) be a partially ordered set endowed with an integer-valued weight-
function p : K — Z. With (K, <) we associate a directed graph D := (U, F)
with edge-capacities, as follows. For each element K € K let k' and k" be two
corresponding elements. Let s be a source node and ¢ a sink node and let U :=
{s,t}U{K' : K e K}U{k": K € K}. For every element K € K, let sk’ and k"'t
belong to I with capacities g(sk’) := g(k"'t) := p(K). Furthermore, let ¥'l” belong
to F'if K > L and define g(k'l") = oco. (Note that k'k” does not belong to F.)

By a max-flow min-cut algorithm we can compute a maximum integer-valued
feasible flow z and a set S for which s € § C U — ¢ and §,(S) is minimum where
8,(X) := 3(g(f) : f € F leaves S). By the MFMC theorem the value of maximum
flow x (that is, by definition, 62(s)) is equal to §,(5).

Define another directed graph D’ = (U, F'), as follows. For every element K € K,
let sk’, k"t, k'k” belong to F', and let 1"k’ belong to F' if K > L. Let us define
e’ F' — Zy, as follows. For K € K, let z'(sk') := p(K) — a(sk'), o’ (k"t) =
p(K) —~ z(k"t). Let '(K'k") := p(K), and in case K > L let o’ (I"k') := =(K'l").
It is not difficult to see that z' is a non-negative integer-valued flow in I’ whose
value is p(K) — 8§.(s).

It is well-known (and can be proved easily by induction) that in an acyclic digraph
with n' nodes and m’ edges, any flow can be decomposed into at most m’ — n’ + 2
path-flows. (A path-flow is a flow that is positive on the edges of a directed path
from s to t and zero otherwise). Moreover the inner nodes of any directed path of
DY from s to t form a chain of (K, <). Let N := |K]. Since D’ has 2N + 2 nodes and
at most 3N + N{N —1)/2 edges, we obtain that 2’ can be decomposed into at most
3N+ N(N-1)/2~ (2N +2)+2 = N(N +1)/2 < N? path-flows. Hence there is a
set of chains Cy,...,Cx (k € N?) of (K, <) and positive integer-valued coefficients
Yt -7k 50 that the family C of chains consisting of «,; copies of C; (i =1, .., k) is
a chain-covering of (K, p) and 3" = 6./(s) = p(K) — 8,(s) = p(K) — 8,(S).

Let us now consider the minimum cut in D determined by 5.

Claim A.1. Ifk" € S, thenk' € S.

Proof. If k" € § and k' ¢ S, then there must be an element L, € K for which
I, ¢ S and K > L, for otherwise we would have 8o(S + k") < 8,(S), contradicting
the choice of S. Similarly, there must be an element L. € K for which lhes§
and K < Lq, for otherwise we would have 6o(S — k") < 6,(S). But now Ly > Ly

and the edge 5/, leaves S and hence §,(S) = 00, contradicting the minimality of
0,(5). 0

FINDING MINIMUM WEIGHTED GENERATORS OF A PATH SYSTEM 137

Let A:={K € K:k € 5,k" ¢ S}. Then A is an antichain of (K, <) and
p(A) = p(K) — §,(S). Therefore p(A) is equal to the flow-value of z’, that is, A4
Is & maximum p-weight antichain of (K, <) and C is a minimum chain-covering of
(K,p).

In concluston, both a minimum chain-covering C of (K,p) and an antichain A of
maximum weight can be computed with the help of a max-flow min-cut algorithmn.

We remark that the minimum chain-covering constructed this way contains ez-
actly p(K) chains containing K for every element K of K. We call such a chain-
covering a chain-decomposition of (K,p). The above construction shows that
there is a one-to-one correspondence between the chain-decompositions of (K, p)
and the integer-valued flows of the network (D, g} defined above.

Suppose now that we have two cost-functions dy and d; defined on K so that
they are monotonously decreasing and increasing, respectively. Define the cost of a
chain C by d(C) := d¢(K)+d;(L) where K and L are the minimal and the maximal
elements of C, respectively. It follows from the monotonicity of dy and d; that the
cost function d is monotonously increasing in the sense that d(C;) > d(Cs) holds
for every two chains with C; 2 C».

Our goal is to show how to modify the algorithm above to find a mininum
cost chain-decomposition of (K, p). Use the same digraph D = (U F) introduced
above along with the capacity function g and define the cost of edges sk', k"t by
c(sk’) 1= ~d)(K) and c(k"t) := —d;(K) (K € K) while the cost of all other edges
Is zero. By a min-cost flow algorithm (see e.g. [1]) determine a maximum flow
x of minimum cost. By the above-mentioned correspondence between flows and
chain-decompositions of (K, p), one can easily see that the chain-decomposition C
assigned to a minimum cost maximum flow of D will be of minimum cost.

We can conclude that the minimum cost chain-decomposition problem can solved
with the help of a min-cost flow algorithm. There are strongly polynomial combi-
natorial algorithms for the latter (for a comprehensive account, see Ahuja et al. [1])
and hence we have found one for the minimum cost weighted generator problem.

It should be remarked however that we need the min-cost flow problem only for
a special type of cost function, namely when there are non-zero costs only on the
edges leaving the source-node s or entering the sink-node ¢. It can be shown that in
such a case there is no need for a general purpose min-cost flow algorithm. Instead,
a modification of a max-flow min-cut algorithm will do by taking into consideration
the edges of D at s and ¢ one by one according to the increasing order of their costs.

REFERENCES

1. RK. Ahuja, T.L. Magnanti, and J.B. Orlin, Network Flows, Prentice Hall, 1993,

2. A. Benczir, J. Forster, and Z. Kirdly, Finding minimum generators for path systems of a
cycle ~ implementation and analysis, submitted (1997).

3. L.R. Ford, D.R. Fulkerson, Flows in Networks, Princeton Univ. Press, Princeton NJ., 1562,

4. A. Frank and T. Jorddn, Minimal edge-coverings of pairs of sets, Combinatorial Theory 65
(1985), 73-110.

5. A. Frank, Finding mintmum generators of path systems, J. Combinatorial Theory Ser B.
(1997), to appear.

6. A. Frank, Finding minimum edge-coverings of pairs of sets, in preparation (1997).

7. D.S. Franzblau and D.J. Kleitman, An algorithm for covering polygons with rectangles, In-
formation and Control 63 (1984), 164-189.

8. E. Gyéri, A minimazr theorem on intervals, J. Combinatorial Theory Ser. B 37 (1984), 1-9.

9. D. E. Knuth, Irredundant Intervals, ACM Journal of Experimental Algorithmics 1 (1996),
article 1, 19.

