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An extension of a theorem of Henneberg and Laman

András Frank? and László Szegő??

Abstract

We give a constructive characterization of graphs which are the union of k
spanning trees after adding any new edge. This is a generalization of a theorem
of Henneberg and Laman who gave the characterization for k = 2.

We also give a constructive characterization of graphs which have k edge-
disjoint spanning trees after deleting any edge of them.

Keywords: graph, constructive characterization, rigidity, packing and covering
by trees

1 Introduction

The idea of constructive characterizations in graph theory is not new. The first
example is the following theorem of Tutte [15] from 1966. A graph on more than k
nodes is said to be k-node-connected if after deleting less than k nodes the graph
remains connected.

Theorem 1.1 (Tutte). An undirected graph G = (V,E) is 3-node-connected if and
only if G can be obtained from the complete graph on 4 nodes by the following two
operations:

(i) add a new edge,

(ii) take a node z and replace it by two nodes z1, z2, put an edge between them, and
put edges incident to z1, z2 such that the union of the neigbours of them are
exactly the original neighbours of z and there are at least two neighbours of zi

for i = 1, 2.
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Section 1. Introduction 2

In 1976 Lovász [8] proved the following theorem. A graph is said to be k-edge-
connected if after deleting less than k edges the graph remains connected.

Theorem 1.2 (Lovász). An undirected graph G = (V,E) is 2k-edge-connected if
and only if G can be obtained from a single node by the following two operations:

(i) add a new edge,

(ii) add a new node z, subdivide k existing edges by new nodes, then identify the k
subdividing nodes with z.

The (ii) operation in this theorem is called pinching k edges (with z).
Similar constructive characterizations for directed edge-connectivity in directed

graphs exist due to Mader [9].

Theorem 1.3 (Mader). A directed graph G = (V,E) is k-edge-connected if and
only if G can be obtained from a single node by the following two operations:

(i) add a new edge,

(ii) pinch k existing directed edges.

Another example of this kind of theorems concerns spanning trees. We call an
undirected graph k-tree-connected if it contains k edge-disjoint spanning trees. It
was observed in [3] that a combination of Mader’s characterization and Tutte’s disjoint
tree theorem gives rise to the following.

Theorem 1.4. An undirected graph G = (V,E) is k-tree-connected if and only if G
can be built from a single node by the following two operations:

(j) add a new edge,

(jj) pinch i (0 ≤ i ≤ k − 1) existing edges with a new node z, and add k − i new
edges connecting z with existing nodes.

For a direct proof see Tay [13].
An undirected graph G = (V,E) is said to be k-stiff if it is the union of k edge-

disjoint spanning trees after adding any new edge, that is, G + e is the union of k
edge-disjoint spanning trees for every possible new edge e = uv (u, v ∈ V ) (multiple
edges are permitted).

2-stiff or, as often called, minimal generically rigid graphs are important in statics.
A framework in the plane is statically rigid if and only if its graph has a minimal
generically rigid subgraph. This was proved by Laman [7]. A framework consists of
rigid rods and rotatable joints. Its underlying graph is the natural one: the node
set is the set of the joints and there is an edge between two nodes if there is a rod
between the corresponding two joints. A consequence of the theorem of Laman is that
the notion of rigidity is a property of the graph and not only its embedding into the
plane with real rods and joints.
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Section 2. Construction of k-stiff graphs 3

According to a theorem of Nash-Williams [12], a graph G = (V,E) is k-stiff if and
only if |E| = k(|V | − 1)− 1 and γG(X) ≤ k(|X| − 1)− 1 for every subset X ⊆ V with
|X| ≥ 2 (where γG(X) denotes the number of the edges of G whose two end-nodes
are in X). By combining theorems of Henneberg [5] and of Laman [7], one obtains
the following constructive characterization of 2-stiff graphs.

Theorem 1.5 (Henneberg and Laman). A graph G is 2-stiff if and only if G can
be constructed from one (non-loop) edge by the following two operations:

(i) add a new node z and connect z to two distinct existing nodes,

(ii) subdivide an existing edge uv by a node z and connect z to an existing node
distinct from u and v.

In this paper we give the generalization of this theorem for arbitrary k. The diffi-
culties which come to the picture for k greater than 2 will be presented in the next
section. We note however that 3-stiff graphs have no direct meaning in 3-dimensional
rigidity.

In Sect. 3 we will give a corresponding constructive characterization of graphs
which have k edge-disjoint spanning trees after deleting any edge of them.

For the sake of completeness we give the original theorem of Henneberg [5] and
Laman [7].

Theorem 1.6 (Henneberg). A framework in the plane is minimally rigid if and
only if it can be constructed from one rod by the following two operations:

(i) add a new joint z and connect z to two distinct existing joints by rods,

(ii) subdivide an existing rod uv by a node z and connect z to an existing joint
distinct from u and v.

Theorem 1.7 (Laman). A framework is minimally rigid if and only if its underlying
graph G = (V,E) has the following property: |E| = k|V | − (k + 1), γG(X) ≤ k|X| −
(k + 1) for all X ⊆ V, |X| ≥ 2.

2 Construction of k-stiff graphs

Let k be an integer not less than 2. Let Kk−1
2 denote the graph on two nodes with

k − 1 parallel edges.

Theorem 2.1. G = (V,E) is a graph. The following are equivalent:

(1) G k-stiff.

(2) |E| = k|V | − (k + 1) and γG(X) ≤ k|X| − (k + 1) for all subsets X ⊆ V ,
|X| ≥ 2.
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(3) G can be built from Kk−1
2 by applying the following operation:

Choose a subset F of i existing edges (0 ≤ i ≤ k − 1), pinch the elements of F
with a new node z, and add k − i new edges connecting z with other nodes so
that there are no k parallel edges in the resulting graph.

The equivalence of (1) and (2) is straightforward by a theorem of Nash-Williams [12].
The fact that (3) implies (2) is an easy exercise.

(2) implies (3). This is the main point of this section.
After some definitions and lemmas, we give a necessary and sufficient condition

when the inverse of operation (3) is applicable at node s, which is important for an
inductive proof.

A graph which satisfies the conditions in (2) is called a Laman-graph.
A graph D on node-set U is called an admissible graph if it satisfies the following

property:

(4) γD(X) ≤ k|X| − (k + 1) for all subsets X ⊆ U, |X| ≥ 2.

In the graph G = (V,E) splitting off a pair of edges at node s means the
operation of replacing su and sv by a new edge connecting u and v.

At node s with degree k + i (0 ≤ i ≤ k − 1) admissible splitting off j (1 ≤ j ≤
k − 1) pairs of edges means j number of splitting off a pair of edges such that the
resulting induced subgraph on V − s is an admissible graph (we often leave out the
word admissible). If j = i, then it is called a complete splitting off.

Our goal is to find a node s with degree k+ i (0 ≤ i ≤ k−1) in the Laman-graph G,
such that i pairs of edges can be split off, that is, the inverse operation of (3) can be
applied at the node s in such a way that the resulting graph is also a Laman-graph.
This will give our inductive proof.
G′s will denote the graph that we obtained by splitting off some pairs of edges

incident to s. We will use the term split edge in G′s for an edge uv which comes from
splitting off edges su and sv.

Definition 2.2. Let bG denote the following function on the subsets of V with car-
dinality at least 2:

bG(X) := k|X| − (k + 1)− γG(X).

By this definition we have the following: for a graphG, property (2) holds if and only
if bG(V ) = 0 and bG(X) ≥ 0 for all subsets X ⊆ V, |X| ≥ 2. The graph G = (U,F ) is
an admissible graph if and only if bG(X) ≥ 0 for all subsets X ⊆ U, |X| ≥ 2.

If bG(V ) = 0, then X is said to be a G-tight set. From now on we leave G out if
it is unambiguous.

All the lemmas below are about admissible graphs.

Lemma 2.3. Let X and Y ⊆ V and |X ∩ Y | ≥ 2. Then

b(X) + b(Y ) = b(X ∩ Y ) + b(X ∪ Y ) + d(X, Y ).
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Section 2. Construction of k-stiff graphs 5

Proof. b(X) + b(Y ) = k|X| − (k + 1) − γG(X) + k|Y | − (k + 1) − γG(Y ) = k(|X| +
|Y |)− 2(k+ 1)− (γG(X ∩Y ) +γG(X ∪Y ) +dG(X,Y )) = k|X ∩Y |− (k+ 1)−γG(X ∩
Y )+k|X ∪Y |− (k+1)−γG(X ∪Y )+dG(X,Y ) = b(X ∩Y )+b(X ∪Y )+d(X, Y ).

Lemma 2.4. If X1, X2, X3 ⊆ V and |Xj ∩ Xl| = 1 for all possible pairs and |X1 ∩
X2 ∩X3| = 0, then

b(
3⋃

j=1

Xj) ≤
3∑

j=1

b(Xj)− k + 2.

Proof. b(
⋃3

j=1Xj) = k|
⋃3

j=1Xj| − (k + 1)− γG(
⋃3

j=1Xj) ≤ k(
∑3

j=1 |Xj| − 3)− (k +

1)−
∑3

j=1 γG(Xj) =
∑3

j=1(k|Xj|− (k+1)−γG(Xj))−k+2 =
∑3

j=1 b(Xj)−k+2.

Lemma 2.5. X,Y ⊆ V , |X ∩ Y | = 1. Then

b(X) + b(Y ) = b(X ∪ Y )− 1 + d(X,Y ).

Proof. b(X)+b(Y ) = k|X|− (k+1)−γG(X)+k|Y |− (k+1)−γG(Y ) = k(|X|+ |Y |−
1)−(k+1)−1−(γG(X)+γG(Y )) = k|X∪Y |−(k+1)−1−(γG(X∪Y )−dG(X,Y )) =
b(X ∪ Y )− 1 + d(X,Y ).

From now on G is a graph which satisfies (2) in our theorem, that is, G is a Laman-
graph, and not Kk−1

2 . It is easy to see that there exists a node s with degree d(s) such
that k ≤ d(s) ≤ 2k − 1. It is also clear that the multiplicity of edge uv is at most
k − 1 (by (2): γG({u, v}) ≤ k|{u, v}| − (k + 1) = k − 1).

Observation 2.6. The edges su and sv cannot be split off (that is, adding the edge
uv to the induced subgraph of G on V − s does not result in an admissible graph) if
and only if there exists a tight set in G which does not contain s but u and v.

Observation 2.7. By Lemma 2.4 a splitting off at node s cannot be kept on if and
only if the remaining neighbours of s are in a tight set which does not contain s or
there is only one remaining neighbour of s.

Theorem 2.8. Let G be a Laman-graph. If s ∈ V has degree k or k + 1, then a
complete splitting off is applicable at it.

Proof. If s has degree k, then a complete splitting off means deleting it with all its
adjacent edges. This results obviously in a Laman-graph.

If s has degree k+ 1, then we should find a pair of edges su and sv with u 6= v such
that G− s+ uv is an admissible graph.

There is no tight set X not containing s which contains all the neighbours of s
because, if there was one, then bG(X+s) < 0 which contradicts to (2). Because of the
fact that there are no edges with multiplicity greater than k− 1, the neighbour-set of
s in G has at least two elements, so by Lemma 2.4 and Observation 2.6 there is an
admissible splitting off.
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Section 2. Construction of k-stiff graphs 6

If k = 2, then there is no other case, so we proved the theorem of Henneberg and
Laman: every node with degree 2 or 3 admits a complete splitting off. If k ≥ 3, then
life is much more complicated, as was observed by Z. Király [6]. He found a graph
for k = 3 in which there is no splitting off 2 pairs of edges (that we would need) at a
node with degree 5.

Here we give a necessary and sufficient condition for a node with degree k + i (2 ≤
i ≤ k−1) (let us call a node like this a small node) which admits a complete splitting
off. Let ΓG(v) denote the number of the nodes in graph G that are connected to node
v by an edge.

Theorem 2.9. At node s with dG(s) = k + i (2 ≤ i ≤ k − 1) there exists a complete
splitting off if and only if there do not exist the following subsets X1, X2, . . . , Xm ⊂
V − s such that the following holds:

a) Xj ∩Xl = {t} with a fix node t ∈ V − s for all possible pairs Xj, Xl,

b) bG(X) < dG(s,Xj − t) for all possible j,

c) dG(s, t) > (k − i) + dG(s, V − s− ∪m
j=1Xj) +

∑m
j=1 bG(Xj).

Proof. Let us consider a small node s. The necessity of the condition is obvious,
because the sets Xj give that the maximum number of edges between s and t which
can be split off with other edges is at most dG(s, V − s−∪m

j=1Xj) +
∑m

j=1 bG(Xj), but
by c), for a complete splitting off, we would need more (i).

Sufficiency. Let us consider a maximal splitting off with respect to the number
of split edges, moreover in the resulting graph G′s the number of neighbours of s is
maximal, that is, |ΓG′

s
(s)| is maximal, moreover, if |ΓG′

s
(s)| ≥ 2, then the tight set

containing |ΓG′
s
(s)| is maximal. By Observation 2.6 this tight set gives the fact that

there is no more splitting off at s.
If we managed to split off i pairs of edges at s, then it is the inverse operation of

(3), so there exists a complete splitting off. If not, then we will find the sets Xj.

Lemma 2.10. G′s is obtained by a maximal but not complete splitting off at s. If s
has only one neighbour t in G′s, then there exists a split edge which is disjoint from t.

Proof. Let us suppose that we split maximum number l pairs of edges and one endnode
of every split edge is t. Since this splitting off is not complete, l < i. Then in the
original graph G:

dG(s, t) = dG(s)− l = k + i− l > k,

which contradicts the condition in (2) for the set {s, t}.

Lemma 2.11. G′s is obtained by a maximal but not complete splitting off at s. If
s has at least 2 neighbours in G′s, then let Pmax denote the maximal tight set which
covers all the neighbours of s in G′s.

Then there exists a split edge which is disjoint from the nodes of Pmax.
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Section 2. Construction of k-stiff graphs 7

Proof. Let us consider a maximal splitting off at node s, and let j denote the number
of split edges in Pmax and let l denote the number of edges with exactly one endnode
in Pmax. Let us suppose that there are no other split edges. Then:

γG(Pmax + s) = γG′
s
(Pmax) + j + l + (k + i− 2(j + l)) = γG′

s
(Pmax) + k + (i− (j + l))

> k|Pmax| − (k + 1) + k = k|Pmax + s| − (k + 1).

Lemma 2.12. Let G be an admissible graph and X is a maximal tight set in it which
contains the distinct nodes c1, c2. Let d be a node in V − X. Then there is no tight
set which contains ci and d for i = 1 or 2.

Proof. We may suppose that there is a tight set P containing c1 and d. According to
Lemma 2.3 P ∩X = {c1} because X is maximal. By Lemmas 2.3 and 2.4 we can see
that there is no tight set containing c2 and d.

Lemma 2.13. Let G′s denote the graph obtained by splitting off some edges at s. Let
as, bs ∈ E(G′s) (a 6= b) and uv be a split edge in G′s such that the maximal tight set P
does not contain s, u, v but a, b.

If sa and sb are both multiple edges, then instead of spliting off su, sv we can split
off (sa, su and sa, sv) or (sb, su and sb, sv).

If there is a third distinct node c in P with edge sc in G′s such that su, sc is not
splittable, then instead of spliting off su, sv we can split off (sa, su and sb, sv) or
(sb, su and sa, sv).

Proof. According to Lemma 2.12, we can see that there are no tight sets which would
be obstacles to the ’splitting off’s in every case, it is remained to see, that we can
apply the corresponding two ’splitting off’s at the same time. If not, then there is
a set with too many induced edges, which contains the two new split edges. But
it means, that, before this, there is a tight set containing a, b, u, v but not s, which
contradicts the maximality of P according to Lemma 2.3.

Case 1. Let us suppose that |ΓG′
s
(s)| ≥ 3, let a1, a2, a3 denote three of these nodes.

According to Observation 2.7, there exists a maximal tight set P containing ΓG′
s
(s).

By Lemma 2.11, there is a split edge uv disjoint from P . By Lemma 2.13, it follows
that the splitting off we consider is not maximal, a contradiction.

Case 2. Let us suppose that |ΓG′
s
(s)| = |{t, z}| = 2. If dG′

s
(s, t) ≥ 2 and dG′

s
(s, z) ≥ 2,

then, as above:
According to Observation 2.7 there exists a maximal tight set P containing ΓG′

s
(s).

By Lemma 2.11 there is a split edge uv disjoint from P . By Lemma 2.13, it follows
that the splitting off we consider is not maximal, a contradiction.

We may suppose, that the multiplicity of edge sz is in G′s exactly one, that is, it is
not a multiple edge. We have: dG′

s
(s, t) ≥ k + i− 2(i− 1)− 1 = k − i+ 1 ≥ 2.
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Section 2. Construction of k-stiff graphs 8

Let u ∈ V be an arbitrary node which is incident to some split edge which is disjoint
from t. Let Pu be the maximal tight set which does not contain s but u and t and
contains the minimal number of split edges that are disjoint from t. Let Pz be the
maximal tight set which does not contain s but z and t and contains the minimal
number of split edges that are disjoint from t. We will see that these sets give the
setsystem in Theorem 2.9.

Case 3. Let us suppose that |ΓG′
s
(s)| = |{t}| = 1. We have: dG′

s
(s, t) ≥ k + i− 2(i−

1) = k − i+ 2 ≥ 3.

Here, let us define the sets Pu as in the above case.
In the above two cases the setsystem of sets Pu is called the flower of node s. A

set Pu is called a petal of the flower or node s.

Proposition 2.14. There is no split edge in an arbitrary petal which is disjoint from
t.

Proof. Let us suppose on the contrary that there is a split edge ab.
Let us consider Pz. First let us suppose that a, b, z are three distinct nodes. Since

splitting off st, sz intead of sa, sb would result in a maximal splitting off with three
neighbours of s, there is a tight set X which is an obstacle to it, that is, it contains
t, z and exactly one of a and b. X∩Pz contains a smaller number of split edges, which
gives a contradiction. Now let us suppose that a = z. The justification is just the
same as above.

Let us consider Pu. Now we have a split edge uv such that v /∈ Pu (if not, then split
off st, su instead of su, sv results in a maximal splitting off with one more remaining
neighbour of s). Pv ∩ Pu = {t} because of Lemma 2.3. Splitting off su, st and sv, sa
instead of sa, sb and su, sv would result in a maximal splitting off with one more
neighbour of s, so there exists an obstacle to it, that is, the set X containing a, u, v, t,
not s which is tight in G′s. But then X ∩Pz contains a smaller number of split edges,
which gives a contradiction.

Proposition 2.15. Let us suppose we defined Pu and Pv for nodes u, v. Then Pu =
Pv, or Pu ∩ Pv = {t}.

Proof. By Lemma 2.14 Pu ⊆ Pv can not be. If Pu 6= Pv and |Pu ∩ Pv| ≥ 2, then by
Lemma 2.3 dG′

s
(Pu, Pv) = 0 and Pu ∪ Pv is tight. Since it does not contain any split

edge disjoint from t, it contradicts the choice of Pu by maximality.

We state that the sets Pu satisfy the condition of the theorem. Now a) and b)
follows. c) is implied by the fact that the maximal splitting off that we consider is
not complete and the number of the neighbours of s after the maximal splitting off is
ΓG′

s
(s) ≤ 2. This is the end of the proof of Theorem 2.9.

From now on, if s is a small node which does not admit a complete splitting off,
then we have a flower with it, and it can be the type of Case 2 (that is, which comes
from a maximal splitting off with two remaining neighbours of s) then we will refer to
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Section 2. Construction of k-stiff graphs 9

it as a first type flower, or it can be the type of Case 3 (that is, s has one remaining
neighbour), then we refer to it as a second type flower.

Let us fix the set-system Ps that we defined to every small node without a complete
splitting off. (That is, we consider a special flower whose number of its petals is
minimal, moreover the petals are maximal sets.) Let T (s) denote the node t for every
s, and it is called the blocking node of s, that is, it is the center node of the flower
of s.

It follows from Theorem 2.9 that every small node which does not admit a complete
splitting off has a unique blocking node. But this is not important for our proof, let
us fix one flower, and it has a unique centre.

We have the following.

Lemma 2.16 (number of petals). For any small node s which does not admit a
complete splitting off: |Ps| ≥ 3.

Proof. If the flower of s is of first type, then there exists a maximal tight set Pmax

in graph G′s which was obtained after a maximal splitting off which contains Pz as
a subset. By Proposition 2.14, there exists a split edge ab disjoint from Pmax. Pz

together with Pa and Pb are three different petals.
If the flower of s is of second type, then it is enough to see, that there are at

least two split edges not incident to t (the centre of the flower). By Lemma 2.10,
there exists one split edge like this. Let us suppose that there is no other split edge
disjoint from t. Then: let m be the number of split edges incident to t in set Pu ∪Pv,
moreover let l be the number of split edges incident to t with the other endnode not
in Pu ∪ Pv. Since Pu ∪ Pv is a tight set in G′s, bG(Pu ∪ Pv) = m + 1. As we have
a maximal but not complete splitting off, m + l + 1 < i. So, bG(Pu ∪ Pv + s) =
bG(Pu ∪ Pv) + k− dG(s, Pu ∪ Pv) = m+ 1 + k− (k+ i− l) = m+ l+ 1− i < 0, which
is a contradiction.

Lemma 2.17 (flower-lemma). If petal P of s contains the small node s′ such that
T (s) = T (s′) and P ′ is a petal of s′ and P ′ − P 6= ∅, then s ∈ P ′.

Proof. Let us suppose that s /∈ P ′.
First case. |P ∩ P ′| ≥ 2.

Let n be the number of split edges in P ∩P ′ in graph G′s′ (since this set is a subset of
a petal, there cannot be split edges not incident to t), moreover let m be the number
of split edges in P ′−P in the same graph. By a), bG(P ′) = n+m and bG(P ∩P ′) ≥ n,
dG(P, P ′) ≥ m.

Now we have bG(P ) ≤ bG(P ∪ P ′) = bG(P ) + bG(P ′) − bG(P ∩ P ′) − dG(P, P ′) ≤
bG(P ) + n + m − n − m = bG(P ). Which means that P ∪ P ′ contradicts to the
maximality of petal P of s.
Second case. |P ∩ P ′| = 1.

Let m be the number of split edges in P ′ in graph G′s′ (these are all incident to t
since P ′ is a petal). This gives bG(P ′) = m, dG(P, P ′) ≥ m + 1 (+1 follows from the
fact that every petal P0 of s′ contains a node which is incident to a split edge disjoint
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Section 2. Construction of k-stiff graphs 10

from t in graph G′s′ which is obtained by a maximal splitting off. That is, there is at
least one more edge between s′ and P0 − t in G.)

So, bG(P ) ≤ bG(P∪P ′) = bG(P )+bG(P ′)+1−dG(P, P ′) ≤ bG(P )+m+1−(m+1) =
bG(P ). Which means that P ∪ P ′ contradicts to the maximality of petal P of s.

Let us consider a petal P of the flower of a small node s. If there is a small node
s′ ∈ P whose blocking node is also T (s) = t, then let us define the following (the
flower of s′ is denoted by X1, X2, . . . Xm):

τ(s′) = min
l=1,2,...,m

|{s′′ ∈ (∪m
j=1Xj −Xl) ∩ P : T (s′′) = t}|.

According to the Flower lemma, there is a small node s0 in P such that τ(s0) = 0.
This means that s0 has at least two petals that are entirely in P and do not contain
any small node with blocking node T (s) = t.

It is clear that a tight set X either has two nodes with k − 1 parallel edges, or
d(v,X − v) ≥ k for an arbitrary v ∈ X.

Proposition 2.18. Let X1 and X2 be two petals of s0 that do not contain any small
node with blocking node t. Then dG(t,X1 − t) + dG(t,X2 − t) ≥ k

Proof. dG(t,X1 − t) + dG(t,X2 − t) ≥ dG′
s
(t,X1 − t) + dG′

s
(t,X2 − t) − (i − 1) ≥

dG′
s
(t,X1 − t) + dG′

s
(t,X2 − t)− (k − 2) ≥ 2(k − 1)− (k − 2) = k.

Let us give a lower bound on the edges that are incident to some blocking node
T (s) = t for some s and whose other endnode is not a small node (that is, has degree
at least 2k) or a small node whose blocking node is also t. Let ∆(t) denote this
number for blocking node t.

Let us consider an arbitrary blocking node t that is a blocking node of some small
nodes. Let s be a small node like that. Let us consider three petals of s P1, P2, P3

(they exist by lemma ’number of petals’). We may exchange some indices to get one
of the following four cases.

Case A. There are no small nodes in the above petals blocking by t.
Then ∆(t) ≥

∑3
j=1 dG(t, Pj−t) ≥

∑3
j=1 dG′

s
(t, Pj−t)−(i−1) ≥ 3(k−1)−(k−2) =

2k − 1.

Case B. P1 contains at least one small node blocking by t, P2, P3 do not.
By Proposition 2.18: ∆(t) ≥ k + dG(t, P2 − t) + dG(t, P3 − t) ≥ k + dG′

s
(t, P2 − t) +

dG′
s
(t, P3 − t)− (i− 1) ≥ k + (k − 1) + (k − 1)− (k − 2) = 2k.

Case C. P1, P2 contains at least one small node blocking by t, P3 does not.
By Proposition 2.18: ∆(t) ≥ 2k + dG(t, P3 − t) ≥ 2k + dG′

s
(t, P3 − t) − (k − 2) ≥

2k + (k − 1)− (k − 2) = 2k + 1.

Case D. P1, P2, P3 contains at least one small node blocking by t.
Then: ∆(t) ≥ 3k.

We have in every case: ∆(t) ≥ 2k − 1.
We saw that, for a small node s, if d(s) = k+i and T (s) = t, then dG(s, t) ≥ k−i+1.

Let nk+i denote the number of nodes with degree (k + i), 2 ≤ i ≤ k − 1.
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If there is a node with degree less than k + 2, than a complete splitting off is
applicable at it by Theorem 2.8. To prove Theorem 2.1, let us suppose that every
node has degree at least k + 2. Let T ⊆ V be the set of the blocking nodes for every
small node. Let us suppose that every small node has a blocking node, that is, it does
not admit a complete splitting off.

Now we have:

2|E| = 2(k|V | − (k + 1)) = 2k|V | − 2k − 2 = 2|E| ≥

≥
∑
t∈T

dG(t) +
k−1∑
i=2

(k + i)nk+i + 2k(|V | − |T | −
k−1∑
i=2

nk+i) ≥

≥ (2k − 1)|T |+
k−1∑
i=2

(k − i+ 1)nk+i +
k−1∑
i=2

(k + i)nk+i + 2k(|V | − |T | −
k−1∑
i=2

nk+i) =

= 2k|V | − |T |+
k−1∑
i=2

nk+i ≥ 2k|V |.

∑k−1
i=2 nk+i ≥ |T | holds because we fixed one blocking node to every small node.

So we arrive at a contradiction which means there exists a small node at which a
complete splitting off is applicable.

The following theorem can be proved by a slight modification of the above compu-
tation.

Theorem 2.19. If G is k-stiff and is not Kk−1
2 , then there are at least three nodes

such that a complete splitting off is applicable at them.

An open question is how we can quickly give the k edge-disjoint spanning trees after
adding an arbitrary new edge if we know how the graph is built up by the operations.

The following theorem characterizes the connected graphs that are the union of k
forests after adding an arbitrary edge.

Theorem 2.20. Graph G is the union of k spanning trees after adding an arbitrary
edge if and only if it is a connected subgraph of a k-stiff graph.

Proof. It is straightforward that any connected subgraph of a k-stiff graph has this
property.

By the theorem of Nash-Williams [12], G = (V,E) is the union of k (not necessarily
edge-disjoint) spanning trees after adding an arbitrary edge if and only if it is con-
nected and γG(X) ≤ k|X|−(k+1) for all X ⊆ V . We claim that if |E| < k|V |−(k+1),
then we can add an edge e such that G+ e is also the union of k forests after adding
an arbitrary edge. This will prove the theorem.

Let us consider a maximal tight set X and node u ∈ X, other node v /∈ X. If we
cannot add edge uv, then there exists a tight set Y containing u and v. According to
Lemma 2.4, there is a node a in X − Y and a node b in Y −X such that we may add
edge ab to G.
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We remark about constructive characterizations in general that the fact that one
obtains the required type of graphs by the operations is always much easier to prove
than the other direction: in a graph which has the required property we can always
find a node where we can perform an inverse operation such that after it we get a
smaller graph which also has the required properity.

In the proof of the theorem of Lovász or that of Mader one finds the following: an
inverse operation can always be performed at a node with suitable degree such that
it gives a smaller graph of the same kind.

This was also the case for k = 2 with k-stiff graphs, but not if k is greater than 2.
Here we can easily find a node with the degree we are looking for (this is not the case
in the theorems of Lovász and Mader) but in general there is no way to perform the
inverse operation at that node.

(We remark that there are other constructive characterizations where the inverse
operation is not only considering one single node and performing some operation with
the edges but something different as in the case of Theorem 1.1.)

We finish this section by putting the question if there is a similar constructive
characterization of graphs that are the union of k edge-disjoint spanning trees after
adding arbitrary l number of edges. We mention that the basic lemmas we used in
our proof are valid if and only if 2l ≤ k, furthermore there is no graph on three nodes
that are the union of k edge-disjoint spanning trees after adding l number of arbitrary
edges if 2l > k.

3 Construction of (k, 1)-edge-connected digraphs

In a directed graph by splitting off a pair of edges e = uz, f = zv we mean the
operation of replacing e and f by a new directed edge from u to v. Suppose that the
in-degree and the out-degree of z is the same, that is, %(z) = δ(z). By a complete
splitting at z we mean the following operation: pair the edges entering and leaving
z and split off all these pairs.

For non-negative integers l ≤ k, we call a digraph D (k, l)-edge-connected (in
short, (k, l)-ec) if D has a node s so that there are k (resp., l) edge-disjoint paths
from s to every other node (there are l edge-disjoint paths from every node to s).
If there is an exceptional node z for which the existence of these edge-disjoint paths
is not required, we say that D is (k, l)-edge-connected apart from z. When the
role of s is emphasized, we say that D is (k, l)-ec with respect to root-node s. (k, k)-
edge-connectivity is abbreviated by k-edge-connectivity and (k, 0)-edge-connectivity
is sometimes called rooted k-edge-connectivity. Note that by Menger’s theorem a
digraph is (k, l)-ec if and only if

%(X) ≥ k for every subset ∅ ⊂ X ⊆ V − s (1)

and
δ(X) ≥ l for every subset ∅ ⊂ X ⊆ V − s (2)

where %(X) := %D(X) and δ(X) := δD(X) denote the number of edges entering and
leaving the subset X, respectively.
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We say an undirected graph G = (V,E) is (k, l)-partition-connected if there are
at least k(t − 1) + l edges connecting distinct classes of every partition of V into t
(t ≥ 2) non-empty subsets.

The following result exhibits a link between the two concepts. It is a special case
of a general orientation theorem appeared in [1].

Theorem 3.1. Let 0 ≤ l ≤ k be integers. An undirected graph G = (V,E) has a
(k, l)-edge-connected orientation if and only if G is (k, l)-partition-connected.

Mader’s directed splitting off theorem [10] is as follows.

Theorem 3.2. Let D = (U+z, E) be a digraph which is k-edge-connected apart from
z. If %(z) = δ(z), then there is a complete splitting at z resulting in a k-ec digraph on
node-set U .

This result has been extended in [2] as follows.

Theorem 3.3. Let D = (U + z, E) be a digraph which is (k, l)-edge-connected apart
from z. If %(z) = δ(z), then there is a complete splitting at z resulting in a (k, l)-ec
digraph on node-set U .

We need the following corollary of Theorem 3.2.

Theorem 3.4. Let D = (U + z, E) be a digraph which is

(k, 0) -ec apart from z (k ≥ 1) with respect to a root node s ∈ V. (3)

If %(z) > δ(z), then there are %(z)− δ(z) edges entering z so that (3) continues to
hold after discarding these edges. If %(z) = δ(z), then there is a complete splitting at
z preserving (3).

Proof. For every node v ∈ U + z for which %(v) > δ(v), add %(v)− δ(v) parallel edges
from v to s. In the resulting digraph D′ clearly %′(v) ≤ δ′(v) holds for every node v ∈
U − s. Hence δ′(X) ≥ %′(X) = %(X) ≥ k holds for every subset X ⊆ V − s,X 6= {z},
that is, D′ is k-ec apart from z.

By Theorem 3.2 there is a complete splitting at z resulting in a k-ec digraph. It
follows that in case %(z) = δ(z) this complete splitting, when applied to D, preserves
(3). If %(z) > δ(z), then there are %(z)− δ(z) edges entering z such that their pairs at
the complete splitting are necessarily newly added edges from z to s. Therefore these
edges can be deleted from D without destroying (3).

W. Mader used Theorem 3.2 to derive Theorem 1.3 on the constructive charac-
terization of k-ec digraphs. Analogously, Theorem 3.4 may be used to derive the
following.

Theorem 3.5. A directed graph D = (V,E) is (k, 0)-edge-connected if and only if D
can be obtained from a single node by the following two operations: (i) Add a new
edge, (ii) pinch j (0 ≤ j ≤ k − 1) existing edges with a new node z, and add k − j
new edges entering z.
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Given these constructive characterizations of (k, k)-ec and (k, 0)-ec digraphs, one
may formulate the following general conjecture.

Conjecture 3.6. A directed graph D is (k, l)-edge-connected (0 ≤ l ≤ k − 1) if and
only if it can be built up from a node by the following two operations: (j) add a new
edge, (jj) pinch i (l ≤ i ≤ k − 1) existing edges with a new node z, and add k − i
new edges entering z and leaving existing nodes.

Conjecture 3.7. An undirected graph G is (k, l)-partition-connected if and only if it
can be built up from a node by the following two operations: (j) add a new edge, (jj)
pinch i (l ≤ i ≤ k − 1) existing edges with a new node z, and add k − i new edges
connecting z with existing nodes.

By Theorem 3.1 the second conjecture follows from the first one. Theorem 3.5
asserts the truth of this conjecture for l = 0. The conjecture was proved for l = k− 1
in [4]. Here we verify the conjecture for l = 1. The proof relies on the following
lemma.

Lemma 3.8. Let D = (V,E) be a (k, 1)-edge-connected digraph which is minimal in
the sense that the deletion of any edge destroys (k, 1)-edge-connectivity (k ≥ 2, |V | ≥
2). Then D has a node z with k = %(z) > δ(z) for which there is a set F of %(z)−δ(z)
edges entering z so that D − F is (k, 1)-edge-connected apart from z.

Proof. By (2), there is an edge e entering s. Since (1) cannot break down by deleting
e, it follows from the minimality of D that e leaves a subset X ⊂ V − s for which
δ(X) = 1. Since %(X) ≥ k ≥ 2, there must be a node z in X for which %(z) > δ(z).
Let us choose such a node z so that the distance of s from z is as large as possible.

Proposition 3.9. Let F be a subset of at most k − 1 edges entering z. Then D′ :=
D − F satisfies (2).

Proof. Assume indirectly that there is a subset X ⊆ V − s for which δD′(X) = 0.
As δ(X) ≥ 1, the elements of set of edges of D leaving X are all in F . Therefore
δ(X) ≤ |F | < k and, by %(X) ≥ k, X must contain a node z′ for which %(z′) > δ(z′).
Since the head of each edge leaving X is z, we obtain that each path from z′ to s
must go through z contradicting the maximal-distance choice of z.

Proposition 3.10. %(z) = k.

Proof. By Proposition 3.9 property (2) cannot break down when an edge entering z
is left out. Hence the minimality of D implies that every edge entering z enters a
subset X ⊆ V − s for which %(X) = k. If X and Y are two subsets of V containing
z for which k = %(X) = %(Y ), then %(X) + %(Y ) ≥ %(X ∩ Y ) + %(X ∪ Y ) ≥ k + k
from which %(X ∩ Y ) = k follows. This implies that there is a unique smallest subset
Z containing z for which %(Z) = k such that every edge entering z enters Z as well.
But then the in-degree of z cannot exceed k and hence %(z) = k as D is (k, 1)-ec.
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By Theorem 3.4 there is a subset F of edges of D entering z for which |F | =
%(z)− δ(z) < k and the digraph D− F is (k, 0)-ec. Now Proposition 3.9 implies that
D − F is actually (k, 1)-ec, completing the proof of the lemma.

Theorem 3.11. A digraph D0 = (V,E) is (k, 1)-edge-connected if and only if D0 can
be built up from a node by the following two operations: (j) add a new edge, (jj) pinch
i (1 ≤ i ≤ k− 1) existing edges with a new node z, and add k− i new edges entering
z and leaving existing nodes.

Proof. It is straightforward to see that the two operations preserve (k, 1)-edge-con-
nectivity. To prove the reverse direction we use induction on the number of edges. If
there is an edge e whose deletion preserves (k, 1)-edge-connectivity, then D0− e has a
required construction by the inductive hypothesis from which the construction of D0

can be obtained by giving back e (operation (j)).
Therefore we may assume that D0 is minimally (k, 1)-edge-connected with respect

to edge deletion. We are done if |V | = 1 so assume that |V | ≥ 2.
By Lemma 3.8 there is a node z with k = %(z) > δ(z) for which there is a subset

F of %(z) − δ(z) edges entering z so that the digraph D0 − F is (k, 1)-ec apart from
z By Theorem 3.3 there is a complete splitting at z so that the resulting digraph
D1 = (V −z, E1) is (k, 1)-ec. By the inductive hypothesis D1 can be constructed from
a node by the two given operations. But then D0 is also constructible this way as D0

arises from D1 by operation (ii).

By combining this result with Theorem 3.1 we obtain the the following special case
of Conjecture 3.7.

Theorem 3.12. An undirected graph G is (k, 1)-partition-connected if and only if it
can be built up from a node by the following two operations: (j) add a new edge, (jj)
pinch i (1 ≤ i ≤ k − 1) existing edges with a new node z, and add k − i new edges
connecting z with existing nodes.
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