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Abstract. Two important branches of graph connectivity problems are
connectivity augmentation, which consists of augmenting a graph by
adding new edges so as to meet a specified target connectivity, and
connectivity orientation, where the goal is to find an orientation of an
undirected or mixed graph that satisfies some specified edge-connection
property. In the present work an attempt is made to link the above
two branches, by considering degree-specified and minimum cardinality
augmentation of graphs so that the resulting graph has an orientation
satisfying a prescribed edge-connection requirement, such as (k, {}-edge-
connectivity. Our proof technique involves a combination of the super-
modular polyhedral methods used in connectivity orientation, and the
splitting off operation, which is a standard tool in solving augmentation
problems.

1 Introduction

In a connectivity augmentation problem the goal is to augment a graph or di-
graph by adding a cardinality- or degree-constrained new graph so as to meet a
specified target connectivity. Initial deep results of the area are due to Lovész
[6] and to Watanabe and Nakamura [10] on augmenting a graph to make it k-
edge-connected. Since then, augmentation results for many different connectivity
properties of graphs and digraphs have been proved, employing various versions
of the splitting off technique, which was originally introduced by Lovisz [6] and
subsequently developed by Mader [7] and others.

In a connectivity orientation problem one is interested in the existence of an
orientation of an undirected graph that satisfies some specified edge-connection
properties. For example, classical results of Nash-Williams [8] and of Tutte [9]
characterize graphs having k-edge-connected and rooted k-edge-connected orien-
tations. For a common generalization of their results, call a digraph D = (V, A)
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(k,1)-edge-connected for non-negative integers & > I if there is a node s € V
such that there are k edge-disjoint paths from s to any other node, and there
are | edge-disjoint paths to s from any other node. Then (k, k)-edge-connectivity
is equivalent to k-edge-connectivity, and (k, 0)-edge-connectivity is equivalent to
rooted k-edge-connectivity from some node s. Good characterizations of undi-
rected and mixed graphs having a (k,1}-edge-connected orientation were given in
/1] and [3], with the help of submodular flows and related polyhedral methods.

In this paper an attempt is made to link these two branches of connectiv-
ity problems by studying combined augmentation and orientation problems. For
example we characterize undirected and mixed graphs that can be augmented
by an appropriate degree-specified undirected graph so as to have a {k,[)-edge-
connected orientation. Another new result concerns the minimum number of new
edges whose addition to an initial undirected graph results in a graph admit-
ting a (k, I)-edge-connected orientation. Our proof methods for these character-
jzations combine the splitting off technique used in connectivity angmentation
with extensions of the supermodular polyhedral techniques used in (3] to solve
connectivity orientation problems. Since these methods are constructive from
an algorithmic point of view, the proofs presented here give rise to polynomial
algorithms for finding a feasible augmentation.

The results are presented in the customary framework for connectivity ori-
entations. We consider graphs with no loops, but possibly with multiple edges.
Given a graph G = (V, E) and a set function h : 9¥ — Z, an orientation G
of G is said to cover h if ga(X) > h(X) for every set X C V, where ea(X)
denotes the number of edges of the digraph G entering the set X. Throughout
the paper we assume that (@) = A(V) = 0. The h-orientation problem is to
find an orientation of & that covers h. For general h this includes NP-complete
problems, so special classes of set functions must be considered. A set function
h is called crossing G -supermodular with respect to a given graph G = (V, E} if

h(X) +h(Y) S MXNY)+R(XUY) +da(X,Y) )

for every crossing pair (X,Y) (where the sets X, C V are crossing if none
of X -V, Y—X,XnYand V — (X UY) are empty), and dg(X,Y) is the
number of edges in E connecting X —Y and ¥ — X. As in [3], we restrict our
attention to crossing G—supermodular set functions. The augmentation problem
corresponding to h-orientation is the following: given a graph G, find a graph
G (either with specified degrees, or with minimum number of edges), so that
G + G’ has an orientation covering h.

It was shown in {1] that for a graph G and a non-negative crossing G-
supermodular set function h the h-orientation problem can be solved in polyno-
mial time. In Sect. 3 we solve the corresponding degree-specified and minimum
cardinality augmentation problem, as well as minimum cost augmentation for
node-induced cost functions.

These results are used in Sect. 4 to augment a graph to obtain one admit-
ting a (k, {)-edge-connected orientation, and we show that in this special case the
characterizations can be further simplified. The theorems obtained can also be in-



132 A. Frank and T. Kirdly

terpreted independently of orientations. A graph G is called (k,1)-tree-connected
if any graph obtained by deleting ! edges from G contains k edge-disjoint span-
ning trees. It is known that if k > I, then (k, {)-tree-connected graphs are exactly
those that have a (k, !)-edge-connected orientation; thus we can solve the (k, {)-
tree-connectivity augmentation problem.

In [3], submodular flows were used to solve the h-orientation problem when h
is a crossing G-supermodular set function that can have negative values; this im-
plies for example that we can find a (k, {)-edge-connected orientation of a mixed
graph M. In Sect. 5 we generalize this result by considering the h-orientation
problem for positively crossing G-supermodular functions, and by solving the
corresponding degree-specified augmentation problem. The proof exploits the
TDI-ness of a system closely related to the intersection of two base polyhedra.

2 . Preliminaries

A family of sets is a collection of subsets of the ground set V, with possible
repetition. If every member of a family F is replaced by its complement, the
resulting family is denoted by F. For an element v € V, dx(v) denotes the
number of members of F containing v. A composition of aset X C V is a family
F for which dr —dx} is constant. A composition of V is called a regqular family.
The covering number of a family F is min,ev dr{v}.

For a function z : V — R and a set Z € V, and analogously for a set function
p:2¥ = Z U {—} and a family F, we use the notations z(Z) = 3_ .z z(v)
and p(F) = 3 xer P(X)- The upper truncation of p is

p™(Z) := max {p(F) | F is a partition of Z} . (2)

If p is intersecting supermodular, then p" is fully supermodular. If p is crossing
supermodular, then so is p*. To the set function p we associate the polyhedra

C(p)i={z:V o R | 2(2) 2 p(Z) VEC VY 3)

Bp)={z:VoR|z(V)=p(V); 2{(Z) 2p(Z)VZC V} . {4
Clearly, C(p} = C(p"). A polyhedron is a contra-polymatroid if it equals C(p) for
some monotone increasing fully supermodular function p; it is a base polyhedron
if it can be represented as B(p) for some fully supermodular function p. The
following theorem of Fujishige [5] deals with base polyhedra given by crossing
supermodular set functions.
Theorem 1 (Fujishige [5]). Let p: 2V — Z U {—oc} be a crossing supermod-
ular function. Then B(p) is non-empty if and only if

t

> p(X) <p(V)

i=1
t

S p(XD) < (t—1)p(V)

i=1
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both kold for every partition {X\,...,X;}. Furthermore, if B(p) is non-empty,
then it is a base polyhedron. a

Let G = (V,E) be a graph. For a set X ¢ V, ig(X) denotes the number
of edges uv € E with u,v € X. An important property of iz is that if a set
function h is crossing G-supermedular, then h + ig is crossing supermodular.
For a family F of sets we define

eg(F) := max T.QQJ | G is an orientation of Qw .

Note that eg{F) can be easily computed since we can orient the edges indepen-
dently. For partitions it equals the number of cross-edges; more generally, if F
is a regular family with covering number «, then

ec(F) = alEl - 3 ic(X) . (5)

XeF

A family F is cross-free if it has no crossing members. Simple examples are
partitions and co-partitions; in fact, it is easy to show that these are the only
minimal regular cross-free families:

Proposition 1. Every regular cross-free family decomposes into partitions ond
co-partitions. 0O

3 Non-negative Crossing G—Supermodular Set Functions

The first result is a theorem on the degree-specified augmentation problem. The
characterizations given are good in the sense that they provide an easily veri-
fiable certificate if the augmentation is impossible. Moreover, the proof is con-
structive and gives rise to a polynomial algorithm, since it refers to polyhedral
and splitting off problems that can be solved in polyncmial time.

Theorem 2. Let G = (V,E) be a graph, h:2¥ — ZZ, a non-negative crossing
G-supermodular set function on V, and m : V — ZZ a degree specification with
m(V) even. There ezists an undirected graph G’ = (V, E') such that G+ G’ has
an orientation covering h end dg(v) = m(v) for allv € V, if and only if the
Jollowing hold for every partition F:

— 2> h(F) — eg(F) , (6)
winm(X) > h(F) - ealF) @
2 2 hF) - el ®)
win m(X) 2 h(F) - ec(F) . (9)
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Proof. To see the necessity of these conditions, observe that m(V)/2 is the num-
ber of new edges, while i(F) — eq{F) measures the deficiency of a partition F,
hence {6} simply requires that the deficiency of a partition should not exceed
the number of new edges. The necessity of (7) is also straightforward since each
new cross-edge must have an endnode in X, so the number of new cross-edges,
which should be at least the deficiency of F, is at most m(X). The necessity of
(8) and (9) can be seen analogously.

To prove sufficiency, add a new node z to the set of nodes, and for every
v € V add m(v) parallel edges between v and z; the resulting graph is denoted
by Gy = (Vy, Ep). Define the following extension of the set function h:

ho(z) = ho(V) i= IISWS :
ho(X + 2) = ho(X) = h(X) fex£XCV.

The proof consists of finding an orientation of Gy that covers hg, and then
splitting off the directed edges at z so that the resulting digraph on the ground
set V' covers k. To find an orientation covering kg, we resort to a lemma that is
a standard tool for orientation problems:

Lemma 1. For a given vector x : Vo — ZZ, there is an orientation Go of
Go such that gz (v) = x(v) for every v € VW, if and only if (Vo) = |Eo} and
T(Z} 2 i, (Z) for every Z C Vj.

Proof. The necessity is obvious. We prove the sufficiency by induction on the
number of edges. Call a set Z tight if £(Z) = ig,(Z). Let uv € Ey be an arbitrary
edge. If there are no tight Tv-sets and x(v) > 0, then we can remove the edge
uv, decrease z(v} by one, find a feasible orientation of the resulting graph by
induction, and add the directed edge uv. If x{v} = 0, then z(u) > 0 and there
is no tight Tu-set X for otherwise X + v would violate the condition. So we
can assume that z(u),z(v) > 0, there is a tight vu-set X, and similarly that
there is a tight wT-set ¥. But then dg, (X,Y)} > 0, thus ig,(X) + ig,(Y) <
g (X NY}+ig,(XUY) ~dg,(X,Y} implies that either {XNY} < ig (X NY)
or z(X UY) < ig, (X UY), contradicting the conditions. . D

Lemma 1 and the non-negativity of & imply that if we can find a vector
z: Vo — ZZ, that satisfies £(V5) = |Ep| and (X)) = ho(X) + ig,(X) for every
X C VW, then there is an orientation hm.o of Gy such that 2s, (v) = z(v) for every
v € Vp, and Gy covers kg since 25,(X) = 2{X)—ig,(X) = ho(X). Such a vector
z is called feasible. By the definition of hp, z({z) must be equal to m{1)/2; let
2’ :V = Z, denote the projection of x to V. Let

Pm(X) 1= h{X) + ig(X) + max ?.35 - HM@V (XCVv).

Then it easily follows from the definition of Ay that the vector x is feasible if
and only if 2’ is an element of the polyhedron B(p,,) as defined in (4).
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Claim. The set function py, is crossing supermodular.

Proof The G-supermodularity of k implies that h+i¢ is crossing supermodular,
Let m*(X) := max{0, m(X) — m(V)/2}; we show that this set function is fully
supermodular. Indeed, if m*(Y) = 0, then m*(X) +m*(Y) = m*(X) £ m*(X U
Y)=m (X NY)+m* (X UY). I m*(X),m*(Y) >0, then m*(X) + m*(Y) =
Mm{XNY) +m{XUY)—m{V) < m*(XNY)+m*(XUY). The sum of a crossing
supermodular and a fully supermodular function is crossing supermodular. O

Claim. Suppose that (6)-(9) are true. Then B{p,) is non-empty.

Proof By Theorem 1 it suffices to show that p.(F) < |E| + m(V)/2 and
pmlF) < (t = D(E| + m(V)/2) for every partition F with t members. Observe
that a partition has at most one member X with m(X) > m(V)/2. If there is no
such member then (6) and the identity (5} imply that pn(F) < |E| 4+ m(V)/2;
if there is one such member, then (7) and (5} imply the same. Similarly, a
co-partition has at most one member X with m(X) < m(V)/2, so (8) or (9)

(depending on the existence of such a member) and (5) for the co-partition 7
imply puw(F) < (¢ = D(EL+m(V)/2). =

By Theorem 1, B(p,,) is a base polyhedron, therefore it has an integral
point z'; as we have seen, this and Lemma 1 implies that (g has an orientation
Gy = (Va, m.ov covering hg. .

Let m;(v) be the multiplicity of the edge zv in Go, and m,(v) the multiplicity
of the edge vz in Go: let G denote the edges of Gp not incident with z. Then
my(X) 2 MX) - p5(X) and mo(V — X) = h(X) — pa(X) for every X C v,
since G covers ho. By the crossing G-supermodularity of h, the set function
p(X) := h(X) — p5(X) is crossing supermodular. Thus we can use the following
result in [2], which generalizes Mader’s directed splitting theorem:

Lemma 2 ([2]). Let p be a positively crossing supermodular set function on V.
Let m;, m, be non-negative integer-valued functions on V for which m(V) =
mo(V). There exists a digraph D = (V, A) such that gp(v) = m;(2), pp(V—v) =
mo(v) for every v € V, and op(X) = p(X) for every X C 'V, if and only if

m{X) > p(X) forevery X CV
and
mo(V - X) 2 p(X) forevery X C V.
m]
To complete the proof of Theorem 2, observe that if G’ is the underlying

undirected graph of the digraph D given by Lemma 2, then G’ satisfies the
degree specification, and G + G has a feasible orientation, namely G+ D. 0O

This theorem can be used to derive the following min-max theorem for min-
imum cardinality augmentation:
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Theorem 3. Let G = (V, E) be a graph, and h : 2V -+ Z_ a non-negative
crossing G-supermodular set function. There is an undirected graph G' = (V, E’)
with v edges such that G + G’ hes an orientation covering h if and only if

v 2 hF) —ec(F) (10)
holds for every partition and co-partition F, and
2y 2 h(F) — ec(F) {11)

holds for every cross-free regular family F that decomposes into o partition of
some X CV and a co-partition of X.

Proof. Again, h{F) — eg{F) measures the deficiency of the family F, so the
necessity follows easily by observing that an oriented new edge can cover at
most one member of a (sub)partition or a (sub)-copartition.

Sufficiency can be proved by showing that if (10) and (11} hold, then there
exists a vector m : V - ZL with m(V) = 2v satisfying (6)-(9); thus by
Theorem 2 we can find a feasible augmentation with degree-specification m.
The essential result in the proof is that the polyhedron

={m:V > Z | m satisfies (6)—(9)}
is a contra-polymatroid. Define the set functions
pi(X) = h{(X) +ia(X},
p2(X) = h(X) +ic(X) — |E] .

By the crossing G—supermodularity of h, the set functions p; and po are
crossing supermodular, therefore the set functions pf* and p} {as defined in (2))
are also crossing supermodular. By the identity (5}, a non-negative vector m
satisfies (6)—(9) if and only if the following hold:

m(v) > @%E 0 +m(0) | (12

m(X) = p{ (X} + p2(X) forevery X C V', (13)

m(V) 2 Q%\Ex +55(0) | (19

m(X) > p1(X) +pi(X) forevery X C V. (15)

For aset X C V), define
p(X) := max {p] (X} + p2(X), p1(X) +p3(X), 0} , (16)
and let

p(V) = 2max p(X) . (17)

Xcv

Combined Connectivity Augmentation and Orientation Problems 137

Then the polyhedron C can be characterized as
={m: VoaZ|mX)zpX)VXCV}.

To prove that € is a contra-polymatroid, we will show that the set function p"
is fully supermodular. First we establish some other properties of p™:

Proposition 2. For every proper subset X of V, the value of p"(X) is given by

PX) = g G4 (1) + 73 (V)

Proof. By definition p” is less or equal to the maximum on the right side, For
the other direction, suppose indirectly that there exists an ¥ C X and partitions
Fi1 and F; of ¥ such that
PNX) < pi(F) + pa{Fa) -
Repeat the following step as many times as possible:
—If X € F; and Y € F; are crossing, then replace X in F; by X — Y, and
replace Y in Fo by ¥ — X
Observe that the resulting families are partitions of some proper subset of ¥, so
the procedure terminates after a finite number of steps. Furthermore, X and Y
are crossing, so A{X)} +(Y) < (X NTY) + R(X UY) + de(X,Y); this implies
that p1(X) + (YY) € p1(X = V) + pa(¥ ~ X). Let F| and F} denote the
families obtained at the end of the procedure; then F] and F} are partitions of
some Y’ C Y, and pM(X) < p1(F7) + p2(F3). Moreover, Fj + F; is cross-free,
which means that there is a partition ¥{,...,Y{ of ¥Y”, such that for every
either F| contains Y] and JF} contains a partition of ¥}/, or vice versa. But then

p1(F) + pe(Fh) < pMY') < pMX), a contradiction. |

Proposition 3. The set function p satisfies
p(X)+p(Y) spPMXNY)+pMNXUY) (18)
for every pair (X,Y).

Proof. The inequality is obvious if one of p(X) and p(Y’) is zero, or X and ¥
are not intersecting. If X UY = V, then p(X) + p(Y) < 2max{p{X),p(¥)} £
p(V) =p(XUY) <p"(X NY)+pNXUY).

By Proposition 2 it suffices to prove that if p(X),p(Y) > 0 and X and Y are
crossing, then

PXY+p(Y) < (@] +p3) (X NY)+ (pT + 2 (X UY) .
Using the definition of p and the supermodularity of p{* and pj,

p(X) +p(Y) < p0 (X} +p5(X) +p1 (V) + 22 (V)
<P X NY)+p(XNY) +p{(XUY) +p3(X UY).
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This property is sufficient for the supermodularity of p", as the following
lemma states:

Lemma 3. If a set function p (with p(B) = 0) satisfies (18) for every pair
(X.\Y), then p" is fully supermodular.

Proof. For a set X C V, let Fx denote a partition of X for which p"(X) =
p(Fx). Let X,Y €V be an arbitrary pair. Starting from the family 7' = Fx +
Fy, repeat the following operation as many times as possible:

-~ If there is an intersecting pair X’ and Y” in the family, remove both of them,
and add the sets of Fx:ny: and of Fxwy-.

The operation doesn’t change d, and doesn’t decrease p(F), since p has the
property (18). Since the operation either increases the cardinality of the family,
or increases 3y | X|? without changing the cardinality, after a finite number
of steps we get a laminar family F' for which p(F") = p(F). Such a family
decomposes into a partition of X NY and a partition of X UY, hence p*(X) +
Y)Y pMXNY)+pMXUY) W

Lemma 3 and Proposition 3 implies that p" is fully supermodular, and it is
obvicusly monotone increasing, hence the polyhedron C is a contra-polymatroid
defined by p*. It is known that in this case the minimum cardinality of an integral
element of the contra-polymatroid C is p*(V'). Thus, for a fix 7, there exists an
element m of C with m(V) = 2v if and only if p*(V) < 2. This exactiy gives
conditions (10) and (11} of the theorem. o

Remark 1. The following example shows that (10) is not sufficient in Theo-
rem 3. Let V = {v;,ve,vs,v3}, E = {vivs,v1v3,11v:}. Let i = 1 on the sets
{vz}, {vs}, {vs} and on their complement; h = 0 on all other sets. We need at
least 2 new edges for a feasible orientation, but (10) gives only v > 1.

Remark 2. A cost function ¢ : E — R is called node induced if c{uv) = ¢/(u) +
c'(v) where ¢ : V — R is a linear cost function on the nodes. To solve the
minimum cost augmentation for node induced cost functions, one can find a
minimum cost element m of the contra-polymatroid C according to the cost
function ¢, using the greedy algorithin. Then this m can be used as a degree
specification to find a minimum cost augmentation.

For general edge costs the problem is NP-complete: let G be the empty graph,
and let c(e) = 1 on the edges of a fix graph G*, c¢{e) = 2 on the other edges. Let
A(X)=1if X # 0,V; thus h is crossing supermodular. Now the minimum cost
of the augmentation is |V if and only if G* contains a Hamiltonian cycle.
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4 (k,l)-Edge-Connected Orientations

In the introduction we defined (k, {)-edge-connectivity for non-negative integers
k > !, and mentioned that the (k,!)-edge-connectivity orientation problem is
a common generalization of k-edge-connectivity orientation (with I = k) and
rooted k-edge-connectivity orientation (with ! = 0). Recently, it was shown in
[4] that the case ! = k — 1 has an important role in orientations with par-
ity constraints. As for the corresponding augmentation problems, the degree-
specified and minimum cardinality augmentation of a graph to have a k-edge-
connected orientation is already solved, but the minimum cost augmentation is
NP-complete even for ¥ = 1. Conversely, for rooted k-edge-connected orienta-
tions, the minimum cost augmentation is easily solvable by matroid techniques,
but the degree constrained augmentation was hitherto unsolved.

To show how the results of the previous section can be used to solve degree-
specified and minimum cardinality augmentation of a graph so that the new
graph has a (k,[)-edge-connected orientation, fix a node s € V, and introduce
the following family of set functions:

mi) = {7 1% 09

Menger's Theorem implies that an orientation is (¥, [}-edge-connected from root
s if and only if it covers hy. The set function hy, is crossing G-supermodular
for any . Note that if a digraph is (k,{)-edge-connected from root s, and for
some s’ € V — s we reverse the orientation of the edges of k — [ edge-disjoint
paths from s to s, then we get a digraph that is (%, I)-edge-connected from root
s'. Thus the root can be selected arbitrarily in orientation problems.

Theorem 4. Let G = (V, E) be a graph, andm : V — ZZ | a degree specification
with m{V") even. There exists an undirected graph G’ = (V, E') such that G+ G’
has a (k,l)-edge-connected orientation and dgr(v) = m(v) for allv € V, if and
only if the following hold for every partition F = {X,,..., X} of V:

H% > (t— Dk +1—ec(F), - (20)

(t—
Emnw:ﬁ.wwv >t —-1k+!~eq(F). (21)

Proof. The necessity can be shown as in Theorem 2. As for the sufficlency, we
can fix a node s € V' and use Theorem 2 with ). In this case the inequalities

(8) and (9) in Theorem 2 are consequences of (6} and (7}, since het(F) = hpi(F)
and eq(F) = eq(F) for every partition F. O

Theorem 5. Let G H..G\, E) be a graph. There is a graph G’ with v edges such
that G + G’ has a (k,!)-edge-connected orientation, if and only if the following
two conditions are met:

Ly 2 (t—1k+!—eq(F) for every partition F with t members.
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2. 2y > tik + tol — ec(F) for every F = Fy + Fp where Fy is a partition of
some X with t, members, Fa is o co-partition of X with to members, and
every member of Fy is the complement of the union of some members of F1.

Proof. As in the proof of Theorem 4, we demand that G + &' should have an
crientation covering hi;. Going back to the proof of Theorem 3, the set function
p defined in {16) can be defined in this case as

. MX) +pa(X), 0} HEXCV,
PX) = A%Mxm%ﬂnﬁ cum,%w% +VEAW\5 m:n HA\. (22)

As it was proved in Theorem 3, a feasible augmentation with v edges exists if
and only if p (V) < 2v; by the above characterization of p, this is equivalent to
the conditions of the theorem. O

There are other equivalent characterizations of graphs that have a (k,1)-
edge-connected orientation. For given non-negative integers k and I, a graph
G = (V,E) is called (k,l)-tree-connected if any graph obtained by deleting !
edges from G contains k edge-disjoint spanning trees; it is called (k, I}-partition-
connected if ec;(F) > k(t —1) +1 for every partition F with ¢ members. Tutte [9}
proved that a graph is (k,Q)-tree-connected if and only if it is (k, 0)-partition-
connected. This immediately implies that a graph is (k, [}-tree-connected if and
only if it is (k, {)-partition-connected.

Simple calculation shows that for k¥ < [, a graph & is (k, [)-tree-connected
if and only if it is (k + [}-edge-connected; hence the (&, [)-tree-connectivity aug-
mentation problem is interesting only for & > {.

Proposition 4. For k > I, a graph G = (V, E) is (k,1)-tree-connegted if and
only if it has a (k,1)-edge-connected orientation.

Proof. Tt follows from the orientation theorem in [1] that for k¥ = !, a graph has a
(k, !)-edge-connected orientation if and only if it is (k, [)-partition-connected. O

Thus Theorems 4 and 5 solve the degree-specified and minimum cardinality
{k, I)-tree-connectivity augmentation problem.

5 Positively Crossing G—Supermodular Set Functions

A set function h is positively crossing G-supermodular if {1) holds for every
crossing pair (X,Y) for which A{X),h(Y) > 0.

Let M = (V;E, A) be a mixed graph, where E is the set of undirected
edges and A is the set of directed edges. Then the task of finding a (k,l}-edge-
connected orientation of M for a fix root s is equivalent to finding an orientation
of the edges in E that covers the set function max{hg — ga,0}, where hy is
defined in (19). This set function isn’t crossing G-supermodular anymore, but
it is positively crossing G-supermodular for any G. This motivates the study of
the h-orientation problem for positively crossing G—supermodular set functions,
and the corresponding augmentation problems.
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The characterizations in this section involve some complicated set families.
Every cross-free family F has a tree-representation (T, ), where T = (W, B} is
a directed tree, and ¢ : ¥V — B is a mapping such that {x~}(W,) |e € B} =
F, where W, is the component of T — e entered by e. A tree-composition of
P #X C V is a cross-free composition of X which has a tree-representation
(T = (W, B), ) such that ¢~ !(w) # @ for every w € W. Equivalently, a tree-
composition of X is a cross-free composition of X that contains no partitions
and co-partitions of V. A partition or a co-partition of V" will be regarded as a
tree-composition of @.

In this section we solve the degree-specified augmentation problem, by mainly
the same methods as in Sect. 3, but instead of relying on the properties of base
polyhedra, we use the following extension of the classical result on the TDI-ness
of the intersection of base polyhedra:

Lemma 4. Let p: 2V — Z U {—x} be a fully supermodular set function, and
let : 2V — Z U {—o0} be o set function that is supermodular on the crossing
pairs {X, Y} for which p(X) < ¢(X) and p{¥) < ¢(Y'). Then the system

{2 RY | o(V) =p(V}; 2(2) 2 p(Z), H2) 2 (Z)VZC V)  (23)
is TDI it has a feasible solution if and only if
P(X) +q(F) < {a+1)p(V) {24)

for every X C V (including the empty set) end every tree-composition F of X
with covering number .

Proof. To prove TDI-ness, we have to show that the dual system

max {zp+v2q — Bp(V): (y1 +y)A—Pl=¢, y1, 12,8 = 0}

has an integral optimal solution for every integral c, where y1,y2 : 2V — Q,
are dual variables on the sets, y; corresponding to the inequalities featuring
P, y2 corresponding to those featuring ¢, 8 € Q. is the dual variable for the
inequality (V) < p(V'), and A is the incidence matrix of all subsets of V. The
main observation is that we can assume that ¥; is positive on a chain and y- is
positive on a cross-free family: this can be achieved by a slight medification of
the usual uncrossing technique. Consider the following operations:

If 1 (X),51(Y) > 0 and neither X C Y, nor ¥ C X, decrease y; on X and
Y by min{y (X), 11 (Y}}, and increase y; by the same amount on XNY and
XuY.

Iy (X)) 42(Y) > 0, p(X) < g(X), p(Y) < ¢(Y) and X,Y are crossing, then
decrease y2 on X and ¥ by min{y2(X), y2(Y'}}, and increase y2 by the same
amount on XNY and XUV,

If yo(X) > 0 and p{X) = ¢(X), then decrease y3 on X to 0 and increase y;
on X by the same amount.
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These operations do not decrease y;p + y2g — Bp(V), and they maintain (y; +
y2)A — B1 = c. We show that by repeatedly applying these operations (in any
order), in a finite number of steps we get an optimal dual solution (¥, 95, 8)
such that y} is positive on a chain and y} is positive on a cross-free family.

Since y1,y2 € @, there is a positive integer v such that vy, and vy are
integral. The sum

viz 3 wn@IXP+ Y w0

ni(X)>0 vz (X)>0

increases by at least 1 with any of the above operations, and it is bounded from
above by 2v|Vi2 (3 4+ max,ev c(v)). Thus the procedure terminates after a finite
number of steps.

We proved that there is an optimal dual solution (v, 13, #} where ¥ is posi-
tive on a chain and 44 is positive on a cross-free family; but this means that this
is also an optimal solution of the dual of the system we get if we restrict p to the
sets where y} is positive, and restrict ¢ to the sets where y5 is positive (changing
their value to —oc on all other sets). This system is the intersection of two base
polyhedra, so it has an integral optimal dual solution, which is in turn optimal
for the dual of the system (23); therefore the system (23) is TDL

The proof of the non-emptiness condition (24) is similar: the infeasibility
of the system is equivalent to the feasibility of its dual by the Farkas Lemma;
a feasible dual solution can be uncrossed as above, so dual feasibility implies
the emptiness of the intersection of the two base polyhedra given by p and g
restricted to the sets where y| and ) are positive. Thus the emptiness condition
for the intersection of base polyhedra (which is of the form (24)) is sufficient for
the infeasibility of the original system. u]

Theorem 6. Let G = (V,E) be a graph, h : 2¥ — Z, a positively crossing
G-supermodular set function on V, and m : V — Z, a degree specification
with m(V) even; let

B (X) 1= h(X) + max T,scc - %W .

There exists an undirected graph G' = (V, E') such that G+ G’ has an orientation
covering h end do (v} = m(v) for allv € V if and only if
4 m(V}

hon(F) + max ?s@ - H.MIW < ea(F) +(a+ )T

for every X C V and for every tree-composition F of X with covering number
a.

Proof. The necessity follows from the fact that if ' is a regular family with
covering number o + 1, then p5(F’} < eq(F") for any orientation of G, and

0 (F) < (a+1 %| T smx?,sglswsw
XeF!
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for any orientation G of a graph G’ satisfying the degree specification.
The sufficiency can be proved in essentially the same way as in Theorem 2:
define Gy and hy similarly, and for X C V, let
m(V)

p(X) 1= i(X) -+ max ?38 - 4w ,

v
g(X) := X)) +ig(X) + max APBCC — %W .
In this case Lemma 1 implies that an orientation of Gy covering hg exists if and
only if the polyhedron
{e: Vo R|2(V)=p(V); 2(Z) 2 p(2), 5(Z) 2 ¢(Z2)VZ C V}

has an integral point.

Claim. The set function p is fully supermodular, and the set function g is super-
modular on the crossing pairs (X, Y") for which p(X) < ¢(X) and p(Y) < ¢(¥).

Proof. The set function p is the sum of two fully supermodular functions, so
it is fully supermodular. Since h is positively crossing G-supermodular, g is
supermodular on the crossing pairs (X, Y") for which A(X), A{Y) > 0, and these
are exactly the crossing pairs for which p(X) < ¢(X) and p(¥) < ¢(¥). o

Lemma 4 implies that an orientation of Gy covering ho exists if and only if
(X)) + ¢(F) < (@ +1)p(V)

for every X C V and every tree-composition F of X with covering number c.
Using (5) this is equivalent to the condition of the theorem.

From here we can follow the line of the proof of Theorem 2. Let Gg be the
orientation of Gy covering ho, and let G denote the edges of Gp not incident with
z. Let m;(v) be the multiplicity of the edge 2v in Gp, and m,(v) the multiplicity
of the edge vz in Gj. Define the set function h'(X) = A(X) - og(X); ' is
positively crossing supermodular. As in the proof of Theorem 2, we can apply
Lemma 2 (with the my, 7, and A’ defined above) to obtain a directed graph D
whose underlying undirected graph is a feasible augmentation. (8]

Hemark 3. We can use the ellipsoid method to prove that the above theorem
gives rise to a polynomial algerithm. To prove that the optimization for {23)
can be solved in polynomial time, we show that the separation can be solved
for a vector z. We know that the separation algorithm works for supermodular
functions. Thus we can determine if there is a set X with z(X) < p(X). If not,
then for the set function ¢*(X) = max(z{X), g(X)), B{g"*} is a base polyhedron.
Therefore we can solve the corresponding optimization problem, which implies
the solvability of the separation problem; this is equivalent to the separation
problem for ¢ concerning z.
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Remark 4. The condition involving tree-compositions may seem unfriendly, but
it is unavoidable, even in the special case when the problem is to find an orienta-
tion of the undirected edges of a mixed graph such that the resulting digraph is
k-edge-connected. This orientation problem was already considered in (3], where
crossing G-supermodular set functions with possible negative values were stud-
ied. The following example shows that the positively G-supermodular case is
more general, i. e. not every positively crossing G-supermodular set function h
can be made crossing G-supermodular by decreasing the value of h on some of
the sets where it is 0.

Let X1, X2, X3 be three subsets of a ground set V in general situation. Let
(X)) =1, (X, UX;) =2 (i # j), (XU XU X3z) =4, and h(X) =0 on the
remalning sets; this is a positively crossing supermodular function. The value of
X1 N X3 cannot be decreased since

A(X1NX3) 2 A(X1) + (X)) = A(X1UXy) =0.
Therefore it is impossible to correctly modify & so as to satisfy

\uﬁuﬂp _J.N.nv < FTKM _JN‘uDuﬂmv +}\ANH nNXs C.N‘wv - bmuﬂwv <-1.
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