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ON DISJOINT TREES AND ARBORESCENCES

A. FRANK

An important min-max theorem of matroid theory gives a formula for
the maximum number of pairwise disjoint bases in a matroid f1]. The theo-
rem was originally proved by Tutte for the circuit matroid of a
graph. {8].

Theorem (W.T. Tutte). A4 graph contains  k  edge disjoint
spanning trees iff for every partitions V= viubv,u...u V, of the
vertex set, the number of ‘edges connecting different V's is at least
k(r—1). _

A directed analogue of Tutte’s theorem is due to Edmonds.
Theorem (J. Edmonds [2]). A directed graph contains k edge

disjoint spanning arborescences rooted at a Jixed vertex iff the indegree of
every subset of vertices, not containing the root, is at least k.

One prupose of this paper is to give a common generalization of
Tutte’s and Edmonds’ theorems for edge disjoint mixed trees in a mixed
graph. This will be a consequence of an “orientation” theorem, which is
(I hope) interesting for its own sake.
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As a second purpose, we show an extension of Edmonds’ theorem,
in which the roots of arborescences may be different.

However Edmonds’ theorem will be used in the proofs of both
theorems.

NOTATIONS, DEFINITIONS

By a mixed graph G = (V,E), we mean a graph in which some
edges are directed, others are not.

A mixed arborescence rooted at r is a mixed tree such that the
unique path leading from » to any vertex does not use reverse directed
edge.

A directed edge enters a subset X of V ifitsheadisin X, but the
tail is not. A directed edge leaves X if it enters V' \X. An undirected
edge enters X if X contains just one of its end vertices.

For X €V, the indegree p(X) is the number of directed edges
entering X. For X,YESV, d(X,Y) denotes the number of edges
(directed or not), one end vertex of which is in X\ 7Y, the other is in
Y\X.

For XSV, weput X=V\X.

For x,y€ V, asubset P of V iscalled an xy-ser if x€ P and
yePpr

A pair X, Y of subsets is called intersecting if Xn Y, X\Y, Y\ X
are non-empty. An intersecting pair is crossing f X U Y is non-empty.

At this point we mention a simple and well-known formula for the
indegree function of a directed graph, which will be crucial in our proofs:

(N pX)+ p(MN=pXU T+ pXNY)+dX,Y)
for X, YC V.
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GRAPH ORIENTATIONS

Let G =(V,E) be an undirected graph with vertex set ¥V, and
HX) be an integer-valued function on a family H of subsets of V.

Orientation problem. When does exist an orientation of the edges
of G such that p(X) > r(X), whenever X € H?

Such an orientation is said to be good with respect to the function r.

There is no hope to give a good characterization for this problem since
it is AP-hard: the problem of two-coloring of a hypergraph can be
formulated as an orientation problem.

However the problem can be solved for some special classes of
function 7.

A function r is said to be convex (in G} ona pair X, Y of subsets
of V if

(2) KO+ rNsrXu+ XN YY)+ dX, Y).
In [4] the following result was proved.

Theorem 1. Let H=2V, r(¢)=r(VN=0 and r be non-negative
and convex on crossing pairs. G has a good orientation iff for every
partition V=V, UV,U.. .UV, of the vertex set, the number of edges
connecting different Vs is at least

1 4
max{ 2 r(V), 2 7}

i= i=
Here we solve the orientation problem for another function class.
Theorem 2. Let H be acollection of subsets of V, the intersection
and the union of any two intersecting member of H are also in H,
furthermore ¢ @ H, VEH. Let r be convex on intersecting pairs of

sets from H and r(V)= 0. G has a good orientation iff

1
(3) e > N.uM_ nv)

for disjoint sets V, (i=1,2,...,¢) from H, where e, denotes the
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number of edges entering some v.m.

It is worth to mention that r(X) may be negative, and we shall
really need this case in the application.

Proof. Henceforth, if we speak about a subset of ¥ then a member
of A is meant.

Necessity. If G is any orientation of ¢, then € 2 of V). If
G is good then p(V,) = H(V}), thus(3) follows.

Sufficiency. By induction on m()= 3 HX): X€H, r(X)> 0}.
Any orientation is good when m = 0.

m>0, Let n(X)>0. From (3), there exists an edge e(ab), for
which a2 X, b€ X. Define k(Y):

AY)—-1 if Y isa baset
4) k(Y) =
HY) otherwise.

Omne can see that & satisfies the premisses and m(k) < ESV there-
fore, by the induction hypothesis, & has a good orientation & with
respect to k. If G is good with respect to 7 as well, then we are ready
with the proof. Otherwise there exists a ba-set X with p(X) = k(X).
(In the proof p(X) concen (X) concerns Wu.

Definition. A set X is said to be strict (with respect to k) if
(X)) = k(X).

We are going to modify the present orientation so that it will be good
with respect to »r. Some simple propositions are needed.

Proposition 1. The union and the intersection of any two inter-
Secting strict sets are strict.

Proof. The first and the last member of the inequality sequence
below are equal, from which the statement follows:

P+ p(Y) = k(X) + KY)S KXV D+ HXN N+ dX, T)<
SpXUTY)+ p(XN Y)+dX, Y)=p(X)+ p(Y). 2

~162 -

Proposition 2. The intersection of some strict sets containing a fixed
vertex is strict. If a collection of strict sets forms a connected hypergraph
then their union is strict.

Proof. Repeated application of Proposition 1 leads us to both state-
ments. ¥

Proposition 3. A strict ab-set A and astrict ba-set B are disjoint.
Proof. Otherwise »A N B)= k(A n B). Then
p(A) + p(B) = k(A) + K(B) =

H

rHAY+ r(BY—1<r(AnBy+ r(AUB)+ d(A,B)=

1l

ANB+ kAVBY+ dA, B <
< plAN BY+ p(A U B)+ d(A, B),
which contradicts to (1).1

Let P(x) denote the intersection of all strict sets containing a vertex
x. (Since V is strict, P(x) is well-defined). By Proposition 2, P(x) is
strict.

Now we extend G by new directed edges which we call red edges.

(The original edges are blue). Lead a red edge from x to every other
vertex of P(x) for x€ V. Obviously there is no red edge leaving a
strict set.

Let C denote the set of vertices which can be reached from & by
a directed path in the extended graph. Then there is no edge (whether red
or blue) leaving C and € is the union of strict sets P(x), x€ C.

Proposition 4. There exists a vertex x in C for which a, b € P(x).

Proof. Suppose there is no such vertex x. Consider the hypergraph
formed by the sets P(x), x€ C. The components of this hypergraph
partition C into strict sets V,, V,,...,V, by Proposition 2. If a and
b were in the same ¥, then there would exist a sequence of hyperedges
X, X; ..., X, such that ¢€ X, b€X and X, N X, | #¢. Let
this sequence be of minimum length. The indirect premise means that
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s>1 Then A =(UX;: i=1,2,...,5~1) and B= X, violates Propo-
sition 3 from which we can see that if b isin _\ (say) then a is not.
Thus k(V )= H v‘uv — _ Since there is no blue edge leaving € e,
=2 pV)=2 k(Vy=2 r(V)) — 1, which contradicts to (3).8

Let a path U, leading from » to a vertex ¢, be chosen in the
extended graph in such a way that a, b€ P(¢) and the length of U isas
small as possible. We shall often use the propetty that a strict set containing
¢ also contains both @ and b.

Lemma. Reversing the orientation of all blue edges of U in mwv we

obtain another orientation of G being good with respect to r.

Proof. Ler &(X) denote the number of red edges of U leaving X.
Then for the indegree function p’(X) of the Eon_mca orientation we

have p'(X) = p(X) + e(X) — 6(X) where

—~1 if X isa chb-set
eXy=1+1 if X isa bcset

0  otherwise.
We are going to prove in Proposition 8 that
5) p(X) + e(X) — 8(X) = r(X).
This will prove the lemma and the theorem.

Proposition 5. If zy is the first red edge on U (starting from b),
leaving X and W= P(2)V X, then S(W)=8(X)—1.

Proof. Since no red edge leaves F(z), S5(W)< §(X) - 1. On the
other hand, by the minimal property of U, P(z) does not contain the
head of any red edge of U, leaving X thus §(W)= &(X)— 1.8

One can easily check that e(X) + e(¥Y} = (X N ¥) + e(X U ¥). This,
(1) and (2) show that function Y(X)= p(X) — X} + e(X) is submodular
on intersecting pairs, i.e. Y(X + W2y XN N+ XU V).

Proposition 6. y(X) = 0.

Proof. What we have to prove is that p(X) = rHX) —e(X). If X is
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a cb-set then X is not strict thus o(X)> k(X)+ 1= HX) — e(X). If X
isa beset then p(X) > k(X) > n(X) —e(X). If X isa ba-set containing
¢ then X is not strict thus p(X) = A&(X) + 1 = H{(X) — e(X). Finally, if
X belongs to neither of these types then p(X) > k(X) = HX) — e(X).0

The next statement is straightforward:

Proposition 7. Provided that ¢@X and a or b X, X is strict
iff vX)=20.8

We have to prove (5) which is equivalent to
Proposition 8. §(X) < y(X).

Proof. By induction on 6(X). The case &§(X)= 0 has been settled
in Proposition 6. Let §(X)> 0 and let zy be the first red edge on U,
leaving X. Denote W= P{(z) U X. By the minimality of U/, ¢ is not in
P(z) and a or b isnotin P(z), ie. Proposition 7 applies thus +(P(z)) =
=0 and ~PE)NX}y=1. Hence Y(X)=4(X)+ yPE)=y(W)+
+ ¥ P(z)n X)=v(W)+ 1. By Prpposition 5 8(W)= &(X)— 1. By the
induction hypothesis &(W)< (W) and thus ~(X)>y(W)+ 1>
= 86(W)+ 1=56(X).1

We are ready with the proof of the lemma and the theorem.

Note that the proof described above is, in fact, an algorithm provided
that we can determine quickly the minimal strict set containing a fixed
vertex in a given orientation of G.

DISJOINT ARBORSENCES

Theorem 3. A mixed graph F= (V,E) has k edge disjoint spanning
mixed arborescences rooted at r iff for disjoint subsets V,V,,..., V,
of V\{r}, [, =kt where f, is the number of edges (directed or not)
entering some V.

Proof. F contains &k edge disjoint spanning mixed arborescences
rooted at r just if its undirected edges can be oriented so that the obtained
directed graph contains & edge disjoint arborescences. This latter is
equivalent to Edmonds’ condition: the indegree of every subset of V\{r}
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is at least k. Thus our task is to find a good orientation of the graph
G = (V,E') of undirected edges of F with respect to function r(X)} =
=k—pX) (@ XC V\{r}) and r{V\{r})= 0. Theorem 2 can be ap-
plied with H={X: X € V\{r}} and (3) is equivalent to the present con-
dition since

z
e, =1, .J.HMH p(V).1

In [5] the following result was proved.

Theorem 4. A directed graph G = (V,E) has k edge disjoint

spanning arborescences (possibly rooted at different vertices) iff
t

Mm. p(V)= k(t — 1) for every collection of disjoint non-empty subsets
i=
Viof V (i=12,...,0.

Let an integer u(x) (0< u(x)< k) be assigned to every vertex x
of a directed graph & = (V, E).

Theorem 5. & has &k edge disjoint spanning arborescences, con-
laining any vertex x as a root, not more than u(x) times iff

(a) p(X) + 2 ux=k for ¢+XCV and

xeEX

4

2& M bﬁ ﬂ\h.v V.@QIC\mecmﬁcnozmn:.oao&&&ﬁ.ﬁ:o:éﬁu@
I=
subsets V, of V (i=1,2,...,0. )

Proof.

Necessity. Let k arborescences exist with the required property. k;
of them have root in X. Then k — k&, arborescences are rooted outside
X, thus p(X)> k—k,. Since k; < 2 u(x), we obtain condition (a).

xeX
Condition (b) is equally straightforward because an arborescence "enters”

(along an edge) all but one V,, therefore & edge disjoint arborescences
I
use at least X(r — 1) entering edges, i.e. M pV) = k(t —1).
=

Sufficiency. Extend G by a new vertex r and some new edges

- 166 —

starting from r. More exactly, lead u(x) new paralle] edges from r to
x, for every vertex x of G. The extended graph is G' = (V', E') with
indegree function p'. By the construction of G', we have p'(X)=

=)+ 2 w(x)>k, ie.

XEX

(6) p'Xy=k for XCEV

Delete as many new edges as possible without destroying (6). Denote
the arising graph by G, = ', E,) and its indegree function by p,. Now
Py (V) > k however we state

Proposition. p, (V)= k.

Proof. Suppose, indirectly, G, contains K&+ 1 new edges
e ,€e,,...,¢€,  starting from r. Deleting e, (6) becomes false, ie.
¢, enters a subset X; of V with p (X)) =k The components of the

hypergraph formed by X,’s partition X into disjoint subsets ﬂ such
that p,; Q\L = k. (See Proposition 2 in the previous paragraph}.

Since at least &£+ 1 new edges enter X, we have 2 (V)<
< Mbpﬁﬂ.v ~(k+ D=kt—-(k+ 1)=k(t —1)—1 contradicting con-
dition 5.8

Finally, applying Edmonds’ theorem for G; we find & edge disjoint
spanning arborescences rooted at r. All of them contains exactly one new
edge, consequently, deleting the % new edges, they form k& arborescences
of . These satisfy the requirements of the theorem.§

Remark. The proof above provides an algorithm. First apply |V
flow algorithms to control (6), then at most k|V| flow algorithms is
required to carry out the deletions. Finally, Lovédsz’ [6] algorithm is
used to find k edge disioint arborescences of <. Since Lovisz’ algorithm
needs O(|V|*k) steps, while there exists a flow algorithm of O{] Vi3y,
our proposed algorithm is of O(l ¥|*k).

Remark. When u(x)=k, Condition a is automatically satisfied, thus
we get Theorem 4. When u(x) is identically 0 except one vertex r wherein
u(ry=k, then Condition a transforms into Edmonds’ condition, further-
more it implies b. .
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COVERING BRANCHINGS

Definition. A (mixed) branching is a forest consisting of disjoint
(mixed) arborescences.

In {5]) I proved a directed analogue of Nash-Williams’s famous
theorent on covering forests [7].

Theorem 6. The edges of a directed graph can be covered by k
branchings iff

(a) the indegree of every vertex is at most k and

(L) the underlying undirected graph can be covered by k forests.

Using this, we prove here

Theorem 7. For a mixed graph G = {V,E)}, E can be covered by
k mixed branchings iff .

() pXD+ XIS k|X| for XCV and

(@) A< EKIXI-1) for XSV,
wiere ,@9& denotes the number of edges (directed or not) spanned
by X

Note that Nash-Williams® theorem states the equivalence of Conditions
b and d.

Proof.

Necessity. One mixed Dranching can cover |X] -~ 1 edges spanned
by X, thus Condition d follows. If 2 mixed branching contains £,
directed edges entering X then it covers at most | X| — & edges spanned
by X, whence Condition ¢ follows.

Sufficiency. For X = {x}, ¢ means that p(x)< k. Let w(x)=
= k—p(x) for x&€ V. The graph G' of undirected edges of G can be
oriented so that the indegree of every vertéx x is at most u(x). To see
this, apply Theorem [ of [3] which states that an undirected graph has an
orientation the indegree of every vertex x isat most u(x) iff 5'(X)<

.
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2 pta)+

xeX

< M« u(x) for XS V. Butwehave k| XI> p(X) + b(X) =
xe

+'0)  thus BN EIXI— 2 pl)= 2 0. as required.

xEX xeX

Orienting the undirected edges of G in this way, ¢ Dbecomes a
directed graph satisfying a and b, Apply Theorem 6.1
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