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ABSTRACT

Let & be a collection of subsets of a finite groundset S and fan
integer valued function on & such that X, Ye#F and XNnY*9
XU Y#S imply that XnY, XU Ye # and A+ AN>=AXN N+
+ fiX Vv Y). For a fixed integer k, the collection 2= {(D: 1DN X<
< fiX) for X€ #, |D| =k} forms the set of bases of a matroid.

This construction, which extends an earlier one due to J. Edmonds
is used to show how one¢ may produce a minimum weight covering of
directed cuts in an arrow-weighted digraph if a weighted matroid inter-
section algorithm is available. We also deduce an orientation theorem due
to Nash-Williams from the matroid polyhedron intersection theorem.
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1. INTRODUCTION

Let S§,,5;,--. s S be a partition of a finite set S and
biybgs-ees ua positive integers. As is well known the collection
F={l 1S, lINn§|<b;} satisfies the independence axioms of
matroids. A matroid is said to be a partition matroid if it can be got this

way.

As a possible generalization of this concept, one may ask whether
the collection £ ={I: |[InF|< fAF) for FEF} satisfies the inde-
pendence axioms where & consists of some subsets of § and f is an
integer-value function on #. The answer is negative, in general. For
example, st S={a, b,c}, F= {ab, bc,ac} and flab) =2, flbe) =
= flac)=1 then both {a, b} and {c} are maximal members of
contradicting the independence axiom that maximal independent sets
have the same cardinality.

However, J. Edmonds proved [2] that

Theorem 1. # ={I: |[I0X|<b(X) for Xe @} forms the inde-
pendent sets of a matroid K if X, YE®R, XnY+¢ imply that

(L XnY, XuYe?a,
(2) X))+ B> XN Y)+ b(XUTY)

Furthermore the polyhedron P spanned by the incidence vectors of
independent sets of M s {x: 0<x<1, x(BY< b(B) for Be @},

We shall need the obvious consequence that the vertices of P =
={x: x€P, Ix=k} are the incidence vectors of the bases of a
truncation.of . Edmonds also gave the rank function of .#:

HA) = min { Zb(X)+ 14 -UX,i: X, €&, X, 0 X;= ¢}

One purpose of this paper is to generalize this construction of
Edmonds by using crossing families rather than intersecting ones. Then
we shall use this new way of constructing matroids to show that a weighted
matroid intersection algorithm can be used to construct a minimum weight
covering of directed cuts in an edge-weighted digraph. As a second applica-
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tion, we deduce Nash-Williams’ orientation theorem from the matroid
polyhedron intersection theorem. In both speciat cases one matroid is 2
partition matroid while the other is defined by a crossing family.

2. PRELIMINARIES, NOTATION

Subsets A, B of a finite set § are intersecting if none of AN B,
A—B, B—A is empty. If in addition, AUB+S then A,B are
crossing. A family # of subsets of S is intersecting (crossing)if AN B,
AuBe#F for all intersecting (crossing) members of # and ¢&¢ #
(¢,5€¢ #). A set function b is submodular on A, B if b(A)+ b(B)>
> b(A N B)+ b(A U B). A set function p s supermodular if - p is
submaodular.

For a set XC S, denote the complement of X by X. For a family
# of subsets of S, set & ={X: Xe #}. For a vector x in RS,
x(F) = 2 (x(v): vE F).

Let G=(V,E) be agraph. We call an element ¢ of E an arrow
if G is directed and an edge if G is undirected. An arrow from u to v
is denoted by uv; an edge between u and v is denoted by (u,v). In
a directed graph an arrow uv enters a subset X if ueX, veX. An
arrow leaves X ifitenters V — X.

Let p(v) denote the number of arrows entering a vertex v and
p(X) denote the number of arrows entering a subset X. Callaset X
(¢ C X C V) a kernel if no arrow leaves X. The nonempty set of arrows
entering a kernel X is called the directed cut or dicut defined by X.
A subset C of arrows is said to be a covering if C meets all dicuts of G.

3. A NEW MATROID CONSTRUCTION

There were two indications that generalization of Edmonds’ con-
struction might exist. One of them comes from a general min—max the-
orem of Edmonds and Giles [1] where crossing families played a
role instead of intersecting ones. However, if we try to weaken the
hypothesis in Theorem 1 and replace the intersecting family by a crossing
one then .# will no longer be a matroid in general: the counterexample
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in the Introduction works again. We shali see however, that the crossing
family does lend itself to defining the bases of a matroid.

The other root of our investigations is a slight generalization of the
concept of partition matroids. We are given a partition §,,5,,... » &
of S and positive integers p,< b; for i=1,2,...,m. Let k bea
positive integer. The collection 2={X: |X|=k, p;S|XD S;1<b;
for i=1,...,m} satisfies the basis axioms of matroids. We call such
a matroid g-partition matroid. Note that a partition matroid can be

obtained in this form by taking p; = 0 forall { and k= M min (| 5,1, b).
I

Our main result is:

Theorem 2. Let # be a crossing family and let f be an integer-
valued function on ¥ submodular on crossing pairs. Let k be a positive
integer. Then the family

2 ={X: |X|=k, | XN FIKAF) for Fe #}

satisfies the base axioms (unless 2 s empty). Furthermore, the poly-
hedron spanned by the incidence vectors of bases is given by

P, =1{x: 0<x< 1, Ix=k, x(F)< AF) for Fe #}.

Proof. To prove this theorem we need some lemmas. A slightly
weaker form of the following lemma was proved by L. Lovasz [9].
A detailed proof can be found in [4].

Lemma 1. Let X C 25 be a crossing family and p be a function
on X supermodular on crossing pairs. Define x| = X: X=UX;#5,
k.qm.a\. N;DNNH pYu (¢} and for XE X, — {9} et FCOH
—max (ZpX): X=UX, X,nX,;=¢) and p(®)=0. [f X, YeX,,
XUY*%S then XY, XNYE X, and p, is supermodularon X, Y.

An analogous statement is true if the term “super” is replaced by
*sub’’ and max by min.

Lemma 2. Let P,.={x: x>0, x(F)» p(F) for Fe€ X} and
Wa\_u?n x» 0, x(F)» p,(F) for F€ o' }. Then wuwk_.
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Proof. Since # S ¥, and p(X)< p(X) for XEX we get
P, Mw&_. On the other hand, for a vector x€ P, and for X &€ ¥, we
have p, (0= ZpXp< Zp(X) < Zx(X)=x(X) for some disjoint
X/sin 4 where UX,=X. Thisshowsthat x€ P

Applying Lemma 2to & and k—p, we obtain

Lemma 3. Let # C 25 be a crossing family and let f bea function
on F submodular on crossing pairs. Let k be a positive integer. Define
#={X: X=NX,+¢ X,€F, MH.DMN." $1U (S} Define bX)=
= k—max {(Sk-fX)): X=NX, X,€F, X,nkX-= ¢} if Xe
€ #—{S} and set b(S)=k. Then # isan intersecting family and b
is submodular on intersecting pairs. Moreover, if P, = {x: x» 0, Ix=k,
x(FY< f(F) for FE#)} and P ={x: x2 0, Ix =k, x(F)< b(F}) for
Be #) then P, =P,

Now Edmonds’ theorem in the Introduction and Lemma 3 imply
Theorem 2. &

The rank function of the matroid in Theorem 2 is
r4) = min {k, SAX)+ 14 - U X;| = (h— m)k:

X, €¥, o X=X, X; nX, =9 X;* ¢},

1
where h and m denote the number of subsets kc. and k...

respectively.
A symmetric version of Theorem 1 is the following

Theorem 3. Let ® and @ be intersecting families and let b and
p be integer-valued functions on @ and P, respectively, such that b is
submodular and p is supermodular on intersecting seis. Let k bea posi-
tive integer and assume that BE #, Pe®, B—P+¢, P—B*¢ imply
that B-P€®, P—Be? and bB)—pP)> b(B — P)— p(P — B).
Then 2, ={X: |X|=k, |XN B|<b(B) for Be@, |XnPl=plP)
for Pe P} satisfies the base axioms (unless @, Is empty).

Proof. Let #F=® U 2 and let
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min (&(X), k—p(X)) if X€a4n?
U0 =1 B(X) if Xea-2
k — p(X) if Xe?-2a.

It is easy to see that & is a crossing family and f is submodular on
crossing sets. Apply Theorem 2 and notice that 2, = {X: | X| =k,
| XN F|<AF) for FE F}.1

COVERING OF DIRECTED CUTS

Let G=(V,E) be a directed graph and s a nonnegative weight
function on the arrow set E. Call a family ¥ of not-necessarily distinct
dicuts s-independent if no arrow e occurs in more than s(e) members
of #. The foilowing theorem is a weighted version of that of Lucchesi—

Younger.

Theorem ({10], 1). The minimum weight g of a covering is equal
to the maximum cardinality vg of an s-independent family of dicuts,

In [5] we gave a polynomial algorithm for proving this result. Here
we show that the primal problem, i.e. finding a minimum weight covering,
is a weighted matroid intersection problem.

Replace each vertex v &€V by as many new vertices as there are
arrows incident to v and denote by ¢(¥) the set of new copies of ».
For XC V, let ¢(X)=U(p(»): v€X) and let §=p(V). The arrows
of G determine a partition of § into two-element subsets. Denote by
e, and e, the elements in S corresponding to an arrow e =uy of G.
Let us denote by , the partition matroid on § where a set is inde-

pendent if it contains at most one of e, and e, for e€E.

Let #={p(X) X isakemel of G} and for F= p(XYEF let
[ = Z(p(v): ve X) - 1. .

It can be shown that % is crossing and f is submodular on crossing
pairs. Apply Theorem 2 to &, f and k= ]E| and denote the resulting

matrid by #,.
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Assign weights to the elements of S as follows. Let ,Am:v = s(e)
and s(e)) = 0 for each e= uv€ E. Now the key observation is the
following claim.

Claim. There is a one-to-one correspondence between the coverings
of G and the common bases of #, and 4, and the weights of cor-
responding coverings and common bases are equal.

Proof. Let a covering C and a common base B correspond to each
othersothat e=uvr€E Ce ¢, € 8.8

This claim has the consequence that the polyhedron spanned by the
incidence vectors of coverings in G is a projection of a matroid inter-
section polyhedron, namely we have to project the common base poly-
hedron of #, and .#, alongthe components e, foreach e=uve E.

Another consequence is that a weighted matroid intersection
algorithm lends itself for computing a minimum weight covering. In [6]
we described such an algorithm. A version of that procedure for finding
a minimum weight common base starts with an arbitrary one (which is
available in our case since, for example, B ={e,: e=uv€ E} isa common
base) and then successively improves it. This version needs an oracle which
can

find the fundamental circuits in .4, belonging to a
common base.

(*)

Note that it is far from simple to make an independence oracle for
M ,. Fortunately, we do not need it. We need only (+) which is indeed
available in this special case because of the following

Claim. For @ common base B and s& B, the fundamental circuit
C(B,s} in 4, consists of those elements z of B for which no kernel
X exists such that ¢~ ()€ X, ¢~ 1(2) @ X and the dicut defined by X
is covered just once by the covering corresponding to B.

The proof is left to the reader.

Remark. Observing that in the above reduction the family & can
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be made intersecting by adjoining S and the function AF) = Z{p(v):
veEX)~1 (F=eX)e F JU{S}) is submodular on any intersecting
pair, one can ask whether the original construction of Edmonds is not
encugh for representing the minimum weight covering problem as a
matroid intersection problem. The answer is no because this definition
would yield a matroid of rank |E]— 1. On the other hand, if AS) were
defined to equal |E£}f, the submodularity of f would be destroyed.

4. ORIENTATIONS OF UNDIRECTED GRAPHS

Let G =(V,E) be an undirected graph. By an orientation of G
we mean a directed graph on ¥ such that each edge of G is replaced by
an arrow (directed edge). A directed graph is g-strongly connected if
p(X)»>g for pC XC V.

Theorem (f11]). G has a g-strongly connected orientation if and
only if each cut contain at least 2g edges.

We are going to investigate the minimum weight version of this
problem when the two possible orientations uv and vu of an edge have
weight s(uv) and s(vu) and we are interested in finding 2 g-strongly
connected orientation of minimum weight.

Again copy the vertices in ¥ and define 4, on S exactly asin the
proceeding section. Let F = {p(X): ¢ C X C ¥V} and for F= p(X}E #
let AF) = h(X)—g where A(X) denotes the number of edges having at
least one endpoint in X. Observe that & is crossing and f is submodular
on crossing pairs. Apply Theorem 2 to this #,f and k= |E|. Thus we
obtain a matroid #,. Assign weights to the elements of § as follows:
s(e,) = suv), s(e))=s(vu) for e=(u,v)EE.

Claim. There is a one-fo-one correspondence between the g-strongly
connected orientations of G and the common bases of & , and 4, and
the weights of corresponding g-strongly connected orientations and
cormmon bases are equal,

Proof. Let a g-strongly connected orientation and a common base B
correspond to each other so that the orientation of an edge e = (u,v) is
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uy if and only if e, €8, e, @B

If one would like to apply the weighted matroid intersection algo-
rithm then oracle («) of the preceding section is available, but to find a
starting common base (i.e. a g-strongly connected orientation) is not
simple. For this see [3]; for the weighted case see [4].

Finally, we derive Nash-Williams’ theorem. Denote by P, and P,
the polyhedra in RS spanned by the incidence vectors of the bases of
', and #,, respectively. By the claim, what we have to prove is that
P, NP, has an integral element. By Edmonds’ matroid polyhedron inter-
section theorem [2] the vertices of P NP, are integral, so it is enough

to show that P; n P, is nonempty. But the hypothesis of Nash-Williams’

theorem implies that the vector x defined by x(s)= W. for s€5 isin

1_ ne,.

Remark. Nash-Williams actually proved a stronger orientation theo-
rem. The authors really wonder whether this version can also be derived
from matroid intersection.

Remark. In fact, we used the same idea in both applications and it
can be shown by the same idea that the 0—1 Edmonds—Giles polyhedron
(that is, when the variables are between 0 and 1) is also the projection
of a matroid intersection polyhedron. In a forthcoming paper [7] we show
the same thing for a polyhedron defined in [8].

Acknowledgement. Many thanks are due to Lex Schri jver,
Amsterdam, for showing us how Nash-Williams® theorem could be derived.
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