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GENERALIZED POLYMATROIDS

A. FRANK"

ABSTRACT

We extend the concept of polymatroids due to J. Edmonds and
prove the intersection theorem for generalized polymatroids. As applica-
tions we derive 2 theorem of McDiarmid and show that the Edmonds—Giles
wolyhedron is the projection of the intersection of two generalized
polymatroids.

1. INTRODUCTION

Let S be a finite set and b an integer-valued B,-function on 2%,
ie. B@)=0, B(X)2 b(Y) for XD Y and b(X)+ ()2 bXN YY)+
+ bB(XUY). The polyhedron P={x: x>0, x€ Wmu x(F) < (F) for
FC 8} is called an (integral) polymatroid, where x(F) stands for the sum
of components of x in F.
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The concept of polymatroids was introduced by J. Edmonds [1],
who discovered quite a few results on polymatroids. For example, he
established the vertices of P, characterized the facets and, generalizing
the matroid intersection theorem, obtained the

Polymatroid Intersection Theorem. For any two polymatroids P,
P,, the linear program max{ex: x € Py N F,) has an integral optimal
solution. If, in addition, c¢ is integral, the dual linear program also has an
integral optimal solution.

McDiarmid [9) extended this theorem as follows. Let f and g be
integral vectors, o, § integers,

Theorem ({9]). The linear program
max{cx: x€EP NP, fESx<g, = x(S) = 3}

has an integral optimal solution (if it has an optimal solution at all). If, in
addition, c¢ is integral, the dual linear program has an integral optimal
solution.

The following useful concept is due to Hoffman ({8] and
Edmonds — Giles [2]. A linear system Ax<b, x>0, is called
totally dual integral (TDI) if, for any integral ¢, the dual linear program
min {yb: y> 0, yA > ¢} has an integral optimal solution if it has an
optimal solution. The basic feature of TDI systems is given by the following

Theorem ([2), [8]). A TDI linear system defines a polyhedron whose
facets contain infeger points (in particular, the vertices are integral).

Note that the TDI property regards the linear system and not the
polyhedron defined by this system. See also [7], [10], [12].

Therefore the preceding theorems state that the linear systems in
question are TDI.

A further generalization, Edmonds—Giles’ theorem, also states the
TDI-ness of a certain linear system. The exact formulation is in Section 2.

The purpose of this paper is to extend the concept of polymatroids
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and prove the intersection theorem in this general setting. It turns out that
the polyhedron in McDiarmid’s theorem is the intersection of two gener-
alized polymatroids while the Edmonds—Giles polyhedron is the projection
of such an intersection.

2. PRELIMINARIES

Subsets x.w of a finite set S are intersecting if none of AN B,
A—-B, B—A4 is empty. If, in addition, AUB+*S§ then A,B are
crossing. A family # of subsets is intersecting (crossing) if AN B,
AV Be# for all intersecting (crossing) members of # and ¢ & #
(0,5¢ #). A family F is aring family if # is closed under taking
union and intersection. A family # is laminar if no two members of it
are intersecting.

A set function & is submodular on A,B if b(4)+ b(B)=>»
= b(4A VU B)Y+ b(A U B). A set function is supermodular if — p is sub-
modular. m is modular if it is both sub- and supermodular.

Let T be a subset of S. By the projection along T of a polyhedron
P={x: xRS, Ax < b} we mean the polyhedron P' = fx,: x, e RS- T,
(x;,x,)€F for some x, € RT}. Obviously, if the vertices of P are
integral then so are those of P’,

Let G ={[V,E] be a directed graph with »n vertices and m arrows.
Multiple arrows are allowed but loops are not. An arrow uv enfers (leaves)
BcVif veB, ugB (v&B, ucB). Foravector x€ Rf Jet

A (B)= 2 (x(e): e enters B) — 2 (x(e): e leaves B).
Obviously A,(B) isamodular set function.

Let #' be a crossing family of subsets of V' and &’ a real-valued
function on #' submodular on crossing sets. Let f,g€ Rf be two real
vectors with f< g. (f,g may include infinite components). The following
theorem is due to Edmonds and Giles.

Theorem ((2]). The linear system f<x<g, A (B)<b'(B) for
BeR' istotally dual integral
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(The solution set of this linear system is an Edmonds—Giles poly-
hedron.)

3. GENERALIZED POLYMATROIDS

Edmonds {1} proved that, given an intersecting family # and an
integer-valued function » on # submodular on intersecting sets, the
polyhedron

P={x: x>0, x{(B)< b(B) for Be ®}
defined a polymatroid. We will generalize this description of polymatroids.

Definition. Let # and 2 be intersecting families and » and p
integer-valued functions on # and 2, respectively, which are sub- and
supermodular on intersecting sets, respectively. Assume furthermore that
Be®, Per, B—P+¢, P-B+¢ implythat B—Pc @, P—Be#
and b(B) -~ p(P)>b(B - Py -p(P—B). Then the polyvhedron (=
= {x: x(B)< b(B) for Be &, x(P)= p(P) for PE€ &)} is called a gener-
alized polymatroid or briefly a g-polymatroid.

Remark. If # consists of the singletons and p = 0 then we obtain
an (ordinary) polymatroid.

Proposition 1. Let @ be a g-polymatroid and f and g integral
vectors (f<g). Let o be integers (u<P). The polyhedron
{x: xe@, fexsg, asx(S)Y< B} isa g-polymatroid.

Proof. Join the singletons and {S} to both 2 and 2 and extend
b and p so that b(s) = g(s), p(s) = fs) for s€85 and b(S)=F and
p(S) = o These new families and functions define a g-polymatroid which
is obviously the polyhedron in question. #

Proposition 2. Let Q be a g-polymatroid and k an integer. Let
5 be a new element and S' = S+ 5. The polyhedron in RS defined by
{(x,x)): x€Q, x(5)+ x, =k} isa g-polymatroid. a

Proposition 3. Let R' be a crossing family of subsets of §' and
b' an integer-valued function on ®' submodular on crossing sets. Let k
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be an integer. The polyhedron in RS defined by {x. x(B)< b'(B) for
Be®', x(§) =k} isa g-polymatroid,

Proof. Let s be an arbitrary element of §' and S=S5"—5s. Let
% consist of the members of #° not containing s and let @ consist
of the complements of those members of #’ which contain s. Let
b(B)=b'(B) for BER and p(P)=k—b'(S'—P) for P #. Now
apply Proposition 2. 8

Let us formulate two properties of g-polymatroids interesting
for their own sake. It was proved in [3] (and independently by S.
Fujishige [13]) that, given a constant k, a crossing family #' anda
submodular function ' on it, there exists a ring family # and a function
r on 2 submodular on aedd\. pair such that {x: Ix =k, x(B)< b'(B) for
BeEB'}={x: Ix=k, x(R)<XHR) for Re #}.

Proposition 4. Any  g-polymatroid can be obtained in the form
{x: x(B)< b,(B) for Be #,, x(Py= p,(P) for Pe2. ) where #, and
P, are ring families with sub- and supermodular functions b, p, on
them, respectively, and for any Be€ #,, Pe #,, we have B-—-P€ A,
P—Be# and b (B)- p,(P)=b,(B-P)- p,(P - B).

Proof. Let S'= S+ 5. The g-polymatroid Q is the projection of
Q' ={x,x) xeQ, ¥S)+x =k} Let # ' ={X: X€# or s€X and
S —Xe P} and :

Xeaz
s€EX and §S— Xe#.

b(X) if

b'(X) =
@ ?Jcafb if

Then &' is a crossing family and &' is submodular on crossing members;
furthermore, Q"= {x": x'(B)< &'(B) for BE#' and Ix'= k). By the
remark mentioned above there exists a ring family # and a submodular
function r on # for which Q' ={x": x'(R)< HR) for RER and
Ix'= k}. Let 2, ={X:s¢Xe R}, by(X)=rX) for Xe #, and
?,={X:5¢X and §S- X2}, pX)=k-rS-X) for Xez,.
One can see that # 01,2, p, satisfy the requirements. n

We say that a g-polymatroid is given in a strong form if the defining
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families and functions satisfy the requirements of Proposition 4. For the
next proposition let us assume that ¢ is given in a strong form.

Proposition 5. For T C S, the projection Qr of a g-polymatroid
Q along S—T is a gpolymatroid, namely Qp ={x;: x, €RT,
xp(B)< b(B) for BE #, B CT, x,(Py> pP) for PE2, PE T}

Proof. We prove the statement when |S— T|= 1. The general case
follows by induction. Let {s} =S5 — 7. It is well-known from polyhedral
theory that @, can be described by two types of inequalities. One of
them consists of those inequalities in which the coefficient corresponding
to s is 0. Namely, these inequalities are:

W BT x®<HE) for Fed, BET,
a
xp(P) = x(P) > p(P) for PEP, PC T

For any pair B,P with B€ #, P€ # and s€ Bn P, the two inequali-
ties x(B)=< b(B), x(P)> p(P) generate an inequality of second type as

follows:  p(P) — x,(P) < x(s) < b(B) — xp(B), e xp(B) — x (P} <
< b(B) — p(P). However this is equivalent to

(b) xp(B — P) — xp (P~ B} < b(B) — p(P)

and we claim that (a) implies (b), that is, (a) itself determines (., as
stated in the proposition. Indeed, B—Pc€®, P—B€#? and s& B - P,
5§& P — B. Thus the inequalities Hﬂow —P)< bB-P) and x, (P — B)=
> p(P — B) occur in (a) since @ was given in a strong form. But then we
have b(B — P} — p(P — B) < b(B) — p(P) and (b) follows. &

Henceforth we allow the g-polymatroids in question to be defined in
the form given in the definition and not necessarily in a strong form.
Before formulating the main result we need the following.

Proposition 6. The linear programming problem
?_E Zy(B)b(B) — Zy(P)p(P): y= 0,

Z (B ecBy— Z((P): e€P)=c,, e€ S}

Nu
has an optimal solution (if it has one at all) for which the family
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{X: y(X)>0, X€ #U LY islaminar.

Sketch of proof. Let us consider that optimal solution y for which
the sum S (X)) X|IS— X|: X€ BU P) is minimal. This y satisfies
the requirements.

Our main result is the intersection theorem for g-polymatroids.
Theorem. Given two g-polymatroids, the linear system
{x(B) < b,(B) for Be 2, x(P) > .F.Qwv for PE 2, (i=1,2)}
is totally dual integral.

Sketch of proof. The proof proceeds just along the same line as that
of the original intersection theorem given by R. Giles [6]. For the use
of this machinery, see also [11]. The dual linear programming problem is

{min h.nm.p [Z0;(B)b,B): BER) —
- quﬁuw“nﬁmd TquVH_ EH_Q\N V Ou
WMN [Z0,B): Beay - S,y PE?)] =c}.

What we have to show is that this linear programming problem has an
integral optimal solution for any integral ¢ for which there exists an
optimal solution. By Proposition 6 there is an optimal solution for which
the families {X: X€ & U .ﬁ._ y(X)> 0} (i=1,2) are laminar. It is

M
well known that a matrix AEJ is totally unimodular if M, (i=1,2)

2
is the incidence matrix of a laminar family. Consequently the optimal

solution is integral if ¢ isintegral. »

By Proposition 1 McDiarmid’s theorem follows at once. In order to
get the Edmonds—Giles polyhedron as the projection of an intersection
of two g-polymatroids, replace each vertex v of G = (V, E) by as many
new vertices as there are arrows incident to v. Denocte by @(v) the set
of new copies of v. Forasubset X of ¥V put ¢(X)= U (p(¥): v€ X)
and (&)= {p(B): BEA'}).
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Therefore we obtain a set § of 2|E| elements. The arrows of
G determine a partition of S into 2-element subsets. Denote by e,
and e, the elements in § corresponding to the arrow e = uv. Let
S,=1{e,: e= uv€ E}. Now define two g-polymatroids on S. Let
g, =1z le)< z(e,) < gle), z(e,) + z(e,) = 0 foreach e=uv€ E} and
Q, ={z: z(e(B)) < b(B) for B @', 1z = 0}.

Now consider the optimization problem max cx over the Edmonds—
Giles polyhedron. Define the objective function for the optimization
problem over 0_ N Q, so that ole,) = c(uv) and cle,)= 0 for e=
= uve E. For a vector x€ RE 1let A(x) denote the vector z€ RS for
which z(e,) = x(uv), Nﬁmnv = — x(uy).

Proposition 7. A vector x is in the Edmonds—Giles polyhedron if
and only if h(x} isin Q,0Q,. Moreover cx= ch(x) and the
Edmonds—Giles polyhedron is the projection of Q, N Q, along Sq-

Proof. The proposition is a straightforward consequence of the
definition of @, and QN.-

Remark. It can be shown that if neither f nor g contains infinite
components, the translation of the Edmonds—Giles polyhedron by - f is
the projection of the intersection of two ordinary polymatroids and the
hyperplane 1x= | E]|.

It would be wortwhile to investigate how other nice properties of
polymatroids are reflected in g-polymatroids. For instance, what are the
vertices or the facets of a g-polymatroid? For a relationship between
g-polymatroids and matroids, see [5].

Int a forthcoming paper [14] we analyze such questions in detail.

Acknowledgement. Many thanks are due to my colleague E.
Tardos for her valuable remarks and criticism on the original version
of this paper.
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