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Vertex-Disjoint Simple Paths of Given Homotopy
in a Planar Graph

A. FRANK AND A, SCHRIJVER

ABSTRACT. We characterize the existence of pairwise vertex-disjoint simple
paths P, ..., P, of prescribed homotopy in a given planar graph when alt
end points of the paths are at the “holes™ in the plane. Moreover, we give a
polynomial-time algorithm for finding these paths, if they exist. Our meth-
ods are polyhedral and make use of the ellipsoid method ard of considering
a fractional solution to the packing preblem.

1. The theorem

We prove the following theorem , conjectured by L. Lovéasz and P. D.
Seymour.

THEOREM. Let G = (V, E) be a planar graph, embedded in R, let
Iy, -, 1, be (the interiors of ) some of its faces (including the unbounded
face), and let P, ..., P, bepaths in G, each with end points on the bound-
aryof I U--UI,. Then there exist pairwise vertex-disjoint simple paths

w_....,mm _.:Q,SS& m H.,w..ﬁqioSE.nBJ".: _WN/Q_C...C~@V \.9.

i=1,...,k ifand only if

(1 (i) there are pairwise disjoint simple curves C,, ..., C,
in ﬁu/Q_ U Ul ) such that C, is homotopic to P,
in RN u---UlL) for i=1,....k;

(ii) for each curve D:[0,1] = R\ (I, U---U 1) with
D(0). D(1) € bd(J, U --U1,) we have cr{G, D) >
¢ min er(P,, D);
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140 A. FRANK AND A, SCHRIJVER

(iii) if Dy, Dy: S, = R\ (4, U---UL,) is a pair of closed
curves with the properties that (a) D\(1) = Dy(1} ¢
G, (b) if D, or D, passes any vertex v of G, then
Jor each i = 1, ..., k there exists a curve homo-
ltopic to P, in R® \({{,U---UIL) not passing v,
() for j =1,2: a(G,D;) # Tp mincr(P;, D))
{mod 2), then we have

k
e(G, D, -D,)>2+ Y mincr(P,, D, - Dy).

i=1

Note that the case kX = | amounts to the existence of one simple path of
given homotopy.

In the theorem and in the sequel we use the following conventions and
terminology.

Graphs and their embeddings. We identify-a planar graph G = (V, E)
embedded in R’ with its embedding. We consider faces as open regions in
R? and edges as open curves (so without end points). The boundary of .. is
denoted by bd(..}.

Curves. A curve is a continuous function C: [0, 1] — R®. A closed curve is
a continwous function C: 5, — R* (where §, denotes the unit circle in C).
For closed curves D,, D,: §, — R® with D(1) = D,{1}, the closed curve
D, - D, is defined by: D, - D,(z) = D,(z%) if Im(z) 2 0 and D, - D,(z) =
D,(z%) if Im(z) < 0.

Homotopy. Two curves C, D: {0, 1] — X C R? are called homotopic {in
X), in notation C ~ D, if there exists a continuous function @: [0, 1] x
[0, 1] = X so that ®(0, x) = C{x), ®(1, x) = D{x), ®(x,0) = C(0),
and ®(x, 1)=C(1) forall x €[0, 1]. (Note that this implies C{0) = D{0)
and C(l) = D(1).) Two closed curves C,D:$;, = X C R’ are called
{freely) homotopic (in X ), in notation C ~ D, if there exists a continuous
function @: [0, 1] xS, —+ X so that ®(0, x) = C(x) and {1, x) = D(x)
for all x € §,. (Note that not necessarily C(1) = D(1).)

Paths. A path in graph G = (V', E} is a sequence

(2) Hco..w_.e_,...,m?cbu
where vy, ..., v, are vertices and e, ..., g are edges, so that ¢; connects
v,_, and v, (i=1,...,[). The path is simple if v, ..., v, arc all distinct.

Two paths are vertex-disjoint if they do not have a vertex in common. When
G is embedded in R”, we identify a path in the obvious way with any curve
following this path in the embedding. (That is, we identify (2} with any
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curve P: [0, 1] - R* so that P(i/l) = v, for i =0,...,! and P(x) € e,
if (i—D)/I<x<ifl)

Counting intersections. If C, D: [0, 1] — R*\ (/, U---U1,) are curves,
where [,,..., [, are faces of a graph G = (V, E) embedded in R® , then

(3) or(C,D):={{x,y)€[0, 1] x[0, 1]|C(x} = D(y)}I,
min ¢r(C, D) :i= min{er(C, D)€ ~C, D~D (m B\ (J,u--- UL},
er(G, D) := [{y €[0, 1]D(y) € G},
if D is not a constant function,
=1, ifDisa constant function.

If C:[0,1}~R*\(J,U---UL) isacurve and D: S, — R*\ (/,u---U 1)
is a closed curve, then

@) or(C, D)= [{(x,y}€l0, 1] x 8 |C{x) = D)},
min ¢r(C, D) := min{ct{C, D)|C ~ C, D~ D (in R \fpu- Uit
er(G, D) = |{y €5, | D) € G}

Crossings. Two (closed) curves C, D are said to cross if there exist x, y
so that C'(x) = D(y) and there exists a homeomorphism ¢: R’ — R so
that the functions ¢ o C and ¢ c D are linear functions in neighbourhoods
of x and y, respectively, with different angles. In that case, {x, y) is said
to give a crossing. If C and D do not cross, they are called noncrossing.

The greater part of this paper consists of proving sufficiency of the con-
ditions (1), which is based on Lemmas 1 and 2 proved in Sections 3 and 4.
Lemma | is shown with the help of an auxiliary theorem proved in Section
2.

2. An anxiliary theorem on edge-disioint paths

One ingredient for our proof is the following “homotopic flow-cut theo-
rem” {[6]).

HoMOTOPIC FLOW-CUT THEOREM. Let G = (V, E) be a planar graph em-

bedded in R?, let I, be some of the faces of G (including the un-
bounded face), and let C, ..., C, be curves in R \N(JyU---U 1) with end
points in V nbd([, C...CN._L. Then there exist paths w__ eee s w_: R wm_ e

1 L . i i 1 '
P}, ...,P, ..., P} in G and rational numbers Ay, ..., 2 Ay, ..., 23,
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o Ay e, AR S0 0 that
:sEm\.zn&.ax):_"c.:cf =1, ksj=1,...,1),
{
(i) S04 =1 (i=1,...k),
e
(i) 3- ik ey <1 (ecE),

i=1 j=t

if and only if for each curve D: [0, 1] R\ U...UT .
PR UL UV) with D{O
D(1) €bd(Z, U---UL,) we have 1 UV wi (0),

k
(11) ¢{G, D} 2 Y _min cr(C,, D).
=1
Eﬁ.n. for any path P in G and any edge ¢ of G, Nmﬁmv denotes the number
of times P passes ¢. ,
_As our “auxiliary theorem” we derive that under certain circumstances the

4] can be taken to be integral,

5~>Mwmw~>w< qﬂmﬂﬁmz. Let G = (V,E) ww a planar graph embedded in
\ 12+, be some of the faces of G (including the unbounded Jace),

andlet C,, ..., C, be curvesin R°\(I,U---UT) wi ints i
; ) . with end point Vv
bd(7,u---UL), so that _ ’ pomi i 0

{12) (i) each C, has only a finite number of self-intersections
and no self-crossings;
(i1) EQ_N two of the C, have only a finite number of inter-
_ sections and no crossings;
(iii) each vertex of G either has degree even and is no end
point of any C,, or has degree | and is an end point
of exactly one C;.

H}E.H there exist pairwise edge-disjoint and pairwise noncrossing paths P

P, in G, without self-crossings and not passing the same edge Sowm.m}.n.wm
once, so that w._ ~C for i =1,...,k, ifand only if for each curve
D: {0, 1] - R°\ ({4, U-- UL, UV} with D(0), D(1) € bd(J Uu---ul)
we have (11). _ ’

Ew% paths are called edge-disjoint if they do not have any edge in com-
mon.

PROOF. The “if” part is trivial, since for any D in question we have

k k
(13) (G, D) > 3" cr(F;, D) > 5 min cx(C,, D).

i=1 =1
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To see the “only if” part, suppose that (11) is satisfied for each curve D
in question. By the homotopic flow-cut theorem, there exist paths J.Lm in G
and rationals »w >0 (for i=1,...,k;j=1,...,1) satisfying (10). In
fact, as the \i can be written with one common denominator, say K, we
may assume that {, ==t =K and that each »“_. is equal to 1/K (this is
achieved by replacing each m__;. by X \& copies of wm_. ). Replacing each edge
of G by K parallel edges, we obtain a graph G’ = (V, E') and pairwise
edge-disjoint paths P!, ..., PX, ... Pl ..., P’ in G'. Clearly cach face
of & corresponds to a face of G, and we will use the same name for both
of them. In particular, /,, ..., f, are again faces of G .

CrLalM 1. We may assume that m._.gm and wu.‘ are noncrossing, if  # i

ProoF. Suppose we have chosen the paths P! Y eens w_ﬁ s0 that

R , )
(14) M MH MM {number of crossings of P/ and P )

=1 i'=i+1 j=1 j'=1

is as small as possible. We must show that this sum is 0. Indeed, suppose .vm.
and wm. have a crossing, where i # i As C, and C, have no crossings,
there exist x, x', v, ¥’ € [0, 1] so that (x, x') # (v, "), P/(x) = P/ (x)
and P/(y) = P} ('), so that both (x, x") and (v, y') give crossings, and so
that the x-y part of P/ is homotopic to the x'-y' part of P} (cf. [6]).
Exchanging these two parts decreases sum (14), contradicting its minimal-
ity, O ,

Clearly, we may assume moreover that no N.L. has null-homotopic parts.

Now in order to prove our auxiliary theorem we apply induction on the
number of edges of G plus the number of faces of G notin {f,..., ~_L .

Ifall Cp, ..., C, are homotepic trivial, the theorem is trivial. So assume
without loss of generality that C, is not homotopic trivial. Let e, ¢ bethe
first two edges of G passed by P . That is, w__ =(vy, €,v,,€,0,,a) for
some string o . We consider two cases.

Cast 1. Each of w___ ceey w_a passes ¢ as second edge. In this case no
other P/ can pass edge €' (by (11)(iii)). Now delete edges ¢ and ¢' from
G, add a new vertex w in the new face F' ue’ UF” (where F' and F
are the faces incident to ¢ (possibly F = F')), and add a new edge ¢”

connecting w and v, . Replace C; by (w, e”, v,, a). Replace C,, ..., C;
by wu_ yiees jﬂ_ , respectively. Replace {/,,..., mL by
Uy, DINF L, FHU{F U UF )\ (" vw)}.

We claim that condition (11) is maintained in the new sitnation. This fol-
lows from the fact that in the new situation there exists a “fractional™ pack-
ing of paths as in the homotopic flow-cut theorem: for each i =2, ..., %,
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j . L. o2
all 7/ are homotopic to P, in R\ (,U---UT UFuUe UF'); more-

over, Ho_. j H__, .-+, » K, we can write P/ = (vg,e,v,,¢,v,,a’) so that
(w,e",v,,a)~(w,e", vy, a).
1
CASE 2. Zo.~ each of w_ e m_a passes € as second edge. Without
_Mmm of Mﬂ%ﬁ.&:w. path P passes edge ¢” # ¢’ as second edge. Consider
the neighbourhood of v, , with ed
the 1> ges e, ..., e, and faces F,, ...
indicated: _ ‘ e fans
€4 Yo €2
®
™ L
” . .
(15) e"=¢; € =e
€1 . * €l
h ,
Soe=e¢,e=¢,e" =¢,and F,=F,e{l,...,L}. As P - (P! is
a homotopic trivial 1 7 : X
D ial cycle, we know F,,... , F,_, ¢ s e N.L.. Now let

1,,,=F . Weclaim

CrLamm 2. For each curve D: [0, 1] R\ (I U .
i N — ey I u v HH.-
Unov.b:umgﬁ_c:.cﬁiv we have I r4l ) wi

k
(16) (G, D) >3 min cr'(P, D),

i=1

where
: ? 1 . e e ~
min cr'(P; , D) := min{cr(P, D)\ ~ P/, D~ Din R*\(,,u- UL, )}.

; 1»W0m._ TM Q Wn the path from v, to v, following the boundary of
ace clockwise (cf. (15); so @ starts with ¢ d ith
! ; and end
o by oty : nds with ¢, ). For
(17)
i ._ pJ : /
R} = P! if £, uses one of the edges e, , ... , ¢, as second edge;

R =(v,, e, v if P/
(vg,€.7,Q.v,, B)  if P/ uses one of the edges e, |, ..., ¢, as

second edge, and E.H?o.m.e_:mw.
J 1 2 .
So Ry ~ P/ in R\ (Jyu---ul ) for j =1,...,K. Moreover, for

i=2,...kand j=1,..,K let R/ := P/ ByChim 1, R, ~ P! in
R /:_c.:cﬁiv,ﬁg i=2 ..,kand j=1,...,K. Now for each
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edge e of G:

I S
(18) @ S #Hx®ey<1  if e is not incident to Fy;

i=l j=1

k Ko

() YD _Ax(e)<2  ifeisincidentto K.

i=1 j=1
(The strict inequalities follow from the fact that the sum of those A] for
which J_ uses one of the edges e, ,..., ¢, a8 second edge is strictly less

than 1 (since m.__ uses e, as second edge).)

Now choose D: [0, 1) — R*\ (J;u--- UL, UV) with D(0}, D(1) €
bd(f,u---Ul,,,). We may assume that if D(z) € G, then D has a crossing
with G at z. This implies that DNbd(F,) = {D(0), D{1)} NbA(F).

If not both D(0) and D(1) belong to bd(F;) we have by (18):

k K
(19) or(G, D)= Y x"(e) > -1 +MN)3MMU§33

e€E ecE i=1 j=1

kK K i
—14+ 3 E Y (et

i=1 j=1 e€E

—1+ 3> 4 er(R], D)

i=1 j=I

Il

k
> ~1 +MBE nn‘ﬁﬂ_.bv.

i=1
[Here +P(e) denotes the number of times D intersects e .] Note that {19)
implies (16). If both D(0) and D(1) belong to bd(F,), then using {18) one

sirnilarly shows
k
(20) er(G, D) > -2+ MU min Q.;m._._ , Dy.

i=1

Now by condition (12)(iii},

k k
(21)  o{G,D)=_cr(P/, D)= min cr(P}, D) (mod 2),

=1 =l
since D(0) and D(1) belong to the boundary of the same face F . Now

(21) and (20} imply (16). O
So by induction there exist pairwise edge-disjoint and pairwise noncrossing

paths P, ..., P {(without self-crossing and not using the same edge more
than once), so that m EJ_ in HWN/:_ U Ud, 00, for i=1,..., k. This
implies P, ~ P ~ C, in R\ ({,u---UT,). O
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3. Lemma 1

. H:n first .bmn of .ﬁ.wﬁ proof of our theorem consists of showing that con-
&ﬂmo_..; MCE and (ii} are equivalent to the existence of a certain “graph-
disjoint” system of curves. This is the content of Lemma 1.

Let ¢ =(V,E) be m planar graph embedded in the plane EN_ and let
I, ..., ~u be some of its faces, including the unbounded face. With any

. 2 . .
curve C': [0, 1] - R® we can associate its Jace sequence

(22) (%05 9)

where each ¢ ; 15 & vertex, edge, or face of G, so that € starts in @, > next
passes e___ next ¢,, and so on, until it terminates in @,. {We consider
vertices ; i inci

also as a singleton set.) So ¢ ;-1 and ¢ ; are incident for j =

1,....t. (9 and ¢’ are called incident if ¢ # ¢’ and oUg’ is connected.)

Nowlet C,,...,C,: [0, I] - R? _

4 » k- 3 s ﬁ~ C...CN _U

face e . \(, ») be curves, where C, has
(23) (@i 90,)s
for [ = 1, o k. We nm‘: Cis..., C, graph-disjoint (with respect to
Gl ... 1) ifforall i,¢=1,...  k;j=1 t; =1 ty:

. e dpy T Rareeeadpn
{24) 3 9., =@y ifandonlyif i=/ and j =,

(i) ¢, wua ¢ » areincident if and only if i = /' and
l/i=-7l=1;

(i) if i=7 ms_.,_ |/ = j'| = 1 then each closed curve in
w@:.. Up,  is roBo.SEnm:w trivial in R*\ {(fu.--u
)

Condition (24)(iii) is meant to exclude, €.g., the following situations;

where the interrupted curve indicates a curve C ; and where the shaded region
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indicates one of the faces I, ..., ~n . However, the following is allowed:

(26)

It is easy to see that if each C, isacurvein G (i.e., no elementin (23} isa
face of G), then the conditions (24) amount to the C, forming a collection
of pairwise vertex-disjoint simple paths in G.

We show:
LEmMA 1. Let G = (V, E) be a planar graph, embedded in R, let
I, ..., 1, be some of its faces {including the unbounded face), andlet P, , ...,

P, be paths in G, each with end points on bd(I|U-- .CN_L . Then the following
are equivalent:

27 (a) conditions (1){i) and (ii) hold;
(b) there exists a graph-disjoint collection of curves C,, ..., C,
where C, ~ P, in EN/Q.C.:CNL Jori=1,...,k.

ProoF. I. To see (b) = (a) in (27),let C, ~ P,,...,C, ~ P, form a
graph-disjoint collection of curves. Then clearly, by (24)(i), there are simple
curves N._ ~Cp,, m.w ~ C, which are again graph-disjoint, and hence
they are disjoint. This shows (1)(i).

To derive (1)(ii), let D: [0, 1] — R’ \(Z;U---Ul}) be any curve, with
D(0), D(1) € bd(J, U---U 1)), and with face-sequence say (¥,,-... ¥},
so that cr(G, D) is finite. Then ¢r(G, D) = 4(t + 1). Moreover, we can
draw D so that, leaving its face-sequence and homotopy invariant, it only
intersects any C; if it is necessary; that is, D does not intersect any C; both
in w,_, andin ¥; (as y;_, and y, are incident, one of them being a face
of &). So

k
(28) ozqvbvuwf 1)2 Y min cr(C;, D),

i=1
and therefore (1)(ii} holds.

II. We next show the implication (a) = (b} in (27). To this end, we
construct from G an auxiliary graph G’ = (F', E’) as follows. Let ¢ > O
be so that & < 4|lv — w| for each two vertices v and w of G. For each
vertex v of G, remove from G all points in R, :={p € R:||lp - v|| < €}
and add the circle S, ;= {p € ﬁu_ [lp -~ v] = ¢}. Each vertex v thus gives
deg(v) new vertices, on S, . Next, for each edge ¢ of G, replace the part of
e left by two parallel edges. So, altogether, the neighbourhood of any vertex
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v (for example):

(29) becomes

Now if path P, starts in v € bd(J, U oose j = r so thal
ceuUr h = h

vebd(l). Za.ﬁ add, in the fa Ao_ € :ni.uku..uou mo:.n _uo_s_ ub. m. . 0 " d‘.Eoﬁ
fi , 1 e face of th h ¢ sponding to [, t

. ! M
new <o§oo.m_ v" andv” say, and connect them by edges, say e, and e, .
to some pointon S, \G. So ’ v

(30) becomes

W, .. . N
M. proceed similarly at the end point w of P, , yielding the vertices w' and
w" and mmmwm e, .m:a €,~ - Now replace P, by the curves P, and P” as
follows. P; is oﬂm_:na from P, by adding, at the beginning, a curve m,cn_: v
o v, m_..ﬂ mo__oﬁsm. €, and next passing R, and at the end, a curve from
w to w', first passing R, and next following e,,. Curve P is obtained
similarly from P, using v, e, w”,and ¢ . ) ~
We do this for each i =1, ..., k. This define ;
| =1, ..., k. This defines the graph & = (V' E'
together with the curves PP, ..., P, P/ . Let F' anuﬂﬁn the mwno .omwﬁvm
no.:.amno:a_zm,»o any face F of G. By condition (1){i) we know that there
existeurves C, ~ Py, C/' ~ P, ..., C, ~ P, Cf ~ P!’ (in R\(Z/U---UI))
' i . !
mn.. E.a q_m c,, s ..D“. C, satisfy conditions (12)(i) and (ii) Gomaa;ﬂ:
ipping v and v" in (30)). Clearly, also condition (12)(ii1) holds for G
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and C,C), ..., Cp, C/. Moreover, condition {1)(ii) implies
k k
(31) cr(G', D) 2 3 min er(C), D)+ ¥ min ex(C], D)

i=1 =1

for each curve D': [0, 1] — B2\ ({ju--- UL, U V") with D'(0), D'(1) €
bd(I H uU--uJ mv. Indeed, for each such D', we can “construct” the parts
of D' in R,. We obtain a curve D with cr(G', D) = 2c(G, D) and
min ¢r{C;, D'} < min cr(P;, D), min er(C)', D') < min er(P;, D) for i =
1,..., k. Hence by (1) (ii) we have (31).

So our auxiliary theorem gives us pairwise edge-disjoint and pairwise non-
crossing paths Q) ~ C, Q) ~ e, @~ Gy @ ~ v . Let R; and
R be the paths in G obtained from P/ and P by contracting G to G,
for i=1,..., k. Then foreach i =1, ..., k, the cycle R, Qﬁ.‘vl_ fol-
lows the boundary of a simply-connected subset S; of RA\{I NIy .C~L with
P(0), P(1) € S;, where S, is a union of faces, edges, and vertices. Let C,
be a “free-est possible” curve in S; connecting P,(0) and P(1}. This means
that if C,(z) is a vertex for some z, then there exist z', 2" e[0, 1] so that
C,(z) = Ri(z') = R/(z") and so that the 0- z' part of R, is homotopic to

the 0-z” part of R .

Obviously, the curves C,..., C, form the graph-disjoint system of
curves, with C, ~ P, for i=1,..., k . This finishes the proof of Lemma
1. O

4. Lemma 2

The second part of our proof consists of showing that the existence of a
graph-disjoint system of curves together with condition (1){iii} implies the
existence of a packing of paths as required by the theorem, which is the
content of Lemma 2. So together with Lemma 1 this implies our theorem.

A basic ingredient for the proof of Lemma 2 is the following weli-known
observation. (For sharpenings, see Deming 2], Sterboul {7], and Korach [5].)

ProposiTION. Let G = (V, E) be an undirected graph (loops allowed),
and let M C E be a perfect matching. Then G has a cocligue K with
|K| = Y\¥| if and only if G contains no cycle

(32) (Vgr €12 Uy s ee s €, 7))
where
(33) (i) v, = v, e; is an edge connecting the vertices u,_,
and v, (i=1,....1) and I is even;
(ii) €, 6y, €5,...._ €M and ey, e,, ..., ¢, § M;
(i) v, =v, and v,_| =, for some odd t.
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[Here a loop is considered as a singleton. A perfect matching is a set of Al
edges covering V' (so they are pairwise disjoint and nonloops). A coclique is
a set of vertices not containing any edge as subset.]

ProoF. I. To show the “only if” part, suppose G has a coclique X of size
11¥| and G contains a cycle (32) satisfying (33). Then for each edge in M
exactly one of its end points belongs to X . As ¥, = v, it follows that either
Vor ¥3,..., ¥, €K or Vs U3y ..., U, € K Since Yy=v and v, = v,_,
for some odd ¢, in both cases it follows that v, v, € K -— a contradiction
as e, connects v, and v, .

II. The “if” part is shown by induction on [¥i. Suppose G does not
contain any cycle (32) satisfying (33). Then no edge in M has at both of its
vertices a loop attached.

If for each edge in M, exactly one of its vertices has a loop attached, we
can choose for K the set of all vertices at which no loop is attached.

If there exists an edge €y € M so that at none of its vertices is there a
loop attached, let €, connect v and w, and define

(34) Vi=v\{v, w},
S(v):={v eV |{v,v'} e £},
S(w):={w € V'i{w, w'} € E},

E':={eeEleCVIu{{, wi cdw), v e S(w)},
M =M\ {e,}.
One easily checks that graph G’ = (V', E'), with perfect matching M,
again has no cycle (32) satisfying (33). Hence, by induction, ¢' contains
a coclique X' of size §|V’'|. Then 6(v)nK' = & or Sw)NK =@ (as
{v', w'} € E' foreach v’ € §(v) and w' € d(w)}. So K'U{v} or K'U{w)
is a coclique of size §|V| in G. O
We derive from this:

LEMMA 2. Let G=(V , E) bea planar graph embedded in R? | let I....,
I, be some of its faces (including the unbounded Jace), andlet P, ..., P, be
paths in G, each with end points on bd{f, U--- UL)}. Suppose there exists a
graph-disjoint system of curves C \~ P Gy~ Pl (1)) holds, then
there exist pairwise vertex-disjoint simple paths m_ ~P, ., mn ~F in G,

Proor. From Ci,...,C, and G we construct an auxiliary graph G' =
(V', E'), with a perfect matching M , as follows. For i=1,...,k,let
have face sequence

(35) (Pi0r e s 8, )

If ¢, ; 1s a face of G, it is divided by curve C, into two open parts, say
¢; ; and ¢; ;. Place in each of these parts a point, called v, ; and v’ ;e
All these points {forall i=1, ... Sk, =1, .., , ; with ?: a face of G)

form the vertex set V' of .
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Let each pair v T v, ; be connected by an edge, drawn in ¢, ; intersect-

ing C. once. These edges form the perfect matching M in G'. Moreover,
i

. r L o}
vertices cw. ; and ew ;., of & are connected by an edge if:

(36) (i) i # i and there exists a vertex y of  contained
both in Smg.. and in .ﬁm;; or

(ii) i = i, and there exists a vertex ¥ of G contained

both in ¢7 ; and in ew:.; , 50 that there is a closed

. e . 2
curve K, not homotopic trivial ina R™\(J,U---Ul,),
with face sequence (¥, ¢; ., ..., 9, », ).

e d = .
Note that {ii) yieldsaloopin &' if i=/", j=j, a=f,and 9] ; contains
. . 3
a closed curve not being homotopic trivial in R*\ {/;U-.-U ~L~.
In fact, each edge e of G' can be represented by a curve in R” connecting
’ . . . . a . o u..u
e_.p:. and ,Fm:_,_. If { #{, it starts in ﬂ_.:_; moves _w_ ¢, ; tovertex y as
(36)(1), and next moves in ew:.,_ to v .. If i=1,we can make the curve
e so that

(37) the closed curve formed by
e the curve e, ) . -
e the edge in M connecting v and Ui s until its
crossing with C,, ) } o
o the edge in M connecting v; » and v; . until 1ts
crossing with C,, .
s the part of C, between these two cdges in M

is not homotopic trivial in R*\ (/, U---UL).

This defines graph G’ = (V', E’), with perfect matching M , nE.vaaana in
_wu, possibly with crossings. Each edge in M intersects the union of the
curves C, exactly once and does not intersect G. The edges notin M do
not cross any C; and intersect G exactly once. .

Now if G’ has a coclique K of size w_-\_‘ then for each 7, j exactly

one of the two vertices v, , and v, belongs to K. Hence for each i =
l,...,k:
B . I
(38) o the part of the boundary of ¢, , notin C,,if v; ; €
N w . . "
o the part of the boundary of ¢; ; notin C,,if v/ €
K;
o the edges and vertices among ¢, ,, ..., 7
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contain a simple path P, ~P —insucha way that P v o-+, P, are pairwise
vertex-disjoint. So in this case we are at the required _oounEmmw:.
,_,_._n_..a»dnn. assume Q\\ has no coclique of size }/V’|. By the proposition
Wwoﬁw um MM&.MMWMMMH Mmm_“” _M wﬂown omww satisfying (33). As MQ.\ is drawn in
, ed curve D: S, — R*. Let D, and
D, be the closed curves corresponding to parts _ _

(39) ﬁeavm_.et:.vm:eb and ?tm:_,ent..:,mteb

of (32). So D can be written as D -D,.

We show that D, and D, give a contradiction to condition (1}{iii}. First
:wa that D (1) = D,(1) = v, does not belong to G, as v, is a vertex of
G . m. D, or D, passes vertex v of G » then no curve C, passes v. So
conditions (a) and (b) in (1)(iii) are fulfilled, ~ .

Now, cr(G, D) is equal to the number of & for which €, in (32} does not

- X -
belong to A/, while 2o cr(C,, D) is equal to the number of % for which
€, belongs to Af. Hence

1 k
(40) (G, D)= 1/ and Mﬁﬁ., D)= %.
Simiiarly,
. 1 £
(41) (1) er(G, D, HMQIC and MUQ.AD.UVHWQ+:“

i=tI

N I X
(ii) QAQ.UNVHMQI__+: and MUQ.AD..UN HWQJHIC.
i=1
In particular, by (7), cr(G, D)) # Mwu_awu cr(P,, D;) (mod 2) and

(G, D K mi : iti i
- M,EE_%&M 2. min cr(P;, D,) (mod 2). So also condition (c) in (1)(iii)
Now (40) contradicts (1)(11i) when we have proved

(42) nlﬂ..bvna_.nn_.ﬁﬁ,bv fori=1,. . k.

Zm.i min cr(P,, D) = min cr(C,, D} as P, ~ C,. By the results of [6], if
E:M wwat D) < cr(C,, D), there exist g,h €2 sothat (taking indices
mo :

(43) (iy g<h,
(i) C; intersects e, and ¢, ,
{iii) the part of C; between €, and e, is homotopic to
h
the part Qw, Ugr € (s Vgysens €4y, v_y,e,) of

p'-¢
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(where D"% s the closed curve going h — g times around D). Actually,
we begin and end the parts mentioned in (iii} at the crossing points of e,
and ¢, with C,.

We may assume that we have chosen i, g, k so that £ — g is as small
as possible. Note that # — g is even. If 5 — g = 2 we are in contradiction
with (37). If h— g > 2, consider the edge €pr0+ AS €,,, € M, there exists
an { so that €., crosses C, (possibly i="). Since the e,-¢, part of C,
together with (e_, Ugs€ppys Vpyrsors €y, Uy, €,) forms a homotopic
trivial cycle, since C;; does not cross C; and since both end points of C,
are at one of the faces 7, ..., 1,, there exists an B sothat g+2<H <h,
so that € crosses €,s and so that the €,.2°€, Dart of €, is homotopic 10
{€g425 Vgyas --s @y Uy_y» €y). As B’ —(g+2) < h— g, this contradicts
the minimality of 4 — g,

This completes the proof of Lemma 2. ©

This completes the proof of our theorem. O

REMARK, Note that we in fact proved in Lemma 2 that (if there exists
a graph-disjoint set of curves C, ~ P, ..., C, ~ P,) there exist pairwise
vertex-disjoint simple paths m_ ~P, ., mﬂ ~ P, in G, if and only if the
graph ' constructed in the proof has a coclique of size W:\_ ;

5. Polynomial-time solvability

It is not directly clear that our theorem gives a “good characterization” for
the problem:

(44) given: — a planar graph G = (V, E), embedded in R,
-—faces I, ..., i, of G (including the unbounded
face),
— paths P,..., P, in G, each with end points

on _UQAbCCNEVv
find: paths P, ..., P in G so that P, ~ P in

w;:_c:.ci for i=1,...,k

(i.e., that our theorem implies that the decision version of {44} belongs to
AP Mco-#F) . We show in this section that problem (44) in fact is solvable
in polynomial time (i.e., that {44) belongs to & ).

We describe a “brute force” polynomial-time method. We do not aim at
designing a most efficient algorithm, but rather at giving an existence proof
of a polynomial-time method.

We first show that there exists a polynomial-time algorithm for the



154 A. FRANK AND A. SCHRIJVER

following shortest homotopic path problem:

(45) given: — a planar graph G = (V, E) embedded in R?,
— faces I, \u of G (including the unbounded
face),
—apath P in @,

— a “length” function /: E — Z,;
find: apath P in G with P~ P in R\ (1, U---UL) of
shortest length. g

[The W;.w% of a path P is the sum of the lengths of the edges passed by P,
counting any edge as often as it is traversed by P.]

PrOPOSITION 1. Problem (45) is solvable in polynomial time,

_uwoom. For each pair ¢, j e {1, .., » P} determine a path Qc. in G, con-
doowum bd{f,) and bd(;), of shortest length. Determine a spanning tree T
In the complete graph on {I, ..., p} of shortest len i j

U gth, where length(;j) :=
F:%EQ:U . Bt

We may assume that if {i, j} and {7, 7'} belong to T, then Q,; and

Q..c.,, do not cross. Otherwise we could replace {i, j}, {7, j'} either by
. “ - s . “ - . . .

{i, i YA Py orby (i, '}, {7, i}, without increasing the length of the

spanning tree.

. To facilitate our description, we “double” each path @, with {i, jleT
in the following way: N

{46) I becomes

1
Let ¢, and Qu denote the two copies of Q,; - Let M;; be the matching
consisting of the “new” edges connecting @', and 0" . Let h i
have length 0. v G- Fach edee in Mo
Without loss ow generality, our original graph G is of this form. Let &'
be the graph obtained by deleting all edges in all \Sc. for {{,j}eT. So

each circuit in G’ is homotopic trivial in R \([,u---UL).
Now the homotopy class of any path R in ¢ can ,cM encoded as fol-
lows. If R = (v, €L, 8,0,), we delete from this string the ele-

ments v,, ..., v,_, and those e, which do not belong to Ui syer M-
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e, € M, forsome {i, j} €T, then

I

. . !
(47) we replace e, by M, if v, € 0;; and v, € @, and

—t. T ’
we replace e, by M, if v, , € @ and v, € ;.

Let us call the string thus obtained the kometopy string of R. An example
is as follows:

-1 -1 —1
AL.MV A‘c_cuk_uu._:uw uguq ugwuugu..: guq .Q__v.

Clearly, this homotopy string determines the homotopy of the path R in
R’ N U 1,). Moreover, deleting (repeatedly) any pair of successive

symbols A, E_m_ or ?n.w_ » M, , we are left with a string uniquely deter-
mined by the homotopy of R. Let us call this string the reduced homotopy
string of R.

Let our input path P have reduced homotopy string (v, «,, ..., @, w),
where a,,..., o, € {M;|{i, j} € TYU{M;'|{i, j} € T}. Now make a
graph H as follows. First make ¢+ 1 copies of &', numbered 0,1, ...,¢.
Next, for b = 1,...,¢,if @, = M,, connect @ in the (k — 1)th copy

of G' by a matching (similar to M,;) to Q; in the hth copy of G'. If

Q._.H \ﬁm_ connect Q) in the (k- 1)th copy of G' by a similar matching
to @r in the Ath copy of G'.

The length function / on G can be “lifted” to the edges of H in the
obvious way. Let R be a shortest path in H from vertex v in the Oth copy
of G’ to vertex w in the th copy of G'. Let P be the “projection” of R
to G. We claim that P is a shortest path homotopic to P.

Indeed, let P’ be a shortest path in G homotopic to P. Let P’ have

homotopy string (v, f,,..., f,, w). We may assume that no pair of suc-
cessive elements in this string is equal to M, Em_“ if M, \ﬁm_ oc-
curs, we can replace the corresponding part of P° by a subpath of @v
without increasing the length of P’ (as Qn ; is a shortest path) and with-
out changing the homotopy of P’ (as circuits in G’ are homotopic triv-
ial). Similarly, we may assume that no two successive elements are equal
to M', M, . But then P’ is the projection of some path R’ in H con-
necting v in the Oth copy of G' with w in the 7th copy of G'. Hence
length{ P') = length(R') > length(R) = length(P). O

Note that the algorithm described also shows that a shortest path P~P
can be taken so that no edge is passed more than p .- m times, where m is
the number of edges in P (as the reduced homotopy string of P has at most
p-m elements).

We next show that there exists a polynomial-time algorithm for the
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following problem (characterized in our “auxiliary theorem™):

(49 given: — a planar graph G = (V, E), embedded in _wui
—faces [, ..., I, of G (including the unbounded
face),

—curves C,, ..., C,, satisfying (12),

Jind: pairwise edge-disjoint and pairwise noncrossing paths
P ~C,..., B ~C, in G, without self-crossings
and not using the same edge more than once.

PROPOSITION 2. There exists a polynomial-time algorithm for problem (49).

ProoF. 1. We first show that we can decide in polynomial time if paths
P,..., P, exist. In Section 2 above we saw that the existence of these
paths is equivalent to the existence of a fractional packing of paths as in
the “homotopic flow-cut theorem.” This last is equivalent to the fact that

the vector (1,...,1;1,..., 1) € R* x RF belongs to the convex cone X
generated by the following vectors:
(50)  Gy(e:x")  (i=1,...,k; Popathin G with P ~ C)s

(i) 0;e,) (ecE).

Here ¢; denotes the ith unit vector in RF and ¢, denotes the eth unit vector
in R . Now by the ellipsoid method {see Girotschel, Lovdsz, and Schrijver

{4]), membership of (1,...,1:1,... » 1) 10 K can be tested in polynomial
time, if for any vector {(d; /) e @» x QF we can test in polynomial time if
(51) d; Dx; )" 20

forevery vector (x; y) € K. Thisis equivalent to testing if (4 ; Nix; Eq =0
for every (x;y) among (50). This last can be done by first testing if / is
nonnegative, and if so, by testing, forcach i =1,...,k% separately, if the
minimum length of a path in G homotopic to C, is at least —d.. This can
be done in polynomial time by Proposition 1.

II. We next show that one actually can find the paths P, ..., B, if they
exist. Consider a vertex v of G of degree at least 4, and “try to” split off
two adjacent edges incident to v . That is,

)
(32)

becormes F

€
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For the new situation, we test if paths P,, ..., P, as required exist, where if
F, or F; occursin {I,, ..., NL , wereplace itby F (see (52)). (If some C,

would traverse F we can reroute around the boundary of F.) This testing
can be done in polynomial time by I above. If these paths exist, we replace
G by the new graph. If not, we leave G ::&._muwna.m

We do this for each such pair. After at most |E|" iterations, we have a
graph in which no more split-offs of such pairs can be performed.

Next for any vertex v of degree at least 6, and any ¢riple of edges ¢, 1€ €
incident to v (where e, and e, are adjacent and e, and e, are adjacent),
we try to perform a split-off as follows;

€y €y
€3 €y
(53) &2 v : becomes e
€ [
€1 ey
Again, for the new situation we test if paths P, ..., P, as required exist

{with I above). If so, we replace G by the new graph. If not, we leave G
unchanged. .. .

We do this for each such triple. After at most |E[° iterations, we have a
graph in which no more split-offs of such triples can be noa..o_.aon.

As the final graph G contains paths P, , ..., P, as required, each vertex
v of G has degree at most 4, For suppose vertex v has degree at least 6. If
no path P, uses vertex v, we can split off a pair as in (52). Mo at _nmm..ﬂ one .m_.
uses vertex v, Suppose J contains ..., €,v,8,... > c.mz..m notation as in
(53). Suppose, moreover, we have chosen P, and the indices A.&. €y 8y
50 that ¢ is as small as possible, If ¢t =2 or ¢ = 3 we could split off 2 pair or
a triple — a contradiction. If ¢ > 4, then by the minimality o.m ¢t the nnmmm
e, and e, are not used by any P;. Hence we could have split off the pair
€, e, from v -~ a contradiction.

This shows that each vertex of our final graph has degree 1, 2, or 4. One
similarly shows that if one of the paths P, passes a vertex v of degree 4,
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then it either uses e, and ¢, or ¢, and e,, using notation given in

€2
(54) € Lﬁ( 3
€4
So from our final graph we uniquely determine the paths P, ..., P . This

directly yields paths as required in the original graph. O

We derive that the problem discussed in Section 3 is solvable in polynomial
time;

(53) given: -— a planar graph G = (V, E), embedded in R?,
— faces I,..., \u of G (including the unbounded
face),

—paths P, ..., P, in @, each with end points in
bd(/, U---ul),
Jfind: a graph-disjoint collection of curves C, ~ P, ...
C,~P,.

3

PROPOSITION 3. There exists a polynomial-time algorithm for problem (55).

PrOOF. We describe a polynomial-time algorithm. Given input as in
{55), construct the graph ' as in the proof of Lemma 1. By Proposi-
tion 2, we can find, in polynomial time, paths 0.0, ...,0, Q, as in
the proof of Lemma 1. Now by contracting G' to &, we obtain paths
P,P,... P, P, . From each pair P!, P it is not difficult (by following
the faces, edges, and vertices at one side of m, ) to identify the face sequence
of the curve C,;, and hence to find C, itself. DO

Finally we show that our main problem is solvable in polynomial time.

ProPOSITION 4. There exists a polynomial-time algorithm for problem (44).

PROGF. We describe a polynomial-time algorithm. Let input as in (44)
be given. First find output as in (55) if it exists (with the algorithm of
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iti i i ither does output as in (44). If

Proposition 3). If it does not exist, then neit .
it does exist, construct the graph G' = (¥', E') as in the proof of Lemma
2, together with the perfect matching Af. 2@2 the o.ﬁmnmsam o.». E:,:m as
required is equivalent to the existence of a coclique of size M_H\. jin G ?.on
the Remark at the end of Section 4). Now this last can be tested in polynomial
time -— it is a special case of the 2-satisfiability problem (see Cook [1] and
Even, Itai, and Shamir [3]).

Again by a splitting technique as in {52) we can actually find the paths P,
as required. O o

Note that, although our algorithm for (44) uses the .nz.vmﬁ.:a EQ_.z..,a as
a subroutine, the final algorithm is “strongly” polynomial: since the p.snc_
of (44) does not contain numbers, polynomiality and strong polynomiality
coincide.

6. Two examples

It can be shown that the class of curves D in condition ::5. can be
restricted to curves of a simpler type. As an illustration, we close this paper
with two examples showing that the closed curves D, and D, can be rather
complicated. . . .

In both examples, only one simple path of given 50.3083 is required,
namely that of the straight vertical line connecting vertices v and w. The
shaded areas indicate the facesin 7, ..., b. .

Qur first example:

(56}
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Our second example:

(57)

In both examples, conditions ( 1)(i} and (ii) are satisfied, but there exist closed
curves D, and D, violating (1)(iii). Curve D, is indicated by an interrupted
curve (where the solid point indicates D (1)), while curve D, arises by
reflecting D, into the straight line segment T,

NoTE. In [7] a combinatorial polynomial-time algorithm for the problem
discussed in this paper is given. Moreover, an extension to disjoint homotopic
trees is described.
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