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A quick proof for the cactus representation of

mincuts

Tamás Fleiner? and András Frank??

Abstract

A short and simple proof is given for an elegant theorem of E.A. Dinits,
A.V. Karzanov and M.V. Lomonosov on representing all of the minimum cuts
of an undirected graph by a cactus, a graph built up from edge-disjoint circuits
in a tree-like manner.
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Let G = (V, E) be a connected graph. For a subset ∅ ⊂ X ⊂ V of nodes, the set
∆(X) of edges connecting X and V − X is called a cut while X and V − X are the
shores of the cut. An easy exercise shows that in a connected graph a cut uniquely
determines its shores, that is, if ∆(X) = ∆(Y ), then X = Y or X = V − Y . A cut
is a star-cut if one of its shores consists of a single node. Otherwise the cut is called
proper. The degree of X is defined by d(X) := |∆(X)|. For two subsets X, Y of nodes,
d(X, Y ) denotes the number of edges connecting X−Y and Y −X while d̄(X, Y ) is the
number of edges connecting X ∩Y and V − (X ∪Y ), that is, d̄(X, Y ) = d(V −X, Y ).
In particular, d(x, y) denotes the number of parallel xy-edges for two distinct nodes
x and y where an edge is called an xy-edge if its end-nodes are x and y. Two subsets
X and Y of nodes are called crossing if none of X − Y, Y −X, X ∩ Y, V − (X ∪ Y )
is empty. Two cuts ∆(X) and ∆(Y ) are crossing if X and Y are crossing.

For a positive integer k, G = (V, E) is called k-edge-connected if every cut of G
contains at least k edges. We call a cut of a k-edge-connected graph G a mincut if it
has exactly k edges. A subset T ⊂ V is tight if d(T ) = k. A proper tight set is one
for which |T | 6= 1 6= |V − T |, that is, (proper) tight sets are the shores of (proper)
mincuts. A tight set is said to cross another tight set if they are crossing. A mincut
∆(X) crosses another mincut ∆(Y ) if X crosses Y . A family F of sets is cross-free if
no two members of F cross each other.
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ogy and Economics, Magyar Tudósok körútja 2, Budapest, H-1117. fleiner@cs.bme.hu Re-
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Proposition 1. Let G = (V, E) be a k-edge-connected graph. If X and Y are two

crossing tight sets, then each of X − Y, Y − X, X ∩ Y, X ∪ Y is tight. Moreover,

d(X, Y ) = 0 = d̄(X, Y ).

Proof. It follows from

k + k = d(X) + d(Y ) = d(X ∩ Y ) + d(X ∪ Y ) + 2d(X, Y ) ≥ k + k + 2d(X, Y )

that d(X ∩ Y ) = k, d(X ∪ Y ) = k, and d(X, Y ) = 0. Similarly,

k + k = d(X) + d(Y ) = d(X − Y ) + d(Y − X) + 2d̄(X, Y ) ≥ k + k + 2d̄(X, Y )

implies that d(X − Y ) = k, d(Y − X) = k, and d̄(X, Y ) = 0.

Lemma 2. Let k ≥ 1 be an integer. Let G = (V, E) be a k-edge-connected graph

in which there is a proper mincut and every proper mincut is crossed by some proper

mincut. Then k is even and G arises from a circuit by replacing each edge with k/2
parallel edges.

Proof. By the assumption, there are two crossing tight sets X and Y . Then d̄(X, Y ) =
0 implies that k = d(X ∩ Y ) = d(X − Y, X ∩ Y ) + d(Y − X, X ∩ Y ). If k were odd,
then the two summands could not be equal. We may assume that d(X −Y, X ∩Y ) >
d(Y −X, X∩Y ) but then k = d(X) = d(X−Y )−d(X−Y, X∩Y )+d(Y −X, X∩Y ) < k,
a contradiction. Therefore k is even.

Since the complement of a tight set is also tight, the hypothesis implies that

for any proper tight set T and for any node v ∈ V , (1)

there is a tight set crossing T and containing v.

Claim 3. The degree of every node of G is k.

Proof. Suppose indirectly that d(v) > k for a node v. Consider a minimal proper
tight set T containing v. By (1), there is a tight set X crossing T which contains v.
But then T ∩X is tight by Proposition 1 and hence |T ∩X| ≥ 2 by d(v) > k and this
contradicts the minimality of T .

Claim 4. If T = {x, y} is a tight set, then the number d(x, y) of parallel xy-edges is

k/2.

Proof. k = d(T ) = d(x)+d(y)−2d(x, y) = k+k−2d(x, y), that is, d(x, y) = k/2.

Claim 5. Let v be a node and T a proper tight set containing v. Then T includes a

two-element tight set containing v.

Proof. Induction on the cardinality of |T |. As T itself will do if |T | = 2, we assume
that |T | ≥ 3. By (1), there is a tight set X crossing T and containing v. Then T ∩X
is also tight and in case |T ∩ X| ≥ 2 we are done by induction. Suppose now that
T ∩ X = {v}. By Proposition 1, T ′ := T − X (= T − v) is a proper tight set. By
(1), there is a proper tight set X ′ crossing T ′ and containing v. Then either X ′ ⊂ T
or else X ′ and T are crossing. In both cases, T ∩ X ′ is tight and |T | > |T ∩ X ′| ≥ 2
from which we are done again by induction.
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Claim 6. For every node v, there are two two-element tight sets containing v.

Proof. It follows from Claim 5 that there is a two-element tight set T1 = {v, x}. By
(1), there is a tight set T ′ crossing T1 that contains v. A second application of Claim
5 (with T ′ in place of T ) implies that there is a two-element tight subset T2 of T ′

which contains v, and this differs from T1.

Suppose that {v, x} and {v, y} are tight sets. Since there are exactly k/2 parallel
vx-edges and k/2 parallel vy-edges, we conclude that every node v of G has exactly
two distinct neighbours. As G is connected, it arises from a circuit by replacing each
edge with k/2 parallel copies.

Figure 1: A cactus graph

We call a loopless and 2-edge-connected graph C =
(U, F ) a cactus if each edge belongs to exactly one
circuit. This is equivalent to saying that all blocks are
circuits (allowing two-element circuits). For example,
a cactus may be obtained by duplicating each edge of
a tree. A more general cactus is shown in figure 1.

Note that the mincuts of a cactus C are exactly
those pairs of edges which belong to the same circuit
of C. The following result states that the mincuts
of an arbitrary graph have the same structure as the
mincuts of a cactus. For algorithmic aspects and re-
lated results, see [4].

Theorem 7 (Dinits, Karzanov, and Lomonosov, [1]). Let k ≥ 1 be an integer and

G = (V, E) a loopless graph for which the minimum cardinality of a cut is k. There

is a cactus C = (U, F ) and a mapping ϕ : V → U so that the preimages ϕ−1(U1) and

ϕ−1(U2) are the two shores of a mincut of G for every 2-element cut of C with shores

U1 and U2. Moreover, every mincut of G arises this way. Concisely: X is a tight set

of G if and only if ϕ(X) is a tight set of C.

u

w

v

y

Φ(v)

z

x

φ−1(u) = {x, y, z} φ−1(w) = ∅

Figure 2: A graph and the cactus of its mincuts.

Proof. We use induction on |V |. As the theorem is trivial when |V | ≤ 2, we assume
that |V | ≥ 3.

Suppose first that each mincut is a star-cut and let v1, . . . , vh denote the nodes of
degree k. Let U = {u0, u1, . . . uh} be the node-set of cactus C in which u0 and ui are
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connected by two parallel edges for each i = 1, . . . , h. Let ϕ : V → U be defined by
ϕ(vi) = ui for i = 1, . . . , h and ϕ(v) = u0 for v ∈ V − {v1, . . . , vh}. Then C and ϕ
satisfy the requirements of the theorem.

Suppose now that there is a proper mincut, so |V | ≥ 4. If every proper mincut is
crossed by a mincut, then the theorem immediately follows from Lemma 2. Therefore
we may assume that there is a mincut B with shores V1 and V2 which is not crossed
by any other mincut.

For j = 1, 2, let Gj denote the graph arising from G by shrinking Vj into a single new
node vj in the sense that Vj is replaced by vj so that there are as many parallel uvj-
edges in Gj as the number of edges in G connecting Vj and u for every node u ∈ V −Vj .
By induction, the mincuts of Gj can be represented by a cactus Cj = (Uj, Fj) and a
mapping ϕj. We assume that U1 and U2 are disjoint. Since dGj

(vj) = k, the node
uj := ϕj(vj) is of degree 2 in Cj and there is no other node v of Gj with ϕj(v) = uj.

Let C = (U, F ) be a cactus arising from C1 and C2 by identifying u1 and u2. Define
ϕ : V → U by ϕ(v) := ϕ1(v) if v ∈ V2 and ϕ(v) := ϕ2(v) if v ∈ V1. Since no mincut
crosses B, each mincut of G is either a mincut of G1 or a mincut of G2 and hence C
and ϕ provide the requested representation of the mincuts of G.

Remark 1. The proof of Theorem 7 extends to the capacitated version of the
theorem word by word. In this case a strictly positive capacity function g : V → R+

is given on the edge set E and k denotes the minimum total capacity of a cut.
Remark 2. In the uncapacitated case the situation is much simpler when k is odd,
since then no two mincuts may cross each other. Therefore Theorem 7 transforms
into the following simplified form.

Corollary 8. If the minimum cardinality k of a cut of G is odd, then there is a tree

H = (U, F ) along with a map ϕ : V → U so that the mincuts of G and the edges of H
are in a one-to-one correspondence: for every edge e ∈ F , the pre-images of the two

components of H − e are the shores of the corresponding mincut.

Actually, one does not really need here Theorem 7 since the Corollary follows di-
rectly from the well-known and easy property that every cross-free family can be
represented by a tree.
Remark 3. Dinits and Vainshtein extended Theorem 7, as follows. Let G = (V, E)
be a graph with a terminal set S ⊆ V of at least two elements. We say that a cut B of
G separates S if both shores of B intersects S. Suppose that the minimum cardinality
of a cut separating S is k. A subset ∅ ⊂ T ⊂ S is S-tight if there is a subset X ⊂ V
for which d(X) = k and T = S ∩ X.

Theorem 9 (Dinits and Vainshtein, [2]). The S-tight sets admit a cactus representa-

tion.

The proof of Theorem 9 is an easy extension of that of Theorem 7.
Note that the family of all minimum cuts separating S cannot be represented by

a cactus if |S| = 2 since the number of minimum cuts separating nodes s and t may
be exponential in |V | while the number of cuts represented by a cactus is always less
than |V |2.
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