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To the memory of C. St. J. A. Nash-Williams and W. T. Tutte who contributed
to the area with fundamental results.

In this work extensions and variations of the notion of edge-connectivity of
undirected graphs, directed graphs, and hypergraphs will be considered. We show
how classical results concerning orientations and connectivity augmentations may
be formulated in this more general setting.

1. INTRODUCTION

A digraph D = (V, E) is called strongly connected if there is a directed
path from every node to every other node. By an easy exercise, this is
equivalent to requiring that pp(X) > 1 for every proper non-empty subset
X of V, where pp(X), the indegree of X, denotes the number of edges
entering X. An undirected graph, (in short, a graph) G = (V, E} is called
2-edge-connected if there are two edge-disjoint paths from every node to
every other. It is not difficult to show that this is equivalent fo requiring
that da(X) > 2 for every proper non-empty subset X of V, where dg (X7},
the degree of X, denotes the number of edges connecting X and V — X.

*The work was started while the author visited the Institute for Discrete Mathematics,
University of Bonn, July, 2000. Supported by the Hungarian National Foundation for
Scientific Research, OTKA T037547,
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The prototypes of theorems we are interested in concern strong-connectivity
and 2-edge-connectivity.

1. Augmentation [K. P. Eswaran and R. E. Tarjan] [12]. A digraph can

be made strongly connected by adding at most v new edges if and only if

there are no v + 1 disjoint sink-sets (:strongly-connected components with
no leaving edges) and there are no v + 1 disjoint source-sets (:strongly-
connected components with no entering edges). A connected undirected
graph can be made 2-edge-connected by adding at most v new edges if and
only if the number of ‘leaves’ is at most 2+, where a leaf is a minimal subset
X with dg(X) = 1.

2. Orientation [H. E. Robbins| [52]. An undirected graph has a strongly
connected orientation if and only if it is 2-edge-connected.

3. Constructive characterization [folklore]. A digraph is strongly con-
nected if and only if it can be built from a node by the following two opera-
tions: (i) add a new directed edge connecting existing nodes, (ii) subdivide
an existing edge by a new node. A graph is 2-edge-connected if and only if it
can be built from a node by the following two operations: (i) add a new edge
connecting existing nodes, (ii) subdivide an existing edge by a new node.
In both cases the two operations may be included into one: add a path (di-
rected, in case of digraphs) connecting two existing nodes (which may be
equal), an operation called adding an ear. Therefore these theorems are
often formulated in the form: a graph is 2-edge-connected or a digraph is
strongly connected if and only if it can be built from a node by adding ears.
The sequence of ears in such a construction is called an ear-decomposition
of the (2-edge-connected) graph or (strongly connected) digraph. Moreover,
such an ear-decomposition exists if the initial (di)graph is an arbitrary 2-
edge-connected (respectively, strongly connected) sub(di)graph.

We survey these types of results concerning higher edge-connection.
Here the word ‘edge-connection’ is used in its informal meaning to describe
the intuitive notion of a graph G = (V, E) or a digraph D = {V, A) being
‘pretty much connected by edges’. To capture this idea formally, there are
(at least) two distinct approaches, and both of them admit several versions.

The first approach requires the (di}graph to be not dismantleable into
smaller parts by leaving out only few edges. Here are four possible defini-
tions to make this intuition formal.
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(A1) A graph G = (V, E) is k-edge-connected if discarding less than
k edges leaves a connected graph. (This is easily seen to be equivalent to
requiring dg(X) > k whenever § C X C V)

(A2) A digraph D = (V, A) is k-edge-connected if discarding less
than k edges leaves a strongly connected digraph. (This is easily seen to
be equivalent to requiring op(X) > k whenever 0 ¢ X C V) For k = 1,
k-edge-connectivity is just strong-connectivity.

(A3) G is k-partition-connected if discarding less than kg edges
leaves a graph with at most g connected components for every ¢ = 1,2,...,
[V]|—1. Equivalently, there are at least kq edges connecting distinct parts for
every partition of V into ¢+ 1 non-empty parts for every ¢, 1 < ¢ < Vi—-1.
Note that for k = 1, partition-connectivity is equivalent to connectivity.

(A4) D is rooted k-edge-connected if there is a root-node s so that
after discarding less than k edges every node keeps to be reachable from s.
(This is easily seen to be equivalent to requiring o p(X) > k for every non-
empty subset X of V - s).

The second possible approach to capture the notion of high edge-
connection is requiring the graph or digraph to contain several edge-disjoint
‘simple’ connected constituents. Here are four possibilities.

(B1) In G there are k edge-disjoint paths between every pair u, v of
nodes.

(B2) In D there are k edge-disjoint directed paths from every node to
every other. :

(B3) G contains k edge-disjoint spanning trees (in which case G is
called k-tree-connected).

(B4) D contains a node s so that there are k edge-disjoint spanning
arborescences rooted at s.

Some basic results of graph theory asserts the equivalence of the cor-
responding definitions. Namely, by the edge-versions of Menger's theorem
[15], the definitions (A1) and (B1) [resp., (A2) and (B2)] are equivalent:

Theorem 1.1 (Menger). An undirected graph is k-edge-connected if and
only if there are k edge-disjoint paths between every pair of nodes. A
digraph is k-edge-connected if and only if there are k edge-disjoint paths
from every node to every other.

The equivalence of (A3) and (B3) was proved by W. T. Tutte [56].
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Theorem 1.2 (Tutte). A graph contains k edge-disjoint spanning trees
if and only if, for every partition {Vi,...,Vi} of V, the number of edges
connecting distinct parts is at least k(t — 1).

Finally, the equivalence of definitions (A4} and (B4) was proved by
J. Edmonds [9].

Theorem 1.3 (Edmonds). A digraph D contains k edge-disjoint spanning
arborescences rooted at s if and only if gp(X) > k for every non-empty
subset X of V — s,

We extend these notions even further. For non-negative integers [ < &,
a digraph D is (k,1)-edge-connected if D has a node s so that there are &
edge-disjoint paths from s to every other node and there are [ edge-disjoint
paths from every node to s. Equivalently, the digraph is {-edge-connected
and rooted k-edge-connected. Note that D is {k, k)-edge-connected exactly
if D is k-edge-connected, and (k, 0)-edge-connectivity is equivalent to rooted
k-edge-connectivity. We also remark that, by relying on max-flow min-cut
computations, it is possible to decide in polynomial time if a digraph is
(k, !)-edge-connected or not.

Another general notion is as follows. For two subsets 5,7 of nodes, D
is said to be k-edge-connected from S to T if there are k edge-disjoint
paths from every element of S to every element of T. In the special case
S = T we briefly say that D is k-edge-connected in S. If § =T =V we
are back at k-edge-connectivity. If S = {s} and I" = V we arrive at rooted
k-edge-connectivity. Also, for an undirected graph G = (V, E) we say that
G is k-edge-connected in § C V if there are k edge-disjoint paths in G
between any two elements of S. A directed edge st with s € 5, t € T will
be called an ST-edge.

We say that a partition of V into ¢ non-empty parts is a t-partition. For
a given partition P of V, the set of edges in a graph G = (V, E) connecting
distinct parts of P is called the border of P. An element of the border
is called a cross-edge of the partition. The border of a 2-partition is
traditionally called a cut. For an integer ! (which may be negative), we call
an undirected graph G = (V, E) (k,l)-partition-connected if the border
of every t-partition of V (¢ > 2) has at least k(¢ — 1) + [ elements. For
[ > 0, this definition attempts to capture the intuitive notion for higher
edge-connection which requires that leaving out only few edges does not
result in too many components.
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A very first question concerning this notion is whether there exists a
polynomially checkable certificate for a graph being (k,!}-partition-con-
nected. The answer depends on whether [ < 0, or 1 <{ <k, or k < L.
If | = 0, we are back at k-partition-connectivity, and then the certificate
(by Tutte's theorem) is a set of k disjoint spanning trees. When [ = —v
is negative, we will prove (Theorem 2.10) that a graph is (k,l)-partition-
connected if and only if it is possible to add v new edges so that the resulting
graph contains k disjoint spanning trees. That is, in this case the certificate
for (k, 1)-partition-connectivity is k disjoint spanning trees whose union may
contain v new edges.

For | > k, we claim that (k,{)-partition-connectivity is equivalent to
(k + 1)-edge-connectivity. Indeed, if G is (k,{)-partition-connected, then the
definition for t = 2 implies that every cut contains at least k(¢ ~1)+1 = k+1
edges, that is, G is (k+I)-edge-connected. Conversely, let G be (k+!)-edge-
connected and let P := {V1,..., V;} be a partition. By letting ec(P) denote
the number of cross-edges of P, we have eg(P) = 3.t dg(Vi)/2 = (k+1)t/2 =
th+t(l—k)/2 > tk+ (I — k) = k(t— 1) + 1, and hence we conclude that &' is
(k, 1)-partition-connected. Therefore we will be interested in (k,!)-partition-
connectivity only if [ < k.

Finally, for 0 < ! < k one has the following characterization (Theorem
4.5): a graph is (k,l)-partition-connected if and only if it has a (k,1)-edge-
connected orientation. Such an orientation may indeed serve as a certificate
for (k,[)-partition-connectivity since a digraph can be tested for (k,[)-edge-
connectivity by relying on Menger’'s theorem.

(liven a groundset V', by a co-partition (of V) we mean a family of
subsets consisting of the complementary sets of a partition of V. A family
F of subsets of V is called a sub-partition of V if F is a partition of a
subset of V. For a partition F of a non-empty proper subset Z ol V, the
family {V — X : X € F} is called a co-partition of V — Z. For a subset X
and for two elements z and y, we say that X is an zg-set ifc € X, y ¢ X.

For non-negative integers k, I, we call an undirected graph G (k,{)-tree-
connected if deleting any subset of at most ! edges leaves a k-tree-connected
graph. By Tutte’s theorem, G is (k,!)-tree-connected if and only if G is
(k, [)-partition-connected.

Tn a graph G = (V, E) the local edge-connectivity A(z, y; G) of nodes

r and y is the minimum cardinality of a cut separating z and y. By
Menger's theorem, this is equal to the maximum number of edge-disjoint
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paths connecting x and y. eq{X) denotes the number of edges with at least
one endnode in X.

In a digraph D = (V, E) the local edge-connectivity Az, y; D) from
node z to node y is the minimum number of edges entering a yZ-set. By
Menger’s theorem, this is equal to the maximum number of edge-disjoint
paths from z to y. p(X) denotes the number of edges entering X and
§(X) := o(V — X). For a graph or digraph H, ig(X } denotes the number
of edges induced by X.

Typically we will work with directed or undirected graphs and write
(di)graph when either of them is meant. Sometimes mixed graphs are also
considered which may contain both directed and undirected edges.

2. RELATIONS BETWEEN OLD RESULTS

The three motivating theorems mentioned at the beginning of the introduc-
tion represent, respectively, the following general problem classes.

1. In a connectivity angmentation problem we want to add some new
edges to a graph or digraph so that the resulting graph or digraph satisfies a
prescribed connectivity property. In a minimization problem the number
(or, more generally, the total cost) of new edges is to be minimized. In a
degree-specified problen, in addition to the connectivity requirement, the
(di)graph of the newly added edges must meet some (in)degree specification.
Another aspect of augmentation problems distinguishes between the type of
graphs of usable new edges. In a restricted augmentation the new edges
must be chosen from a specified graph. We speak of a free augmentation if
any possible edge is allowed to be added in any number of parallel copies.
In the directed case, ST-free augmentations will also be considered when

the new edges must be ST-edges.

2. In a connectivity orientation problem we want to orient the edges
of an undirected graph so that the resulting digraph satisfies a prescribed
connectivity property. The proof of Robbins’ theorem is fairly easy {say, by
ear-decomposition) but there are even easier orientation results: (A) a graph
G has a root-connected orientation (:every node is reachable from a root-
node) if and only if G is connected, and (B) G has an orientation in which a
specified node t is reachable from s if and only if s and t belong fo the same
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component of G. These are indeed so trivial that they deserve mentioning
only because they serve as a good ground for possible generalizations.

3. In a constructive characterization problem we are interested in
finding simple operations for a given connectivity property by which every
(di)graph with the property may be obtained from a small initial {di)graph.
It will turn out that this type of results often help proving connectivity
orientation results.

In earlier survey type works ([21] [22], [23]) I endeavored to overview
some aspects of connectivity orientations and augmentations with special
emphasis on their relationship to sub- and supermodular functions. Theére-
fore in the present paper those results are mentioned only when the overview
of the developments of the past decade requires them. Exhibiting this
progress is our main goal, with a special emphasis on some known and
some newly discovered links connecting the different problems. Some new
observations will also be outlined.

By comparing older results, this section is offered to demonstrate how
closely the orientation, augmentation, and characterization problems are re-
lated to each other. But first a small remark is in order. The augmentation
problem may be considered as one of finding a supergraph of a {di)graph
with certain connectivity properties. This is naturally related to the sub-
graph problem which consists of finding an optimal subgraph of a (dijgraph
satisfying connectivity requirements (sometimes called generalized Steiner
network problem). The minimum cost versions of these problems are ac-
tually equivalent, and to explain this we invoke a specific subgraph versus
supergraph problem-pair. Subgraph problem: given a digraph D = {V, A}
with specified nodes s and ¢ endowed with a cost function ¢ on 4, find a
minimum cost subdigraph IV of D which is k-edge-connected from s to f.
Supergraph {=augmentation) problem: given a digraph D = (V, 4) with
specified nodes s and t, moreover another digraph H = (V| F) endowed
with a cost function c¢p on F, find a minimum cost augmentation of D
which is k-edge-connected from s to t. Now if the subgraph problem is
tractable, then so is the supergraph problem: Let Dy = (V, AU F) be the
union of G and H and define a cost function ¢; on AU F by cie) = 0
if e € A and ci(e) = cple) if e € F. Obviously, an optimal solution to
the subgraph problem on D) determines an optimal solution to the aug-
mentation problem. Conversely, the subgraph problem can be viewed as
an augmentation problem because it is equivalent to augment, at a mini-
mum cost, of the empty digraph {(V,®) by using edges of D, (or wording
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differently, by using arbitrary edges but the ones not in [ have cost +00).
Typically we use this equivalence in one direction: when the minimum cost
subgraph problem is tractable then so is the augmentation problem. In our
concrete case the subgraph problem is indeed solvable with the help of a
minimum cost flow algorithm. On the same ground, as the minimum cost
connected subgraph problem is solvable with the greedy algorithm, the min-
imum cost augmentation problem, to make a given graph connected, is also
solvable.

We hasten to emphasize however that in several cases the subgraph prob-
lem is NP-complete while the corresponding (free) augmentation problem
is nicely solvable. A prime example for this phenomenon is the problem
of finding a minimum cardinality 2-edge-connected subgraph of a graph G
which is known to be NP-complete as it includes the Hamiltonian circuit
problem (:the minimum is equal to |V] if and only if G is Hamiltonian).
On the other hand, the second introductory problem on the corresponding
connectivity augmentation is solvable.

2.1. Splitting and augmentation

The following two splitting lemmas are central to several results. By split-
ting off a pair-of undirected edges e = zu, f = zv we mean the operation
of replacing e and f by a new edge connecting u and v. In the directed case
directed edges uz and zv are replaced by a directed edge wv.

Theorem 2.1 (Lovasz’s undirected splitting lemma [42]). Let k = 2 be an
integer and G = (V + 2, E) an undirected graph with a special node z of
even degree. If G is k-edge-connected in V, then there is a pair of edges
e = zu, f = zv which can be split off without destroying k-edge-connectivity

mV,

Theorem 2.2 (Mader’s directed splitting lemma [46}). Let k > 1 be an
integer and D = (V + z, E) a directed graph with a special node z having
the same in- and out-degree. If D is k-edge-connected in V, then there is
a pair of edges e = zu, f = vz which can be split off without destroying

k-edge-connectivity in V.
Both lemmas may be used repeatedly, as long as there are edges incident

to z, and in this case we speak of a complete splitting. Sometimes by the
splitting lemma this complete version is meant: Under the same hypotheses,

Edge-Connection of Graphs, Digraphs, and Hypergraphs 101

there is a complete splitting at z so that the resulting (dijgraph on node set
V' is k-edge-connected.

An easy observation shows that the existence of a complete undirected
splitting that preserves k-edge-connectivity is equivalent to the mozoi.mcm.
degree-specified augmentation result [19]. Here and throughout the paper,
we use the notation m(X) =3 [m(v) : v € u&.

Theorem 2.3. We are given an undirected graph G = (V| E), a degree-
specification m : V — Zy with m{V) even, and an integer k > 2. There is
a graph H = (V, F) so that dg(v) = m(v) for every nodev € V and G+ H
is k-edge-connected if and only if m(X) > k —d¢(X) for every non-empty
subset X C V.

This result was used in {19] to exhibit a short derivation of T. Watanabe
and A. Nakamura’s [57] earlier solution to the minimization form of the
undirected edge-connectivity augmentation problem:

Theorem 2.4 (Watanabe and Nakamura). An undirected graph G can be

‘made k-edge-connected (k > 2) by adding at most ~ new edges if and only

if 3 [k— Q_Dﬁm& < 2+ for every subpartition {X1,...,X:} of V.

Note that the last theorem fails to hold for k = 1. On the other hand, for
this case, even the minimum cost version is solvable by the greedy algorithm
gince it is equivalent to the min-cost spanning tree problem (while for & > 2
the min-cost version is NP-complete.)

Mader’s directed splitting lemma is also easily seen to be equivalent to
the degree-specified directed edge-connectivity augmentation problem:

Theorem 2.5. We are given a directed graph D = (V, E}, in- and out-
degree specifications m; : V. — Zy and m, : V — Z, so that m{V) =
mo(V). Let k > 1 be an integer. There is a digraph H = (V, F) so that
§r (v} = mo(v), en(v) = my(v) for every nodev € V and so that D+ H is k-
edge-connected if and only if mi(X) > k — pp(X) and mo(X) > k—dp(X)
holds for every non-empty subset X C V.,

This implies the minimization form of directed edge-connectivity aug-
mentation [19]: :

Theorem 2.6. A digraph D = (V, E) can be made k-edge-connected (k >
1) by adding at most -y directed edges if and only if Tn - .Po@b.v_ <
and y_; Tn - mbﬁmx <« hold for every subpartition {X;,..., Xz} of V.
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2.2. Connectivity orientation and augmentation

The easy orientation results mentioned above concerning strong-connectiv-
ity, connectivity from s to ¢, and s-rooted 1-edge-connectivity naturally raise
questions on higher connection: when does a graph G have an orientation
which is (a) k-edge-connected from s to t, (b} rooted k-edge-connected,
(¢) k-edge-connected? Among these, the first one is easy (given Menger’s
theorem).

Theorem 2.7. For integers ki, k2 > 0 and specified nodes s,t € V, an
undirected graph G = (V, E) has an orientation which is k-edge-connected
from s to t and ky-edge-connected from t to s if and only if every cut of G
separating s and t has at least ki + ko edges.

Proof. The necessity of the condition is straightforward. The sufficiency
follows by observing that the condition implies, by Menger’s theorem, the
existence of ki + k2 edge-disjoint paths between s and ¢. One can orient the
edges of k; paths toward ¢, the edges of the remaining ko paths toward s,
and the remaining edges arbitrarily. m

The first non-trivial result concerning orientation is due to C. 8t. J. A.
Nash-Williams [47]. He proved the following extension of Robbins’ theorem
{actually in a much stronger form).

Theorem 2.8 (Nash-Williams: weak form). An undirected graph G has a
k-edge-connected orientation if and only if G is 2k-edge-connected.

By a straightforward induction, Lovész’s undirected splitting lemma
implies Nash-Williams’ theorem. When rooted k-edge-connectivity is the
target in the orientation problem, one has the following result.

Theorem 2.9. An undirected graph G = (V,E) has a rooted k-edge-
connected (that is, (k,0)-edge-connected)} orientation if and only if G is

k-partition-connected.

The non-trivial ‘if’ part is an easy consequence of Theorem 1.2 on
disjoint trees since Tutte’s theorem implies that a k-partition-connected
graph contains k disjoint spanning trees and, by orienting each of these trees
away from the root (to become a spanning arborescence) while the remaining
edges arbitrarily, one obtains a rooted k-edge-connected orientation of G.

On the other hand, Theorem 2.9, when combined with Edmonds The-
orem 1.3, gives rise to Tutte’s Theorem 1.2. At this point the question
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naturally emerges: if the required orientations do not exist, then how many
new undirected edges have to be added so that the augmented graph admits
an orientation?

The answer is evident when the goal is to augment a graph so as to
become k-edge-connected orientable. Namely, by Nash-Williams’ theorem
this is equivalent to augmenting the graph to make it 2k-edge-connected, a
problem solved in Theorems 2.4 and 2.3. Suppose now we want to augment
G to become k-tree-connected (= k-partition-connected). For the special
case of free augmentation one has the following:

Theorem 2.10. Let G = (V, F) bhe an undirected graph, s € V a specified
node, and v a nonnegative integer. It is possible to add af most v new
edges to G so that the enlarged graph has an s-rooted k-edge-connected
orientation if and only if G is (k, —v)-partition-connected. Moreover, all
the newly added edges may be chosen to be Incident to s.

Proof. Recall that by definition G is (k, —v)-partition-connected if
(1) e(F) 2 k(t—1) —

holds for every partition F := {Vi,...,V;} of V, where e{F) denotes the
number of cross edges of 7. For brevity we call an orientation good if it
is k-edge-connected from s. If there is a good orientation after adding ~
edges, then (Vi) = k holds for every subset V; < V not containing s and
hence e(F) + v > et (F) > k(t — 1), where e refers to the enlarged graph,
proving the necessity of the condition.

To see the sufficiency, add a minimum number of new edges to G, each
incident to s so that the enlarged graph has a good orientation and let «/
denote this minimum. Our goal is to prove v < 7.

Let o denote the in-degree function of the good orientation of the en-
larged graph G*. We may assume that g(s) = 0. Let uscallaset X C V—s
tight, if p(X) = k. By standard submodular technique, we see that both
the intersection and the union of two tight sets with non-empty intersection
are tight. Let T denote the subset of nodes which can be reached from the
head of at least one new edge. Clearly, s € T and o(V — T) = 0.

Lemma 2.11. If Z is tight and ZNT # 0, then ZC T.

Proof. Suppose indirectly that Z € T. Then for Y := V — T we have
E=oY)+0o(Z)=oYNZ)+o(YUZ)+d (Y, Z) 2 k+0+d (Y, Z) > K,
where d* (Y, Z) denotes the number of edges of Gt connecting elements of
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Y —Zand Z~Y. Hence o(Y U Z) = 0 and d*(Y, Z} = 0. From the first
equality there is a new edge e = st for which t € Z for otherwise no element
of Z NT would be reachable from the head of any new edge. But then, by
the existence of edge e, we have d* (Y, Z) > 0, a contradiction. =

There are two cases. If there is a node v in 7" which does not belong to
any tight set, then let st be a new edge for which there is a path P from ¢
to v. Reorient each edge of P and discard e. Since v does not belong to any
tight set the revised orientation is good, contradicting the minimality of ',

In the second case every element of T belongs to a tight set. Let
Vi,...,Vi_; be maximal tight sets intersecting 7". These are pairwise dis-
joint and by the lemma they form a partition of T. Let V, :== V —T and
F = {W,...,¥}. Since p(V;) = 0, and every new edge enters T, we get
Kt-1) =Y [eVi) :i=1...,¢-1] =X [e(V) : i=1....t] =
it (F) = e(F) +~'. This and (1) give rise to 7' = k(t — 1) — e(F) < 7, as
required. m

By combining Theorems 2.10 and 2.9, we obtain the following extension
of Tutte’s Theorem 1.2 which serves as a characterization of (, I)-partition-
connected graphs in case [ < 0.

Theorem 2.12. An undirected graph G = (V, E) can be augmented by
adding v > 0 new edges so that ihe enlarged graph is k-tree-connected if
and only if G is {(k,—v)-partition-connected. Moreover, the newly added
edges may be chosen to be incident to any given node in V.

The theorem shows that the free augmentation problem is tractable for
k-tree-connectivity as a target. This is, however, not surprising since, by
using matroid techniques, even the minimum cost version is solvable in
polynomial time. To see this, let G = (V, E) be an undirected graph and
let G, = (V,E,) be a graph, where E, is the set of edges usable in the
augmentation of G. Let ¢, : £, — Ry be a cost function. We want to
choose a subset F of edges of G, of minimum total cost so that the increased
graph G = (V, E + F) is k-tree-connected.

To this end, let us define a cost function ¢’ on the edge set of the union
G' = (V,E + E,) of G and Gy, so that ¢'{e) := 0 if e € E and d(e) = c(e) if
e € E,. Then the problem is equivalent to finding & disjoint spanning trees
of (' with minimum total cost. Since the edge-sets which are the union of
k disjoint spanning trees form the set of bases of a matroid, this problem is
solvable in polynomial time by using Edmonds’ matroid partition algorithm
and the greedy algorithm. This approach also shows that Edmonds’ matroid
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partition theorem does provide a characterization for the existence of the
required augmentation in Theorem 2.10. Our goal has simply been to show
a direct, graphical proof.

One may also consider the degree-specified version of the k-tree-con-
nected augmentation problem. This does not seem to be a matroid problem
and it does not follow from the previous material either. Section 4 includes
an answer even for the more general case of {k,1)-partition-connectivity.

2.3. Constructive characterization and splitting

Let G' = (V + 2, E') be an undirected graph with a special node z of even
degree and suppose that G’ is k-edge-connected in V. By the undirected
splitting lemma we know that there is a complete splitting at z so that the
resulting graph G = (V, E) is k-edge-connected. In other words, the d(z)
edges incident to z can be paired so that splitting off these j := d{z)/2
pairs (and discarding z) we obtain a k-edge-connected graph. In a directed
graph D' = (V + 2, A’) a complete splitting at z consists of pairing the edges
entering z with those leaving z and then splitting off the pairs. Both in the
directed and in the undirected cases the inverse operation of a complete
splitting is as follows. Add a new node z, subdivide j ewisting edges by
new nodes and identify the j subdividing nodes with z. This will be called
pinching j edges (with z). When j = 0 this means adding a single
new node z, while in case 7 = 1 pinching an edge requires the edge to be
subdivided by a node z. .
By the operation of adding a new edge to a (di)graph we always mean
that the new edge connects existing nodes. Unless otherwise stated, the
newly added edge may be a loop or may be parallel to existing edges.

After these definitions, we exhibit how the splitting lemmas give rise
to constructive characterizations of 2k-edge-connected graphs and k-edge-
connected digraphs. By using the easy observation that a minimally (with
respect to edge-deletion) K -edge-connected undirected graph (with at least
two nodes) always contains a node of degree K, one can easily derive from
the undirected splitting lemma the following constructive characterization
of 2k-edge-connected graphs.

Theorem 2.13 (Lovasz). An undirected graph G = (V,E) is 2k-edge-
connected if and only if G can be obtained from a single node by the
following two operations: (i) add a new edge, (ii) pinch k existing edges.



106 A. Frank

By using a rather difficult theorem of Mader [44], stating that ¢ mini-
mally (with respect to edge-deletion) k-edge-connected directed graph (with
at least two nodes) always contains o node of in-degree and out-degree k,
one can derive from the directed splitting lemma the following constructive
characterization of k-edge-connected digraphs.

Theorem 2.14 (Mader). A directed graph D = (V, E) is k-edge-connected
if and only if D can be obtained from a single node by the following two
operations: (i) add a new edge, (ii) pinch k existing edges.

It is useful to observe that Mader’s characterizaton in Theorem 2.14 for
k-edge-connected digraphs combined with Nash-Williams’ orientation result
give rise to Theorem 2.13. The same phenomenon will oceur later as well:
with the help of an orientation result, a constructive characterization for
directed graphs may be used to derive its undirected counterpart.

By an easy reduction, Theorem 2.14 provides a constructive characteri-
zation of rooted k-edge-connected digraphs.

Theorem 2.15. A digraph D = (V, E) is rooted k-edge-counected if and
only if D can be built up from a root-node s by the following two operations:
(j) add a new edge, (jj) pinch i (0 <14 < k — 1) existing edges with a new
node z, and add k — i new edges entering z and leaving existing nodes.

In [46] Mader showed that this characterization, in turn, can be used to
derive Edmonds’ Theorem 1.3 on disjoint arborescences. Combining Theo-
rems 2.9 and 2.15, one obtains the following constructive characterization.

Theorem 2.16. An undirected graph G = (V, E) is k-tree-connected (=
k-partition-connected) if and only if GG can be built from a node by the
following two operations: (j) add a new edge, (jj) pinchi (0 <1 < k— 1)
existing edges with a new node z, and add k — ¢ new edges connecting z
with existing nodes.

3. SPLITTING AND DETACHMENT

In this section first we exhibit extensions of the splitting lemmas of section 2
and of their applications. After that the notion of splitting will be extended
to detachments.
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3.1. Undirected splitting

As a significant generalization of Lovész's undirected splitting lemma,
W. Mader [45] proved the following result. Recall (from the introduction)
the definition of local edge-connectivity A.

Theorem 3.1 (Mader). Let G = (V +z, E) be an undirected graph so that
there is no cut-edge incident to z and the degree of z is even. Then there
exists a complete splitting at z preserving the local edge-connectivities of
all pairs of nodes u,v € V.

Mader originally formulated his result in a slightly weaker form: If z is
not a cut-node of G = {V + 2z, E) and d(z) > 4, then there exists a pair of
edges incident to z which can be split off without lowering any local edge-
connecivity on V. However the two forms can be shown to be equivalent.
This and a relatively short proof of Mader’s theorem was given in [20].

3.1.1. Constructive characterizations. Mader [45] used his result to
characterize {2k + 1)-edge-connected graphs.

Theorem 3.2 (Mader). Let K = 2k+ 1 > 3. An undirected graph
G = (U,E) is K-edge-connected if and only if G can be constructed from
the initial graph of two nodes connected by K parallel edges by the following
three operations:

(i} add an edge,

(ii) pinch k edges with a new node 2’ and add an edge connecting z" with
an existing node,

(iii) pinch k edges with a new node z', pinch then again in the resulting
graph k edges with another new node z so that not all of these k edges are
incident to z', and finally connect z and z’ by a new edge.

The theorem is obviously equivalent to the first part of the following
result:

Theorem 3.3. An undirected graph G with more than two nodes is K-
edge-connected (K odd} if and only if G can be obtained from a (smaller)
K -edge-connected graph G’ by one application of one of the operations (i},
(i), (iil). Moreover, for any node s of G, G’ can be chosen so as to contain s.
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Proof. It is not difficult to check that each of these operations preserves
K-edge-connectivity. (Note that if all the k& edges to be pinched with 2’/
in the second part of (iii) were adjacent to z, then only K — 1 = 2k edges
would leave the subset {z,2'}.)

For a subset X C V, the set of edges connecting X and V — X will
be denoted by [X,V — X]. We call a cut [X,V — X] trivial if |X| =1 or
|V — X| = 1. By a minimum cut we mean one with cardinality K.

Lemma 3.4. Suppose that X Is a minimal subset of nodes of a K-edge-
connected graph G = (U, E) for which

(2) de(X)=K and |X|22.

Then any minimum cut B containing an edge e = zz' with z,2' € X is
trivial (that is, B is [z, U — z] or [&/,U — 2]).

Proof. Suppose indirectly that there is a subset Y for which z € Y,
deU-Y,dY) =K, |Y| =2 [U-Y| > 2 Then by the minimal
choice of X we have Y € X and U —Y ¢ X. But it is well-known (and
an easy exercise anyway to show) that in a K-edge-connected graph with
K odd there cannot exist two such crossing sets X, Y. (Indeed, we have
K+K=d(X)+d(Y)=d(XNY)+d{XUY)+2d(X,Y) > K+ K+0 from
which d(X NY) =K =d(X UY) and d{X,Y) = 0, where d(X,Y) denotes
the number of edges conneciing X Y and ¥ — X. Analogously, we obtain
for V:=U—Y that (X NY) = K = d(XUY) and d{X,Y) = 0. So if
o= d(XNY,Y=X), then d(XNY, X ~Y) = K—a=d(Y-X,U—-(XUY))
from which K = d(Y) = d(XNY, X -Y)+d(V - X, U~ (XUY)) =2K -2,
that is, K is even, a contradiction.} m

If there is an edge ¢ so that G’ := G — e is K-edge-connected, then
G arises from G’ by (i). So we may assume that G is minimally K-edge-
connected. We may assume that there is no node z which is connected only
with s since otherwise, then by the minimality, d(z) = K and then G arises
from G’ by operation (ii) where G’ is a graph arising from & by deleting 2
and adding k loops at s. (Clearly G’ is K-edge-connected.)

If every minimum cut is trivial, then let e = 2z’ be an arbitrary edge
not incident to s. If there are non-trivial minimum cuts, then there is a set
X satisfying {2). Since the complement of X also satisfies (2}, there exists
a minimal set X satisfying {2} so that s ¢ X.

Let ¢ = zz' be an arbitrary edge induced by X. As X induces a
connected subgraph, such an e exists. Now e belongs to at most two

Edge-Connection of Graphs, Digraphs, and Hypergraphs 109

minimum cuts, each is trivial. If e belongs to one minimum cut, than exactly
one of z and #/, say z, is of degree K. Then G — e is K-edge-connected in
U—z. By Lovész's splitting lemma there is a complete splitting at z resulting
in a K-edge-connected digraph G’. Then G arises from G’ by operation (ii).

If both z and 2 are of degree K, then G — e is K-edge-connected in
U — {z,2'}. It follows from Mader’s splitting Theorem 3.1 that there is
a complete splitting of G — e at z so that the resulting graph G is K-
edge-connected in U — {z, z'}. By applying the splitting lemma to G1 (now
Lovész’s is enough), we obtain that there is a complete splitting at Z' so
that the resulting graph G’ with node set U — {z, 2’} is K-edge-connected.
This construction shows that G arises from G’ by operation (iii).

Since in each case z and z’ were chosen to be distinct from s, we have
also proved the second half of the theorem. ® =

Operation (iii) may seem to be a bit too complicated and one’s natural
wish could be to try to simplify it. For example, a simpler, more symimetric
version could be as follows: (iii)’ choose two disjoint subsets I” and F” of
edges both having k elements, pinch the elements of F with a new node
z, pinch the elements of F' with another new node Z', and finally connect
z and 2. However, Mader in his original paper showed an example which
cannot be obtained with operations (i), (ii}, (iii)’.

Fortunately, for K = 3, operations (iii) and (i) coincide and it is
worthwile to formulate this special case separately:

Corollary 3.5. An undirected graph G with at least two nodes is 3-edge-
connected if and only if G can be huilt from a node by the following

operations:

(i) add an edge,

(i) subdivide an existing edge e = uv by a new node z and connect z to an
existing node,

(i) subdivide two existing edges by nodes z and z' and connect z and 2’
by a new edge.

3.1.2. Orientation. Lovasz's splitting lemma immediately implied Nash-
Williams' orientation theorem (:a 2k-edge-connected graph always has a
k-edge-connected orientation). In [29) we observed that Mader’s splitting
theorem also rather easily gives rise to the following common generalization

of theorems 2.8 and 2.7.
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Theorem 3.6. Let ki, ko, k& be non-negative integers with k| > k, ko > k.
An undirected graph G = (V, E) with two specified nodes s and t has a
k-edge-connected orientation which is kj-edge-connected from s to t and
ko-edge-connected from t io s if and only if G is 2k-edge-connected and G
is (k1 + ko)-edge-connected in {s,t}.

This immediately implies a characterization of (2k + 1)-edge-connected
graphs.

Theorem 3.7. An undirected graph G is {2k + 1)-edge-connected if and
only if, for every pair of nodes s and t, G has a k-edge-connected orientation
which is (k + 1)-edge-connected from s to t.

Given the easy way how Lovisz's splitting lemma implies the weak
form of Nash-Williams orientation theorem, one may expect that Mader’s
stronger splitting result implies immediately the following stronger orienta-
tion result of Nash-Williams [47]:

Theorem 3.8 (Nash-Williams: strong form). Every undirected graph G =
(V, E) has an orientation G for which A(x,1;,G) = ?ﬁa,@uﬁv\m_ for all
z,y e V.

Mader was indeed able to derive Theorem 3.8 relying on his splitting
theorem but the derivation is not at all simple (as neither is Nash-Williams’
original proof).

In the introduction of his paper, Nash-Williams [48] remarks that his
orientation theorems ‘do not seem particularly closely related to much other
existing work in graph theory’. These words are painfully true even after
40 years as far as the strong form is concerned, and it remains a major
task to find a simple proof of Theorem 3.8 or at least to find some closer
link to the body of edge-connectivity problems. Note that by now pretty
much is known about the various connections of the weak form along with
its numerous strengthenings and extensions. Nash-Williams also remarks
that ‘these theorems seem to have a somewhat natural character which
would suggest that there must ultimately be a place for them in the overall
structure of graph theory’. Since then it has turned out that wherever this
place is located, it is not a lonely one.

Nash-Williams calls an orientation with the property given in the the-
orem well-balanced. He actually proved the existence of a well-balanced
orientation that is, in addition, near-Eulerian which means by definition
that _ o(v) - &S_ < 1 for every node v of G. Nash-Williams also outlined
the proof of the following generalization of Theorem 3.8.
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Theorem 3.9 [47]. Let G be a graph and H a subgraph of . Then G has
a well-balanced and near-Eulerian orientation with the additional property
that its restriction to H is a well-balanced and near-Eulerian orientation
of H.

Corollary 3.10. Let G = (V, E) be a 2k-edge-connected graph and H =
(V,F) an Eulerian subgraph of G. For any Eulerian orientation of H, the
edges in F—F can be oriented so as to obtain a k-edge-connected orientation
of (5.

This implies that in order to find a k-edge-connected orientation of a
2k-edge-connected graph G one can pick up edge-disjoint circuits one after
the other and orient them around. The corollary ensures that the remaining
forest can always be oriented to get a k-edge-connected orientation of G.
It would be interesting to see a direct constructive proof of this fact which
does not rely on Theorem 3.9. We note that there is an easy alternative
proof of Corollary 3.10 relying on submodular flows.

3.1.3. Augmentation. Let us turn to the effect of Mader’s theorem on con-
nectivity augmentation. The same way as Lovasz's splitting lemma could
be used for solving (global) connectivity augmentation, Mader’s splitting
theorem gives rise to a solution of the local edge-connectivity augmenta-
tion problem. Let G = (V, E) be an undirected graph and 7 a non-negative
integer-valued function on unordered pairs {u,v} of distinct nodes of G,
called a requirement function. In the local edge-connectivity angmenta-
tion problem we want to augment G so that the local edge-connectivity in
the increased graph Gt majorizes r. By Menger’s theorem this is equivalent

to requiring

(3) de+(X) = R (X) for every subset X C V,
where
(4) mﬁ@mvunﬁmxﬁl:ui“Qm.x‘_emd\lumw.

The following two results appeared in [19].

Theorem 3.11. Let G = (V, E) be an undirected graph. Let m : V — Z
be an integer-valued function so that m(V) is even and m(C) > 2 for each
component C of G. There is a set F of new edges so that the Jocal edge-
connectivity in G* = (V,E + F) is at least v and dp(v) = m(v) for every
node v if and only if

(5.10) m(X) = Rr(X) — da(X)
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forevery X C V.

Let C(# V) be the node-set of a component of G and call €' a marginal
component (with respect to r) if R-(C) <1 and R,(X) < de(X) for every
proper subset X of C. Let g(X) := R (X) — dg(X) for X C V.

Theorem 3.12. Suppose that there are no marginal components. There
is a set F of at most v edges so that the local edge-connectivity in Gt =

(V,E + F) is at least r if and only if
(5) D (X)) <2y
i

holds for every sub-partition {X1,X2,..., X¢} of V.

In [1], J. Bang-Jensen, H. Gabow, T. Jordén and Z. Szigeti investigated
the augmentation problem when the possible set of new edges meets a
partition constraint. Among their numerous results, we cite here only one:

Theorem 3.13. Let G = (V, E) be an undirected graph and P = {Py,. ..,
P,} a partition of V into at least two non-empty parts. Let k > 2 be an
even integer. It is possible to add at most vy new edges to G each connecting
distinct parts of P so that the resulting graph is k-edge-connected if and
only if 3 xer Tn —d(X) : X € \%J < 2~ holds for every subpartition F
of V,and 3 xcr, _“w —d(X): X € .ﬂ.L < - holds for every subpartition F;
of ; (i=1,...,7).

It is not difficult to check that the conditions in the theorem are neces-

sary for even and odd k, as well. For odd k, however, they are not sufficient.
But {1] did provide a characterization even for this more complicated case.

3.2. Directed splitting

Can one extend Mader’s directed splitting lemma so as to preserve local
edge-connectivities in directed graphs? No such a general result is known
but some extensions of the directed splitting lemma are available. The

following is a consequence of a result in [22].

Theorem 3.14. Let k& > [ > 1 be integers and D = (V + z, E) a directed
graph with a special node z having the same in- and out-degree. If D is

(k,[)-edge-connected in V', then there is a pair of edges e = zu, f =wvz
which can be split off without destroying (k,1)-edge-connectivity in V.
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. This ammm: was proved in [22] in a more general form concerning cover-
ings of crossing supermodular functions by digraphs. It can be used to solve
the free- mb.a the degree-specified augmentation problem for digraphs when
the target is (k,!)-edge-connectivity. Let D = (V, E) be a digraph with a
root-node s and let 0 < ! < k be integers. Define Pt (X) = Tn — @UCCv *
fPCX CV~—sand pu(X) = (I-op(X)) T ifse X C V.

Theorem 3.15. For in- and out-degree specifications m; : V — Z, and
Mo : V= Zy with mi(V) = mo(V), there is a digraph H = {(V, F) so that
0n(v) = mo(v), o (v) = my(v) for every node v € V and so Qumw D+ His
(k, 1)-edge-connected with respect to root s if and only if mi{X) > pu(X)
and mo(V — X) > py(X) holds for every non-empty subset X C V. ._

Theorem ..w..H@. There is a digraph H = (V,F) of at most v edges so
that D + H is (k,)-edge-connected with respect to root s if and only if
> TE,__CQ X eF] <vyand Y [pu(V-X) : X € F| <« hold for every
partition F of V.,

3.3. Undirected detachment

Let G = (V+z, E) be an undirected graph. We modify slightly the operation
of splitting off a pair of edges e = uz, f = vz as follows. Replace e and f by
a new edge h = uv and subdivide then A by a new node z’. More generally,
by a detachment of node z into p nodes we mean the following ovmwmﬂo:w
Replace z by p new nodes zy,... »Zp and replace each edge uz by an edge
uz;. If the degree of each new node z; is required to be a specified number
d;, we speak of a degree-specified detachment of z. In order for this to make
sense we assume that dy, ..., d, add up to dg(z).

,H.rmoﬂm_ﬂ. wHﬂ (Nash-Williams, [50]). Let G = (U, E) be a graph with a
given ﬁwm;;m integer p(z) at every node z. It is possible to detach each
Wc&m z into p(z) parts so that the resulting graph is connected if and only
i

(6) e(X) 2 p(X) + ca(X) - 1

holds wow every non-empty subset X C V, wherep(X) =5 ??v rve X]
e(X) is the number of edges having at least one end-node in X, and ca(X)
denotes the number of components of G — X. .
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Note that Nash-Williams pointed out that this type of detachment can
be handled as a matroid partition problem.

Suppose now that we are given at each node z of a graph G = (U, E)
a degree specification d1(z), ..., dpz(2}. Nash-Williams showed that it is
possible to detach simultaneously all nodes so that there exists a degree-
specified detachment of all nodes so that the resulting graph is connected if
and only if (6) holds and di{z) > 1 for each 1 and z € V.

What if we want a detachment which is k-edge-connected for k = 27
Clearly, for the existence of such detachment it is necessary that G be k-
edge-connected and that each d;(z) is at least k. This is not always sufficient
and we exhibit even two examples to show that. Let k be odd. First, suppose
G consists of just two nodes u and v connected with 2k parallel edges, and
di{u) = do(u) = k = di(v) = d2(v). Second, suppose that & has a cut node
2 of degree 2k and dy(2) = da{z) = k. It is not difficult two check that ne
k-edge-connected detachment exists in either case. Quite surprisingly, there
are no other bad cases:

Theorem 3.18 (Nash-Williams, {50]). Let G = (V, E) be an undirected
graph with a degree specification di(2),. .., dpz(z) at each node z. It is
possible to detach each node z into p(z) nodes having specified degrees so
that the resulting graph is k-edge-connected if and only if G is k-edge-
connected, each requested degree d;(z} is at least k, except if k is odd and
G is one of the two exceptional examples mentioned above.

How is this result related to Lovész’s undirected splitting lemma? They
are not really comparable (in the sense that neither implies the other.) The
splitting lemma detaches only one node, into nodes of degree two, and is
clearly not ‘interested’ in preserving k-edge-connectivity at the detached
nodes. But there is a very nice result of B. Fleiner [13] which is a general-
ization of Lovész's splitting lemma on one hand and implies easily Theorem

3.18 on the other.

The splitting lemma asserted that if G was k-edge-connected on V' then
a k-edge-connectivity preserving splitting always existed. If there are odd
numbers in the degree-specification of the detachment, then this is not
necessarily true. Let G consist of two disjoint triangles plus a node z
connected to all the other six nodes. Then G is 3-edge-connected on V
(even the whole G is) but it is not possible to detach z into two nodes of
degree 3 so that the resulting graph keeps to be 3-edge-connected on V.
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Theorem 3.18 (Fleiner). Let G = (V +z, E) be an undirected graph with
a special node z and k > 2 an integer. Let di,...,d, be integers for which
d; > 2,5 d; = dg{z). It is possible to detach z into p nodes of degree
di,...,dp, respectively, so that the resulting graph is k-edge-connected in
V if and only if G is k-edge-connected in V' and G — z is k'-edge-connected
where

(7) A ?HTMJEH.E.
i=1

Note that if each d; is even, then G-z is automatically k'-edge-connected
so we do not have to explicitly require it, and this special case follows
immediately from the undirected splitting lemma. As Lovasz’s splitting
lemma could be used to derive Watanabe and Nakamura’s Theorem 2.4 on
minimum k-edge-connected augmentation of a graph, Fleiner used his result
to prove the following generalization [13].

Theorem 3.20 (Fleiner). Let G = (V,E) be an undirected graph and
di,...,dy and k integers larger than one. It is possible to augment G by
adding p new nodes of degree d;, respectively, so that the enlarged graph
G™ is k-edge-connected on V' if and only if

D

(8) Y [{k—de(X)) : X e F] <) d;

i=1
holds for every sub-partition F of V, and

P

(9) Au,v;G) 2 k= [di/2]

=1

holds for every pair of nodes u,v € V, that is, G is k’-edge-connected, where
K= k= S0 (dif2).

So, Fleiner’s Theorem 3.19 is one generalization of the undirected split-
ting lemma while Mader’s Theorem 3.1 is another. Does there perhaps exist
a common generalization of these difficult theorems? Yes, T. Jorddn and
7. Szigeti proved the following theorem [34]. .

Theorem 3.21 (Jorddn and Szigeti). Let G = (V + z, E) be a graph with
a special node z so that there Is no cut-edge incident to z. Let dy,...,d,
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be integers for which d; > 2, 3 d; = dg(2). Also, we are given a symmetric
function r{u,v) on the pairs of nodes in V. There is a detachment of z into
p nodes of degree d, ..., dy, respectively, so that in the resulting graph G’
the local edge-connectivity A(u,v; G') is at least r(u,v) for every u,v € V if
and only If

P
(10) r{u,v) < A(u,v; G) and Mu,v; G — 2) Z r{u,v) — ME_.\E

i=1
for all w,v € V.

In the augmentation results so far we always added edges to an existing
graph G = (V, E). This may be interpreted as adding new nodes of degree
two so that the (local) edge-connectivity should attain a certain prescribed
value. It is quite natural to investigate an extension of the problem when
the newly added nodes are of prescribed degree, not necessarily two. The
following result of Jorddn and Szigeti [34] is a straight generalization of
Theorem 3.12. As in Theorem 3.12, we are given an undirected graph
G = (V, E) and a symmetric non-negative integer-valued function r{u,v) on
the pair of nodes, called local edge-connectivity requirement. Let Rr(X) :=
max {r(u,v) : u € X,v € V = X} for every X € V and let g(X) =

Rr(X) — dg(X). Recall the definition from (4) of R-(X). g(X) and a
marginal component of G.

Theorem 3.22 {Jordén and Szigeti {34]). Let G = (V, E) be an undirected
graph, r(u,v) a local edge-connectivity requirement function so that there
are no marginal components. Moreover, let dy,da, ..., d, be integers each
larger than 1. It is possible to add to G p new nodes of degree d;, respec-
tively, so that the enlarged graph G satisfies Au, v; GY) = r(u,v) for every
pair of nodes u,v € V if and only if

P
(11) SolaX): XeF] <Y di
i=1
holds for every sub-partition 7 of V, and
P
(12) Au, v G) 2 r(u,v) — Y |di/2]
i=1

holds for every pair of nodes u,v € V.
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3.4. Directed detachment

In Mader’s directed splitting lemma, it was assumed for the specified node
z to have the same in- and outdegree. Without this restriction a splitting at
z preserving k-edge-connectivity in V' does not necessarily exist. However,
Berg, Jackson and Jordan [5] found the following interesting extension of
the splitting lemma.

Theorem 3.23 (Berg, Jackson, Jorddn). Let k > 1 be an integer and
D = (V+z, E) adirected graph with a special node z for which p(z) > §(z).
If D is k-edge-connected on V, then for every edge zu there are t edges
V&, ..., vz, where T <t < g(z) — 8(z) + 1, entering z so that detaching z
into two nodes z' and 2z results in a digraph which is k-edge-connected on
V, where z; has one outgoing edge zju and t entering edges vz, ..., 1121,

By repeated applications of the theorem, one easily obtains a complete
detachment version: If k, D), z are the same as before, it is possible lo
detach the edges at z into 0(t) nodes so that each contains ezactly one edge
leqving it and so that the resulting digraph is k-edge-connected in V.

A directed counter-part of Nash-Williams’s detachment theorem was
obtained by Berg, Jackson and Jordan [6]. Given a functionr : V — Z,
by an r-detachment of a digraph D = (V, A} we mean a digraph arising
from D by ‘detaching’ simultaneously each node v into v(v) pieces so that
each edge leaving or entering v would leave or enter one of the pieces.

Theorem 3.24 ([6]). Let D = (V| E) be a digraph and let r : V — Z,.
Then D has a k-edge-connected r-detachment if and only if

{a) D is k-edge-connected,
(b) o(v) > kr(v) and 6(v) > kr(v) for every v € V.

In addition, Berg, Jackson and Jorddn proved that the in- and out-
degrees of every detached node v € V' can be arbitrarily specified provided
that at each node v of D all the values in the indegree specifications are
at least k and add up to the indegree of v and similarly for the outdegree
specifications.
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4. UNCROSSING-BASED RESULTS

In the previous two sections we overviewed results evolving from the splitting
lemmas. Here some fruits of another fundamental technique, the uncrossing
procedure, will be surveyed. The rough idea of this approach is that for a
given family of sets with certain properties or parameters one can replace
two uncomparable (or intersecting, or crossing) sets by their intersection
and union so as to preserve the properties or parameters of the family. By
repeating this uncrossing step as long as possible, one arrives in a finite
number of steps at a nicer family (chain of sets, laminar, or cross-free),
preserving the essential properties or paranieters of the initial one. To my
best knowledge, the first appearance of this approach that appeared in print
[39] was a solution of L. Lovész (a third-grade university student at that
time) to Problem 11 {posed by A. Rényi) of the Memorial Mathen:atical
Contest Miklés Schweitzer of the year 1968.

Later Lovész used the technique to provide a simple proof of the
Lucchesi-Younger theorem [41] and to prove his theorem on minimum T-
joins [40]. Since then the uncrossing method has proved to be an extremely
powerful proof technigue. In this section we briefly overview some recent
results that were obtained this way.

4.0.1. A detour to the origin of uncrossing. Rényi’s Problem 11 was
to verify an inequality concerning the probabilities of some events in a finite
probability space. In his solution, Lovdsz first ohserved that the logarithm
of the probability of events is a submodular function (where product and
sum of events correspond to intersection and union, respectively), and he
then applied the uncrossing technique to derive the requested inequality.
Actually, Lovdsz’s proof uses nothing but the submodular property and
hence it provides the corresponding inequality for any submodular function:
we exhibit Lovész’s proof in this context. In order to do so, it is useful to
introduce the notion of linear extension of a set-function.

Let b be a set-function on a groundset S for which b(#}) = 0. For any
vector ¢ € RIS arrange the elements of S in such a way that e(s1) >
... > c(sn). Let Si:= {s1,...,si} and define b(c) by blc) := c(sn)b(Sn) +
Mwnlu [e(si) — nﬁmﬁ,iﬁ_ b(S;). The function b : R® — R defined this way is
calied the linear extension of b. It was introduced also by Lovdsz in 1983
{43] and therefore often the term Lovdsz extension is used. It should be

noted that the correctness of the matroid greedy algorithm is equivalent to
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stating that the maximum ¢-weight of bases of a matroid with rank function
r equals #(c), or more generally, Edmonds’ polymatroid greedy algorithm
is equivalent to the assertion that, given a fully submodular function b,
max{czr : z € B(b)} = b(c), where B(b) := {z € RS : z(Z) < b(Z) for
every Z C § and z(S) = b(S)} is the so called base-polyhedron.

The solution of Lovdsz in [39] to Problem 11 contains implicitly the
following.

Lemma 4.1. Let b be a fully submodular function on a ground-set S and
b its linear extension. Then, for any collection {X, X, ..., X;n} of subsets
of 8,

m m
(13) Sb(X) > A S ),
i i
where x, denotes the characteristic function of X.

Proof. Apply the uncrossing procedure to the family {Xi,..., X;n}, that
is, as long as there are two uncomparable sets in the current family, replace
them by their intersection and union. Due to the submodularity of b, the
sum of the d-values of the members never increases, while the sum of the
characteristic vectors ol the members stay unchanged.

Since the number of uncomparable sets in the family during an uncross-
ing step strictly decreases, the uncrossing procedure terminates in a finite
number of steps. The final family is a chain {Z; € 22 € --+ € Zy} of
subsets for which 3, xx, = 2.; Xz, and hence >, b(Xs) > >7,b(Z;) =

mﬁ M&XNL = _wﬁ wa.ﬁv. u

The inequality in (13) may be called generalized submodular inequality.
(We note that the even more general inequality ) b(c;) 2 @AMQL also
holds true for arbitrary vectors ci,...,Cm € R5.) To see the usefulness of
(13), we make a little detour and derive in a few lines the following elegant
result on matroids from the partition theorem.

Theorem 4.2 {Greene és Magnanti). Let By and B; be bases of a matroid
M and {Z\,2,...,2m} a partition of By. Then there Is a partition
{Y1,...,YR} of By for which By ~ Z; UY; is a basis for each subscript
i=1,...,m.
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Proof. We may assume that By and B are disjoint for otherwise their
intersecion can be contracted and the theorem for the contracted matroid
implies that for M. Let k denote the rank of M. For each i, consider the
matroid M; = (Bg,r;) arising from M by contracting first By — Z; and
restricting then the resulting matroid to Bp. For any subset X C By, let
X; = B1—Z;UuX. Then 3, xx, = (m—1)x(p,ux)+Xyx and by (13) we have
Sr(Xa) = (X xx,) = Fl(m = Dxegux) + xx] = (m— Dr(BiUX) +
r{X) = (m—1)k+|X|. From ri{X) = r(X;)—r{B1—Zi) = r(Xi) ~|B1— Zil,
we obtain 3, mi(X) = 3 [r(X:) — |BL— Z]] = ¥ir(Xa) — (bm — k) 2
(m—Dk+|X| - (km - k) =IX|

By the matroid partition theorem of Edmonds and Fulkerson [11], Bo
can be partitioned into sets ¥1,Y%, ..., Yy so that ¥; is independent in M;.
By the definition of M;, |Y;| < |Zi| for each 7, and hence 3°|Z;{ = 3 |Yi|.
Therefore |Y;} = |Z;|, and then By — Z; UY; is a basisof M. o

4.1. Orientations and augmentations through submodular flows

A general and flexible framework concerning sub- or supermodular functions
is the notion of submodular flow. In [23] a rather exhaustive survey was
given to show how basic results on submodular flows can be applied to ori-
entation problems. By an orientation of a mixed graph M = (V,A+ E),
with directed and undirected edge-sets A and E respectively, we mean a di-
rected graph (V, A + mw.v arising from M by orienting each undirected edge
and leaving alone the directed ones.

Before exhibiting a characterization of mixed graphs having k-edge-
connected orientations, let us consider the special case k = 1.

4.1.1. Strongly connected orientation of mixed graphs. A straight-
forward generalization of Robbins’' theorem, with a fairly easy proof, is due
to F. Boesch and R. Tindell [7].

Theorem 4.3. A mixed graph M = (V, A+ F) has a strongly connected
orientation if and only if M has no cut-edge and no subset § C X C V of
nodes so that neither directed nor undirected edges leave X.

Proof. We show that the undirected edges can be oriented greedily one by
one, taking care only to avoiding the creation of a directed cut. There is
nothing to prove if E is empty. Let e = uv € E be an undirected edge. If
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orienting e toward v (toward u, respectively) creates a directed cut, then
there is a ud-set X (a vi-set Y) so that no directed edge leaves X (Y') .
and e is the only undirected edge leaving X (Y). Then neither X NY nor
V —(XUY) admits a leaving edge and hence they must be empty. Therefore
X and Y are complementary sets and e is the only edge connecting X and
Y, contradicting the assumption on the non-existence of cut-edges. W

The simplicity of this result may suggest that Nash-Williams’ Theo-
rem 2.8 on k-edge-connected orientability of 2k-edge-connected undirected
graphs can also be extended to mixed graphs in a straightforward way. But
this is not the case even for & = 2.

4.1.2. An example for k = 2. It turns out that in this case the natural
cut-type or partition-type necessary conditions are not sufficient anymore.
To sce this, define a mixed graph M = (Vi, A + E) as follows. Let V) =
{v1,vo,v3,v4}, let E consist of two edges €] = v vy, €2 = v3vy, and let A
consist of the following nine edges: vyvs, v1vs, vav1, vavs, Vaua, Uste, Vals,
VU4, VqVs.

The digraph D = (V3, A) is strongly connected, that is, every in-deficient
set (with respect to 2-edge-connectivity) is of indegree one, and there are

exactly three such sets:
Xy :={wm}, Xo:={viva,vs}, Xs:={va,ml}.

Let Az == {X1, X2, Xa}. In order to have a 2-edge-connected orientation of
M, one has two orient the two edges of G = (V4, F) so that each member of
As admits at least one newly oriented entering edge. An easy case checking
shows that no such orientation may exist. Note, however, that for every
two members of Ajs, there is an orientation of G in which the indegree of
these two members is at least 1. This implies that any certificate of the
nonexistence of a 2-edge-conneced orientation of M which consists of in-
deficient sets must include all the three members of Aj3.

Note that A3 is neither a partition nor a co-partition of any subset of V.
The example therefore indicates why one needs more general families of sets
in the characterization of k-edge-connected orientable mixed graphs. The
result will also show that the use of submodular functions is unavoidable
in the solution of this purely graph-theoretic problem. The approach easily
extends to (k, l}-edge-connected orientability.
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4.1.3. Tree-compositions. For a proper non-empty subset § of V' we
introduce the notion of a tree-composition of §. Let {S1,...,5,} be a
partition of S and {Z,...,Zg} a partition of V — 8 (a,3 = 1). Let
T = (U, F) be a directed tree such that U := {s1,...,8q4,21,...,23} and
each directed edge goes from a z; to an s;. For each edge f of the tree, let
Ty denote the set of nodes of that component of T — f which is entered by
f. The family A := .“ﬁLGQV : f € F} is called a tree-composition of
S where p(v) = s; if v € S; and p(v) = z; if v € Z;. We will also say that a
partition or a co-partition of V is a tree-composition of V. Note that a
tree-composition A of § is cross-free and every element of S belongs to the
same number t of members of A and every element of ¥V — S belongs to £ -1
members. (If & = 3 = 1, then A consists of the single set 5. If =1 < a,
then A is a partition of §. If @ = 1 < 3, then A is a co-partition of S.)

Let us consider the subset § := {v1, vz} in the example above. We claim
that the family .43 forms a tree-composition of S. This can be seen by
defining S; := {1}, S2 := {v2}, Z1 = {v3}, Z4 := {va} and by letting T
be a directed tree on node set {s1, 32, 21, 22} having three edges: f1 = wv3vy,
.w.m = V3V, .} = 4 V3. Now H} = 51, N.b = meqmmw and MJ? = mmf mm_NL.
Let @{v1) = s1, o(v2) = 89, p{v3) = z1, @(vg) = z2. Then Az indeed arises
in the form described in the definition of tree-composition.

Suppose now that G = (V, E) is an arbitrary undirected graph. Let A
be a tree-composition of a subset § € V and j = uv an edge of G. Let
eus(A) denote the number of ut-sets in A. That is, ey3(A) is the number
of sets in A entered by the directed edge with tail v and head u. Let

e;{A) := max TWS.A\Cu mmemhi and
(14) ea(A) =3 _ &5(A).
JEE
Note that _m%A\C tmcmA\c_ < 1 with equality if and only if _ SN {u, ,&._ = 1.
The quantity e;(A) indicates the (maximal) possible contribution of an edge

j = uv to the sum ) ?mﬁk )i X € ,\L for any orientation G of G. Hence
ec{A) measures the total of these contributions and we have

(15) . Y 0a(X) < ec(A)

XecA

for any orientation G of G. Let D = (V, A) be a digraph and M = (V, A+E)
a mixed graph. Let s be a root-node of M. For integers 0 <! < k define
(X)) = (k— op(X)) THPC X CV—sand p(X) = (I - mGCQVJT if
se X CV.
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Theorem 4.4 [23]. A mixed graph M has a (k, {})-edge-connected orienta-
tion {with respect to root-node s) If and only if

(16) MU [pu(X) : X € A] < M [ec(A} : e € E]
holds for every tree-composition A.

In the example above, where k = [ = 2, .43 violates {16) since py(X) =1
for each X € A3 while eq(A3) = 2 since each of the two edges of G can
contribute to the indegree of the sets in .43 by one.

‘4.1.4. Special cases. While tree-compositions are inevitable in general,

in some important special cases they are not, as we have already seen in
Theorems 2.8 and 2.9. We now exhibit a common generalization of these
last two results when partition type conditions turn out to be sufficient. We
investigate the orientation problem when l-edge-connectivity and rooted
k-edge-connectivity are simultaneously required (that is, we want a (&, }-
edge-connected orientation).

Theorem 4.5 [18]. Let 0 < [ < k be integers. An undirected graph
G = (V, E) has a (k,l)-edge-connected orientation if and only if G is (k,1)-
partition-connected.

Another special case of the mixed graph (&, I)-edge-connected orienta-
tion problem when only partition type conditions are required is the case of
{ < 1. The case { = 0, which is a generalization of Theorem 2.9, appeared

in [16}.
Theorem 4.6. A mixed graph D+ G = (V, A+ E) with a root-node s has
a (k,0)-edge-connected (that is, s-rooted k-edge-connected) orientation if
and only if the number of cross-edges of G is at least
t
(17) > [k~ en(Vy)]
i=1
for every partition {Vp, V1,...,Vi} of V into non-empty parts with s € V4.
The case [ = 1 appeared in [23].

Theorem 4.7. A mixed graph D + G = (V, A + E) with a root-node s
has a (k, 1)-edge-connected orientation (that is, strongly connected and s-
rooted k-edge-connected) if and only if the number of cross-edges of G is
at least MMHH Tn - @bnS: + 1 for every partition {Vp,V1,.... Wi} of V into
non-empty parts with s € V.
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4.1.5. An augmentation result. The rooted edge-connectivity augmen-
tation problem (in digraphs) behaves nicely in the sense that even the min-
imum cost version is tractable. Suppose that we are given a digraph with a
special root-node s and we want to augment the digraph by adding a mini-
mum cost of new edges so as to have a rooted k-edge-connected digraph. At
the beginning of section 2, we mentioned that the minimum cost subgraph
problem is equivalent to the minimum cost augmentation problem, and in
this case the subgraph problem (:find in a digraph a minimum cost rooted k-
edge-connected subgraph) can be solved with the lelp of submodular flows,
see [17] and [54]. Here we mention only one consequence of this:

Theorem 4.8. Let D = (V,E) and H = (V, A) be two digraphs so that
their union D+ H = (V, EUA) is k-edge-connected from a root-node s. The
minimum number of edges of H whose addition to D results in a s-rooted
k-edge-connected digraph is equal to the maximum of ) Tn —op(X) :
XeF g , where the maximum is taken over all laminar families 7 of non-
empty subsets of V —s for which no edge of H enters more than one member

of F.

4.2. Connectivity orientation and augmentation combined

Now comes an account on some new developments making possible to com-
bine certain orientation and augmentation problems. In subsection 2.2 we
have already mentioned this type of results: Theorem 2.10 characterized
undirected graphs which can be augmented by adding at most v edges so
as to have a (k, 0)-edge-connected orientation. We also remarked that even
the minimum cost augmentation was tractable by using matroid techniques.
Here we consider the same problem for mixed graphs (where those matroid
techniques do not work.) Let us consider Theorem 4.6 and suppose that
the required orientation does not exists, that is, the necessary and sufficient
condition in (17) fails to hold. How many new undirected edges should be
added to M so as to have a (k, 0)-edge-connected orientation. Or more gen-
erally, what is the minimum cost of required new edges? By considering the
existing undirected edges having zero cost, this latter problem is equivalent
to the following.

Given a mixed graph with a root node s endowed with a non-negative
cost function on the set of undirected edges, delete a maximum cost of edges
so that the resulting mixed graph has a (k,0)-edge-connected orientation.
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S. Khanna, J. Naor and F. B. Shepherd [35] solved this problem in an even
more general form when the directed edges may also have costs and the two
possible directions ¢ = uv and ¢’ = vu of an undirected edge uv may have
different costs.

To be more specific, let M = (V, A + F) be a mixed graph consisting of
a digraph D = (V, A) and an undirected graph (V, E). Let s be a root-
node of M and let 4; = AU {c,¢” : ¢ € E}. Furthermore we are
given a nonnegative cost function ¢ : A; — R,. We say that a subset
F C A; of directed edges (or the subdigraph D’ := (V, F}) is orientation-
constrained if F' may contain at most one of the two possible directions e
and ¢” of any undirected edge e € E.

The (k,0)-orientable subgraph problem consists of finding a min-
imum cost (k,0)-edge-connected orientation-constrained subdigraph D’ =
(V, F) of Dy :=(V, A1),

Khanna, Naor and Shepherd considered the following linear program:

(18) din Y [e(N)z(f) : £ € Al

subject to

(19) 0<z(f) <1 for every directed edge f € A1
(20} z(e/) +a(e") <1 foreveryedge e€E
(21)

MU TUQV 1 f € Ay, [ enters Ng >k foreverysubset BCZCV —s.

Let P denote the polytope described by the three constraints. Clearly,
an integer vector in P is actually 0 — l-valued and the 0 — 1 vectors of
P are precisely the characteristic vectors of orientation constrained (&,0)-
edge-connected subdigraphs of [)y.

The main result of {35} is as follows:

Theorem 4.9 (Khanna, Naor, and Shepherd). The vertices of polytope
P are 0 — 1 vectors, or equivalently, P is the convex hull of (characteristic
vectors) of orientation-constrained (k, 0)-edge-connected subdigraphs of D;.

By relying on linear programming duality, this theorem provides a min-
max formula for the minimum cost of a solution. We avoid formulating
this since the result can be even further improved [29]. We emphasize,
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however, that the improvement uses only known ideas, and the main point
here is the recognition of Khanna, Naor, and Shepherd that even this general
framework is tractable by standard techniques.

Theorem 4.10. The linear inequality system of (19), (20}, and (21) is
totally dual integral {implying the integrality of P). Moreover, P is a
submodular flow polyhedron.

This theorem enables us to solve the problem algorithmically by invoking
a submedular flow algorithm. Furthermore, one has a better structured
duality theorem. For the sake of simplicity we formulate it only for 0 — 1-

valued cost functions.

Theorem 4.11. Let M = (V, A+ E) be a mixed graph with a root-node
s endowed with a 0 — 1 valued cost function ¢ : AUE — {0,1}. The
minimum cost of a mixed subgraph of M which has a (k,0)-edge-connected
orientation is equal to the maximum of

tk —ec(F) -y [en(X): X ¢ L +a(F),

where the maximum is taken over all laminar families F of t (t > 0) subsets
of V —s. Here G = (V, E) is the undirected part of M, eg(F) is defined
in (14), and q(F) denotes the number of (directed or undirected) edges of
cost 1 which enter at least one member of F.

This is a common generalization of Theorems 4.6 and 4.8. When ¢ is
zero on all directed edges, we are back at our starting problem of finding a
smallest set of new undirected edges to be added to a mixed graph to have
a (k,0)-edge-connected orientation.

So, we can solve quite reassuringly the combined orientation/augmen-
tation problem in mixed graphs when the target is (k, 0)-edge-connectivity.
Wouldn't it be natural to lift our horizon to (k,!)-edge-connectivity? The
directed (k,{)-edge-connectivity augmentation problem is solved by The-
orem 3.16. The (k,[)-edge-connectivity orientation problem is solved for
undirected graphs by Theorem 4.5 (and even for mixed graphs by Theorem
4.4). We show now how to solve the problem of augmenting an undirected
graph by adding undirected edges so that the resulting graph has a (k,0)-
edge-connected orientation. Due to the relatively complicated nature of
tree-compositions in Theorem 4.4, so far we have not taken courage to try
to attack the corresponding augmentation problem for mixed graphs. And
even for undirected graphs the minimum cost version is out of question
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because the NP-complete problem of finding a Hamiltonian circuit prob-
lem is a special case. We consider the degree-specified and the minimum
augmentation problems as well. The following results are taken from [28].

Theorem 4.12. Let G = (V, E) be an undirected graph, k > [ > 0 Integers,
and m =V — Z, a degree-specification for which m{V) is even. There
exists a graph H = (V, A) so that dy(v) = m(v) for every v € V and so
that G + H is (k,!)-tree-connected (= (k,{)-partition-connected = (k,D)-
edge-connected orientable) if and only if

(22) m(V)/2 > (t = Dk + 1 — eg(F)
and
(23) minm(V — X) > (t = Dk +1 - eq(F)

hold for every partition F of V into t > 2 non-empty parts. .

Let us indicate briefly the proof of necessity. If G + H has a {k,1)-
edge-connected orientation, then it is (k,{)-partition-connected, that is,
ec+u(F) 2 k(t — 1) + 1 and hence eg(F) > k(t — 1) +1 — eg(F). I
H satisfies the degree-specification, then m(V)/2 = |A] > ey(F) and
m(V — X) > ey {F) for every X € F from which both (22} and (23) follow.

This result might be interesting even in the special case of [ = {:

Corollary 4.13. Let G = (V, E) be an undirected graph, k > 1 an integer,
and m =V — Z, a degree-specification for which m(V) is even. There
exists a graph H = (V, A} so that dg(v}) = m(v) for every v € V and so
that G + H is k-tree-connected if and only if

(24) m(V)/2 > (t - Dk - ea(F)
and
{25) mummwﬂiﬂikv > (¢ — Dk — eq(F)

hold for every partition F of V into t > 2 non-empty parts.

The following theorem is a bit out of the main line of the paper since the
target of the augmentation is not a connectivity property. As a counterpart
to tree-packing in corollary 4.13, here our target is tree-covering:
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Theorem 4.14 [28]. Let G = (V,E) be an undirected graph, k N 1 an
integer, and m =V — Z, a degree-specification for which m(V') is even.
There exists a graph H = (V, A) so that dy(v) = m(v) for every v € V and
so that G + H is the union of k forests if and only if

(26) m(X) — m(V)/2 < k(|X| = 1) —ic(X)

for every § ¢ X C V, where ig(X) denotes the number of edges of G
induced by X.

Again it is useful to prove the necessity. If H is a graph for which G+ H
is the union of k forests, then eqyy < wﬁ X| - C holds for every subset
X C V, that is, i5(X) < k(|X| — 1) — ig(X). If H satisfies the degree-
m_ummmnmﬂo? then |4| = m(V)/2 and at most m(V — X) edges may be
incident with an element of V — X. So at least m(V)/2 —m(V — X) edges
are induced by X in H and hence m(X)—m(V)/2=m(V)/2-m(V -X) <
i (X) < k(| X} - 1) —ic(X).

To conclude this subsection, we cite a result from [28] on the minimiza-
tion form of (k,!)-tree-connectivity augmentation.

Theorem 4.15. Let G = (V, E) be an undirected graph. It is possible to
add at most v new edges to G so that the resulting graph G+ E.Qﬁ )-tree-
connected (that is, G* has a (k,1)-edge-connected orientation) if and only

if

(27) 7> k(= 1) + L= ea(F)
holds for every partition F of V with t members, and
(28) 2y 2 tik + tal — eg(F)

holds whenever F is the union a partition Fi of a subset Z < < and a
co-partition F» of Z so that |Fi| =& (i = 1,2) and so that F| is a finer
partition of Z than partition {X : V- X & Fa}.
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'4.3. Directed edge-connectivity augmentation

In [25] we proved a general min-max formula concerning minimum coverings
of a so-called bi-supermodular function by directed graphs. This result
implies Theorem 3.16 (which has had an independent and simpler proof)
and implies the following, as well.

Theorem 4.16. Let D = (V, A) be a directed graph and S, T' two (not
necessarily disjoint) non-empty subsets. It is possible to add at most v §7-
edges so that the resulting digraph is k-edge-connected from 8 to T if and
only if

(29) Slk—ep(X): XeF] <~

holds for every family F of pairwise ST-independent sets, where two sets
X, Y are ST-independent if XNY NT =0 or S— (XUT) =

In sharp contrast with the existence of a good characterization in The-
orem 3.12 coneerning local edge-connectivity augmentations of undirected
graphs, the directed counterpart of this problem is NP-complete [19] even
in the special case when the requirement is one between the nodes of a spec-
ified subset T" of nodes and zero otherwise. (That is, given a digraph, add a
minimum number of new edges so that there is a path from every element
of T' to every other element of T".) Recently, however, I found the following
characterization for |T| = 2 [24]. (This result seems to be independent of
the rather general main theorem of [25].)

Theorem 4.17. Let D = (V,E) be a digraph with two specified nodes
s, t and let k, I be two non-negative integers. Let S, T be non-empty
subsets of V' so that every st-set X with pp(X) < k and every ti-set X
with op(X) < is entered by an ST-edge. D can be augmented by adding
at most -y (possibly parallel) ST-edges so that in the resulting digraph there
are k edge-disjoint paths from s to t and there are | edge-disjoint paths from
ttosifand only ify > k—pp(X) whenevert e X CV —s, v > 11— op(X)
whenever s € X C V —t, and v > (I~ op(X)) + (k — op(Y')) holds
Ebmbmd\mwmmk.mmM\EHQNDH\D\HH@SNC%MM.



130 A. Frank

5. CONSTRUCTIVE CHARACTERIZATIONS

We have already seen constructive characterizations of k-edge-connected
graphs and digraphs (Theorems 2.13, 3.2, 2.14), of (k, 0)-edge-connected
digraphs (2.15) and k-tree-connected graphs (2.16}. For integers 0 <{ <k
we offer the following:

Conjecture 5.1. A directed graph D is (k, I)-edge-connected if and only if
it can be built from a node by the following two operations: (}) add a new
edge, (jj) pinch i (I <1 < k) existing edges with a new node z, and add
k — i new edges entering z and leaving existing nodes. An undirected graph
is (k,1)-tree-connected (= (k, 1)-partition-connected) if and only if it can be
built from a node by the following two operations: {j) add a new edge, (i)
pinch i (I <1 < k) existing edges with a new node z, and add k — 1 new
edges connecting z with existing nodes.

Note that by Theorem 4.5 the undirected version of the conjecture
follows from the directed one. As mentioned above, the case I = 01is settled
by Theorem 2.15. Jointly with Zoltan Kiraly [27), we characterized (k, k— 1)-
edge-connected digraphs (and hence (k, k — 1)-partition-connected graphs,
as well). At the other end of the range of [, recently in [31] we proved the
case | = 1. All other cases of the conjecture are open (for example, when
k=4,1=2).

The theorem in [27] concerning the case [ = k — 1, in turn, can be used
to derive the following orientation result. Let G = (V, E) be an undirected
graph. A subset T of nodes is called G-even if |T| + | E| is even. We call an
orientation of ¢ T-odd if the indegree of a node v is odd precisely when v
belongs to T. The following is taken from [27].

Theorem 5.2. An undirected graph G has a k-edge-connected and T-odd
orientation for every G-even subset T if and only if G is (k+1, k)-partition-
connected.
Corollary 5.3. A (2k + 2)-edge-connected graph always admits a k-edge-
connected orientation in which the indegree of all nodes but possibly one
are odd.

As mentioned above, the proof is based on the constructive characteriza-

tion of {k+ 1, k)-partition-connected graphs. It would be interesting to have
a simple direct proof of the corollary, even for the special case k = 1 when it
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asserts that a 4-edge-connected graph has a strongly connected orientation
in which every node but possibly one is of odd indegree.

The motivation behind such a theorem is the natural attempt to have
a better understanding of problems where both parity and connectivity
are involved. In Theorem 5.2 we charaterized graphs having a certain
orientation for every G-even subset T. Tt would be interesting to know
the necessary and suflicient condition of the existence of a k-edge-connected
T-odd orientation of a graph G for one specified G-even subset T. This is
open. However, the analogous question concerning k-tree-connectivity has
been settled in [26].

Theorem 5.4. Let G = (V, E) be a graph with a root-node s. Let T be
a G-even subset of V —s. G has a (k,0)-edge-connected (= s-rooted k-
edge-connected} T-odd orientation if and only if the number of cross edges
of every partition P := {V,..., Wi} of V into at least two non-empty parts
is at least

k(t — 1) + o(P),

where o{P) (which depends also on G, k, and T') denotes the number of
those parts X of P for which | X NT| — i¢(X) — k Is odd.

As a possible counterpart to Corollary 5.3, we can derive:

Corollary 5.5. Let G = (V, E) be an undirected graph with |E{+|V| even.
If G is (k + 1)-tree-connected, then G has a (k,0)-edge-connected V-odd
orientation.

But this is straightforward anyway since we can take k+ 1 edge-disjoint
trees, orient the edges of &k of these away from a root node s, orient the
remaining edges not in the last tree Fi,; arbitrarily, and finally, orient the
edges of Fji41 s0 as to meet the parity prescription.

A problem related to the constructive characterization of k-edge-con-
nected digraphs is to find a characterization of (acyclic) digraphs whose all
directed cuts admit at least k edges. Such an approach could perhaps be
used to prove D). Woodall's long-standing conjecture:

Conjecture 5.6. If every directed cut of a digraph D has at least k edges,
then the edge-set of I? can be partitioned into k parts so that each part has
at least one edge from every directed cut.
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Woodall’s conjecture can easily be seen to be true for & = 2 but no
answer is known even for k = 3 and for planar digraphs. (In which case,
after planar dualization, the conjecture reads as follows: in a simple pla-
nar digraph, the edge-set can be coloured by three colours so that every
directed triangle contains each colour.) A straightforward generalization
of Woodall’s conjecture concerning a crossing family of directed cuts was
disproved by A. Schrijver [53] even for k = 2.

We call a graph G = (V, E) nearly k-tree-connected if &G + e is the
union of k& edge-disjoint spanning trees for every possible new edge e = uv
(u,v € V). Tt follows that such a graph has exactly kV]- 1) —1 edges and
that every subset X C V with |X{ > 2 induces at most E(|X|--1) — 1 edges.
A theorem of Nash-Williams [49] implies that these properties actually
characterize nearly k-tree-connected graphs.

This notion for & = 2 (under different name) has been introduced in the
theory of graph rigidity. By combining theorems of L.. Henneberg [33] and
of G. Laman [37], one obtains the following constructive characterization of
nearly 2-tree-connected graphs.

Theorem 5.7 (Henneberg and Laman). A graph G is nearly 2-tree-
connected if and only if G can be constructed from one (non-loop) edge
by the following two operations: (i) add a new node z and connect z to {wo
distinct existing nodes, (ii) subdivide an existing edge uv by a node z and
connect z to an existing node distinct from v and v.

Jointly with Laszlé Szegd [31], we were able to extend this result for

general k.

Theorem 5.8. A graph G is nearly k-tree-connected if and only if G can
be constructed from an initial graph, consisting of two nodes and k — 1
parallel edges, by the following operation: choose a subset F of j existing
edges (0 < j < k — 1), pinch the elements of F with a new node z, and
add k — j new edges connecting z with other nodes so that there are no k

parallel edges among these new edges.

(k, 1)-tree-connectivity has meant that the graph has k disjoint spanning
trees even after deleting any edge. What can be said about graphs which
can be covered by k forests even after adding any new edge? We call such
a graph k-sparse. By a theorem of Nash-Williams, we know that a graph
G = (V, F) is k-sparse if and only if every subset X of nodes with at least
two elements induces at most k(|X|— 1) — 1 edges. Note that k-sparse
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graphs with k(|V| — 1) — 1 edges are exactly the nearly k-tree-connected
graphs.

Theorem 5.9 {31]. An undirected graph G = (V, E) is k-sparse if and only
if G can be built from a single node by applying the following operations.
(i) add a new node z and at most k new edges ending at z so that no k
parallel edges can arise, (i} choose a subset F of { existing edges {1 <i <
k— 1), pinch the elements of F with a new node z, and add k —i new edges
connecting z with other existing nodes so that there are no k parallel edges
in the resulting graph.

6. HYPERGRAPHS

So far our interest has been fully occupied by graphs and digraphs. In this
last section we let hypergraphs take over the center stage. A hypergraph
H = (V,F) consists of a ground-set V' and a family F of (not necessarily
distinct) subsets of V, called hyperedges. The cardinality |Z| of a hyperedge
Z is called its size. We are naturally back at undirected graphs when each
hyperedge is of size two. Such a hyperedge will be referred as a graph-edge.
The maximum size of a hyperedge is called the rank of 4. Throughout we
will assume that the size of every hyperedge is at least two.

It is often useful to associate a bipartite graph B = By = (V,Ur; E)
with hypergraph H as follows. The elements of U/x correspond to the
hyperedges of H and a node v € V is connected to a node ux € Ur
precisely if u € X. In this correspondence the size of a hyperedge Z will be
the degree of its corresponding node uz in B.

For a subset X C V let dg(V) denote the number of hyperedges of
intersecting both X and V' — X. For a specified subset £ C V, a hypergraph
H is called k-edge-connected in R if dy(X) > k for every subset X C V
separating R. (X is said to separate R XNR# P, R-X #0.) fR=V,
the hypergraph itself is called k-edge-connected. When k = 1 we simply
say that H is connected.

From the definitions it follows that H is k-edge-connected in R if and
only if the elements of R belong to one component of the graph arising from
the associated bipartite graph (V, Ur; E) by deleting at most £ — 1 elements
of Uz. By a version of Menger’s theorem, it follows that B has this property
if and only if there are k paths between any pair of nodes u, v of R so that
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each node of Uz belongs to at most one of these paths (but the paths may
share freely elements of V).

This implies that a hypergraph H is k-edge-connected in R if and only
if there are k hyperedge-disjoint hyperpaths between every pair of nodes
u,v € R. Here a hyperpath means a sequence {uy = u, F1,ug, Fa,o .oy ue, £,
U1 1= v} so that u;, uiy) € FEeFfori=1,...,t

Theorem 2.4 has been extended by J. Bang-Jensen and B. Jackson to
hypergraphs [2].

Theorem 6.1 (Bang-Jensen and Jackson). A hypergraph H = (V, A) can
be made k-edge-connected by adding at most vy new graph-edges if and only
if 2k —du(X) : X € P) < 2v holds for every sub-partition P of V and
¢(H') — 1 <+ for every hypergraph H' = (V, A’} arising from H by leaving
out k— 1 hyperedges where c(H') denotes the number of components of H'.

In [4] we extended this to the case when the target is k-edge-connectivity
in a specified subset X C V.

For ¢ > 3, T. Kiraly [36] recently to characterized hypergraphs which
can be made k-edge-connected by adding at most v hyperedges of size at
most ¢g. The special case, when H is already (k — 1)-edge-connected, was
solved by T. Fleiner and T. Jordéan [14}.

Let 7 be again a requirement function on the set of unordered pairs of
nodes, We say that H is r-edge-connected if there are at least r(u,v) edge-
disjoint hyperpaths between every pair of nodes u, v. Again by Menger’s
theoreni, this is equivalent to requiring dy (X) > R (X) for every non-empty
subset X C V.

Since local edge-connectivity augmentation is nicely tractable for undi-
rected graphs, one may want to extend this to hypergraphs and determine
the minimum number of new graph edges whose addition to H results in an
r-edge-connected hypergraph. However, B. Cosh, B. Jackson and Z. Kiraly
[8] pointed out that this problem is NP-complete even if r is (1 — 2)-valued.
For 3-uniform hypergraphs, however, the local edge-connectivity augmenta-
tion problem is tractable in the case when the newly added hyperedges are
of size three or size two and for both types the number of new hyperedges
are specified. This follows from Theorem 3.22 of Jordan and Szigeti and
is based on the observation that intuitively says that the contribution of a
hyperedge {,b, ¢} of size three to the edge-connectivity is the same as that
of a star sraph with three edges, that is, a graph with node set {z,a,b,¢c}
and edge set {za, zb, zc}.
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Another interesting version of the local edge-connectivity augmentation
of hypergraphs was solved nicely by Z. Szigeti [55].

Theorem 6.2 (Szigeti). Given a requirement function r, a hypergraph H
can be made r-edge-connected by adding hyperedges with total size at most
v if and only if 3, (R.(Xi) — du(Xs)) < + holds for every subpartition
.N_L...vk.n of V.

The material below is taken from [30]. A hypergraph H = (V,&) is
called connected if there is a hyperedge intersecting both X and V — X
for every non-empty, proper subset X of V. The hypergraph is partition-
connected if there are at least ¢ — 1 hyperedges intersecting at least two
parts for every t-partition of V. For graphs these two notions coincide but
for hypergraphs they do not (consider the hypergraph on three elements a,
b, ¢ having a single hyperedge {a, b, c}).

The connectivity of a hypergraph is equivalent to the connectivity of
the bipartite graph associated with H. Therefore deciding whether a hy-
pergraph is connected is an easy task. Testing a hypergraph for partition-
connectivity is not so straightforward. To this end we call a hypergraph
H = (V,F) wooded if it is possible to select two elements from each hy-
perdege of H so that the selected pairs, as graph edges, form a forest.

Theorem 6.3 (Lovdsz). A hypergraph H = (V,F) is wooded if and only
if H satisfies the strong form of the Hall condition, that is, the union of any
J hyperedges (j > 1) has at least j + 1 nodes.

Proof. {outline) The necessity is staightforward. To see the sufficiency,
consider the bipartite graph B = (V,U; F) associated with H. Since the
Hall condition is satisfied, there is a matching M of B covering the elements
of U. Let § denote the set of nodes not covered by M. Orient the elements
of M toward V while all other edges toward U. It follows from the strong
form of the Hall condition that each node of B is reachable from S. Hence
there is a spanning branching of B rooted at S and this determines the
required forest. m

Theorem 6.4 (Lorea, [38]). Given a hypergraph H = {V, &), the wooded
subhypergraphs of H form a family of independent sets of a matroid on
ground-set £.

Theorem 6.5 [30]. A hypergraph H = (V, £} is partition-connected if and
only if H coniains a wooded subhypergraph (V, F) with |V|—1 hyperedges.
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A hypergraph is k-partition-connected if there are at least k(¢ — 1)
hyperedges intersecting at least two parts for every t-partition of V.

Tutte’s Theorem 1.2 characterizes those graphs that ¢an be decomposed
into k edge-disjoint connected (or equivalently, partition-connected) span-
ning subgraphs, asserting that exactly the k-partition-connected graphs
have this property. The problems of decomposing a hypergraph into k
connected or into k partition-connected spanning subhypergraphs are not
equivalent anymore. The first one can be shown to be NP-complete, while
the second one is tractable.

Theorem 6.6 [30]. A hypergraph H = (V,F) can be decomposed into
k partition-connected subhypergraphs if and only if H is k-partition-con-
nected.

The following corollary is well-known for graphs (case ¢ = 2).

Corollary 6.7. If a hypergraph H of rank at most q is (kq)-edge-connected,
then H can be decomposed into k partition-connected (and thus connected)

spanning subhypergraphs.

Proof. By Theorem 6.6 it suffices to show that H is k-partition-connected.
Let P = {V},...,V;} be a partition of V. There are at least kg hyperedges
intersecting both V; and its complement for each . Since every hyperedge
is of cardinality at most ¢, the total number of hyperedges intersecting at
least two members of P is at least kqt/q = kt > k(t — 1). Therefore H is
indeed k-partition-connected and Theorem 6.6 applies. ™

6.1. Directed hypergraphs

There may be several choices to define directed hypergraphs, we work with
the following definition. A directed hyperedge (Z, ) is a pair of a subset
Z of the ground-set V and an element z of Z. The element z is called the
head of Z. By a directed hypergraph we mean a collection of directed
hyperedges. This obviously generalizes the notion of directed graphs. A
disadvantage of this definition is that the symmetry between the head and
the tail of a directed graph edge is lost. On the positive side of this definition
is that several results concerning edge-connectivity of directed graphs can
be carried over nicely to directed hypergraphs.

We say that a directed hyperedge (Z,z) enters a subset X C V if
the head z is in X but Z — X # {1 A directed hypergraph is called
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k-edge-connected if there are at least k hyperedges entering each non-
empty proper subset of V. More generally, for integers 0 <! < k, a directed
hypergraph is called (k,)-edge-connected if there is a node s € V' so that
each non-empty subset X C V — s is entered by at least & hyperedges and
each subset X C V containing s is entered by at least [ hyperedges.

By orienting an {undirected) hypergraph we mean the operation that
consists of assigning a head to every hyperedge.

Theorem 6.8 [29]. A hypergraph has a (k,l)-edge-connected orientation
if and only if there are at least kt — k + 1 hyperedges intersecting more than
one part of every t-partite partition of V.

Finally we mention that Edmonds’ Theorem 1.3 can also be carried over
to hypergraphs. To this end we say that a directed hypergraph H is a
spanning hyper-arborescence of root s if A has [V} -1 hyperedges whose
heads are distinct elements of V — s and H is (1, 0}-edge-connected.

Theorem 6.9 [29]. A directed hypergraph contains k disjoint spanning
hyper-arborescences of root s if and only if H is (k, 0)-edge-connected {with
respect to s).

Note that the special case { = 0 of Theorem 6.8 combined with Theorem
6.9 immediately implies Theorem 6.6 (without using matroids).

The paper [5] of Berg, Jackson and Jordin contains extensions of
Mader’s directed splitting lemma and of the directed augmentation The-
orem 2.6 to directed hypergraphs.
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