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Abstract

ABSTRACT In [18], L. Lovász provided simple and short proofs for two classic min-max theorems
of graph theory by inventing basic techniques to handle sub- or supermodular functions. In this
paper, we want to demonstrate that these ideas are alive after thirty years of their birth.

1 Introduction

Sub- and supermodular set functions play an important role in proving theorems in graph theory. L. Lovász
[18] introduced a submodular technique to derive the disjoint arborescences theorem of J. Edmonds [2] and
another one to prove a min-max result of C. Lucchesi and D. Younger [19] on minimum coverings of dicuts
of a digraph. It appears that this paper is the first occurence of the so called uncrossing procedure (apart
from a Hungarian report reviewing Lovász’ solution to a problem of a math student competition, see [16]).
Uncrossing became later a particularly efficient proof techniqe in submodular optimization

In the last fifteen years it turned out that several results and techniques developed for sub- or supermodular
set functions can be extended to functions defined on pairs of sets or on bi-sets. Given a ground-set V , we
call a pair X = (XO , XI) of subsets a bi-set if XI ⊆ XO ⊆ V where XO is the outer member and XI is
the inner member of X. By a bi-set function we mean a function defined on the set of bi-sets of V . We will
tacitly identify a bi-set X = (XO, XI) for which XO = XI with the set XI and hence bi-set functions may be
considered as straight generalizations of set functions.

While supermodular set functions are typically used for handling only edge-connectivity problems, super-
modular bi-set functions can be applied for handling both node- and edge-connectivity problems. For example,
the directed edge-connectivity augmentation problem was solved in [9] via crossing supermodular set func-
tions while a solution to its node-connectivity counterpart was derived from a min-max theorem on covering
crossing supermodular bi-set functions [11]. Similarly, an answer to the cheapest rooted k-edge-connected sub-
graph problem followed from a min-max result on covering intersecting supermodular functions by digraphs
[5, 6] while the rooted k-node-connected version was derived from an analogous result on supermodular bi-set
functions [10].

One goal of this work is to exhibit the evolution of Lovász’ proof technique given for proving Edmonds’
arborescences theorem. In particular, we extend a theorem of L. Szegő [22] on disjoint coverings of set systems
to those of bi-set systems. This will imply a recent theorem of N. Kamiyama, N. Katoh, and A. Takizawa [14]
which is a proper extension of Edmonds’ disjoint arborescences theorem.

Second, by using the uncrossing technique, a new min-max theorem will be proved on minimal coverings
of two fully supemodular bi-set functions by digraphs. This may be considered as a generalization of (the
cardinality version of) Edmonds’ (poly)matroid intersection theorem [1, 3]. It also provides an answer to a
simultaneous connectivity augmentation problem where two given digraphs on the same node set is to be
simultaneously augmented by adding a minimum number of new edges so that the resulting digraphs includes
ki gi-independent paths from si to ti (i = 1, 2) where gi-independence of paths is a notion including both
edge-disjoint and node-disjoint paths.

In the sequel we use the following notions and notation. The set of all bi-sets on ground-set V is denoted by
P2(V ) = P2. The intersection ∩ and the union ∪ of bi-sets is defined in a staightforward manner: for X, Y ∈ P2

let X ∩ Y := (XO ∩ YO, XI ∩ YI), X ∪ Y := (XO ∪ YO, XI ∪ YI). We write X ⊆ Y if XO ⊆ YO, XI ⊆ YI and
this relation is a partial order on P2. Accordingly, when X ⊆ Y or Y ⊆ X, we call X and Y comparable. A
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family of pairwise comparable bi-sets is called a chain. Two bi-sets X and Y are independent if XI ∩YI = ∅
or V = XO ∪ YO. A set of bi-sets is independent if its members are pairwise independent. We call a set of
bi-sets a ring-family if it is closed under taking union and intersection. Two bi-sets are intersecting if
XI ∩ YI 6= ∅ and properly intersecting if, in addition, they are not comparable. Note that XO ∪ YO = V
is allowed for two intersecting bi-sets. In particular, two sets X and Y are properly intersecting if none of
X ∩ Y, X − Y, Y − X is empty. A family of bi-sets is called laminar if it has no two properly intersecting
members. A family F of bi-sets is intersecting if both the union and the intersection of any two intersecting
members of F belong to F . (In particular, a family L of subsets is intersecting if X ∩ Y, X ∪ Y ∈ L whenever
X, Y ∈ L and X ∩ Y 6= ∅.) A laminar family of bi-sets is obviously intersecting. Two bi-sets are crossing
if XI ∩ YI 6= ∅ and XO ∪ YO 6= V and properly crossing if they are not comparable. A bi-set (XO , XI)
is trivial if XI = ∅ or XO = V . We will assume throughout the paper that the bi-set functions in question
are integer-valued and that their value on trivial bi-sets is always zero. In particular, set functions are also
integer-valued and zero on the empty set.

A directed edge enters or covers X if its head is in XI and its tail is outside XO. An edge covers a family
of bi-sets if it covers each member of the family. For a bi-set function p, a digraph D = (V, A) is said to cover
p if ̺D(X) ≥ p(X) for every X ∈ P2(V ) where ̺D(X) denotes the number of edges of D covering X. For a
vector z : A → R, let ̺z(X) :=

∑

[z(a) : a ∈ A, a covers X]. A vector z : A → R covers p if ̺z(X) ≥ p(X)
for every X ∈ P2(V ).

A bi-set function p is said to satisfy the supermodular inequality on X, Y ∈ P2 if

p(X) + p(Y ) ≤ p(X ∩ Y ) + p(X ∪ Y ). (1)

If the reverse inequality holds, we speak of the submodular inequality. p is said to be fully supermodular
or supermodular if it satisfies the supermodular inequality for every pair of bi-sets X, Y . If (1) holds for
intersecting (crossing) pairs, we speak of intersecting (crossing) supermodular functions. Analogous
notions can be introduced for submodular functions. Sometimes (1) is required only for pairs with p(X) > 0
and p(Y ) > 0 in which case we speak of positively supermodular functions. Positively intersecting or
crossing supermodular functions are defined analogously. A typical way to construct a positively supermodular
function is replacing each negative value of a fully supermodular functions by zero.

Proposition 1.1 The in-degree function ̺D on P2 is submodular. •

2 Packing arborescences

2.1 Basic cases

An arborescence is defined to be a directed tree in which every node is reachable from a specified root-node
r0. The starting point is a classical result of J. Edmonds [2]. A digraph D is called rooted (more specifically,
r0-rooted) k-edge-connected with respect to a root-node r0 ∈ V if the in-degree of every non-empty subset
of V − r0 is at least k. By the directed edge-version of Menger’s theorem this is equivalent to requiring that
there are k edge-disjoint paths from r0 to every node of D.

THEOREM 2.1 (Edmonds’ disjoint arborescences: weak form) Let D = (V, A) be a directed graph
with a designated root-node r0. D has k disjoint spanning arborescences of root r0 if and only if D is rooted
k-edge-connected, that is,

̺(X) ≥ k whenever X ⊆ V − r0, X 6= ∅. • (2)

Edmonds actually proved his theorem in a stronger form where the goal was packing k edge-disjoint
branchings of given root-sets. A branching is a directed forest in which the in-degree of each node is at most
one. The set of nodes of in-degree 0 is called the root-set of the branching. Note that a branching with
root-set R is the union of |R| node-disjoint arborescences (where an arborescence may consist of a single node
and no edge but we always assume that an arborescence has at least one node). For a digraph D = (V, A)
and root-set ∅ ⊂ R ⊆ V a branching (V, B) is called a spanning R-branching of D if its root-set is R. In
particular, if R is a singleton consisting of an element s, then a spanning branching is a spanning arborescence
of root s.

THEOREM 2.2 (Edmonds’ disjoint branchings) In a digraph D = (V, A), let R = {R1, . . . , Rk} be a
family of k non-empty (not necessarily disjoint or distinct) subsets of V . There are k edge-disjoint spanning
branchings of D with root-sets R1, . . . , Rk, respectively, if and only if

̺(X) ≥ p(X) whenever ∅ ⊂ X ⊆ V (3)

where p(X) denotes the number of root-sets Ri disjoint from X. •
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Remark In the special case of Theorem 2.2 when each root-set Ri is a singleton consisting of the same node
r0, we are back at Theorem 2.1. Conversely, when the Ri’s are singletons (which may or may not be distinct),
then Theorem 2.2 easily follows from Theorem 2.1. However, for general Ri’s no reduction is known.

The original proof of Edmonds is pretty complex and does not seem to transform into a polynomial time
algorithm. However, R.E. Tarjan observed [23] that Theorem 2.2 itself gives rise to such an algorithm provided
an MFMC subroutine is available. It should be emphasized that this approach does make use of the theorem
and does not provide an alternative proof of it. On the other hand, L. Lovász [18] gave a simple proof of
Edmonds’ theorem and this proof is algorithmic. Although Lovász derived only the weak form of Edmonds’
theorem, his proof carries over to the strong one almost word for word.

It is interesting to formulate Edmonds’ Theorem 2.2 in the following equivalent form. Let A0 denote the
set of edges of D = (V, A) leaving the root-node r0 and let A∗ := A − A0.

THEOREM 2.3 (Edmonds’ disjoint arborescences: strong form) Let D = (V, A) be a directed graph
with a designated root-node r0. Let A0 denote the set of edges leaving r0 and A∗ := A − A0. Let A =
{A1, . . . , Ak} be a partition of A0 into k sets. Then D has k disjoint spanning arborescences F1, . . . , Fk of root
r0 so that Fi ∩A0 ⊆ Ai for i = 1, . . . , k if and only if ̺A∗(X) ≥ p(X) for every non-empty subset X of V − r0

where p(X) denotes the number of those members of A which contain no edges entering X. •

Note that if the requested arborescences exist, then they can be chosen in such a way that Fi ∩ A0 = Ai.
Yet another equivalent formulation of the strong theorem is as follows.

THEOREM 2.4 (Edmonds’ disjoint arborescences: equivalent strong form) Let D = (V, A) be a
digraph whose node set is partitioned into a root-set R = {r1, . . . , rk} and a terminal set T . Suppose that no
edge of D enters any node of R. There are k disjoint arborescences F1, . . . , Fk in D so that Fi is rooted at
ri and spans T + ri for each i = 1, . . . , k if and only if ̺D(X) ≥ |R − X| for every subset X ⊆ V for which
X ∩ T 6= ∅. •

This follows easily by applying Theorem 2.2 to the subgraph D′ of D induced by T with the choice Ri = {v :
there is an edge riv ∈ A} (i = 1, . . . , k). The same construction shows the reverse implication, too.

It has been tempting to find further extensions of the strong version of Edmonds’ theorem but straightfor-
ward attempts failed. One natural conjecture, for example, was already disproved by Lovász in his original
paper: even if there are k(= 2) edge-disjoint paths from a root-node r0 to every element of a specified terminal
set T ⊆ V − r0, the digraph not necessary includes k edge-disjoint arborescences of root r0 so that each of
them contains every node of T . Actually this problem can be shown to be NP-complete. In another possible
variation, there are k specified subsets Vi of V each containing a root-node ri. The problem consists of finding
disjoint arborescences Fi (i = 1, . . . , k) so that each Fi is rooted at ri, contains no node outside Vi, and
spans Vi. This problem is NP-complete even in the very special case when k = 2, V1 = V and V2 = V − t
for a specified node t. Indeed, it can be shown that a polynomial algorithm to this special case gives rise
to a polynomial algorithm for the two edge-disjoint paths problem of a digraph, a well-known NP-complete
problem.

However, we point out that the strong form of Edmonds’ theorem implies its sharpening when the following
result of Frank and Tardos [7] (which, incidentally, had been motivated by another old paper of Lovász [17])
is used.

THEOREM 2.5 Let G = (V, U ; E) be a simple bipartite graph, p : 2V → Z+ a positively intersecting
supermodular function, and g : V → Z+ an upper bound function. There is a subset F ⊆ E of the edges of G
for which

|ΓF (X)| ≥ p(X) for every X ⊆ V (4)

and
dF (v) ≤ g(v) for every node v ∈ V (5)

if and only if
|ΓE(X)| + g(Z) ≥ p(X ∪ Z) (6)

holds for every pair of disjoint subsets X and Z of V where ΓF (X) denotes the set of neighbours of X in the
graph induced by F ⊆ E. •

Now the extension of Theorem 2.2 is as follows. Note that none of the equivalent Theorems 2.2, 2.3, 2.4
implies it immediately.

THEOREM 2.6 Let D = (V, A) be a directed graph and g : V → Z+ an upper bound function. Let
U = {U1, . . . , Uk} be a family of k subsets of V . There is a family R = {R1, . . . , Rk} of non-empty subsets of
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V and k disjoint spanning branchings of D with root sets R1, . . . , Rk, respectively, in such a way that Ri ⊆ Ui

for i = 1, . . . , k and each node v ∈ V belongs to at most g(v) members of R if and only if

u(X) + g(Z) ≥ k − ̺D(X ∪ Z) (7)

for every pair X, Z of disjoint subsets of V with non-empty union where u(X) denotes the number of U ′

is
intersecting X.

Proof. Suppose first that the requested family R and the k branchings exist. For disjoint subsets X and Z of
V , at most u(X) members of R intersect X due to Ri ⊆ Ui, and at most g(Z) members of R intersect Z since
each element z of Z belongs to at most g(z) members of R. Therefore there must be at least k− u(X)− g(Z)
members of R which are disjoint from X ∪Z and hence the in-degree of X ∪ Z must be at least this number,
that is, (7) is necesseary.

To see the sufficiency, construct a bipartite graph G = (V, U ; E) where U = {u1, . . . , uk} and a node ui

is connected with v ∈ V precisely if v ∈ Ui. Let a set function p on V be defined by p(X) = k − ̺D(X)
if ∅ ⊂ X ⊆ V and p(∅) = 0. Then p is intersecting supermodular. Since u(X) = |ΓE(X)|, (7) and (6) are
equivalent. Hence Theorem 2.5 implies the existence of a subset F of E meeting (4) and (5). For each ui, let
Ri denote the neighbours of ui in the subgraph induced by F . By the construction Ri ⊆ Ui, (4) is equivalent
to (3), while (5) implies that each node v ∈ V belongs to at most g(v) members of R. By Theorem 2.2 the
reqested branchings exist. •

For the special case g ≡ 1, we formulate the result in the following equivalent version.

THEOREM 2.7 Let D = (V, A) be a directed graph with a designated root-node r0. Let A0 denote the set
of edges leaving r0 and let A = {A1, . . . , Ak} be a family of k (not-necessarily disjoint) subsets of A0. D has
k disjoint spanning arborescences F1, . . . , Fk of root r0 so that Fj ∩ A0 ⊆ Aj if and only if

̺A∗(Z) + ̺′(Z) ≥ h (8)

for every non-empty subset Z of V ∗ := V − r0 and for every choice of h members Ai1 , . . . , Aih
of A where

̺′(X) denotes the number of edges in Ai1 ∪ . . . ∪ Aih
entering X.

The following corollary is still a proper extension of Theorem 2.4.

THEOREM 2.8 Let D = (V, A) be a digraph whose node set is partitioned into a root-set R = {r1, . . . , rq}
and a terminal set T . Suppose that no edge of D enters any node of R. Let m : R → Z+ be a function and let
k = m(R). There are k disjoint arborescences in D so that m(r) of them are rooted at r and spanning T + r
for each r ∈ R if and only if

̺D(X) ≥ m(R − X) for every subset X ⊆ V for which X ∩ T 6= ∅. (9)

Proof. Contract R into a new node r0 and define k subsets of the edge set A0 leaving r0 as follows. For
each r ∈ R, take m(r) copies of the subset of A0 corresponding to the set of edges of D leaving r. Then (9)
is equivalent to (8) and the result follows from Theorem 2.7. •

2.2 Extensions

One may be wondering whether there is a direct proof of Theorem 2.7 which follows the original lines of
Lovász’ proof without relying on Theorem 2.5. To understand better its nature, it has been tempting to
extend Lovász’ technique to more abstract settings. For example, the following ‘abstract form’ of the weak
Edmonds theorem was derived in [5].

THEOREM 2.9 Let D = (V, A) be a digraph and F an intersecting family of subsets of V . It is possible to
partition A into k coverings of F if and only if the in-degree of every member of F is at least k. •

Obviously, when F consists of every non-empty subset of V − r0, we obtain the weak form of Edmonds’
theorem. A disadvantage of Theorem 2.9 is that it does not imply the strong version of Edmonds’ theorem.
The following result of L. Szegő [22], however, overcame this difficulty.

THEOREM 2.10 (Szegő) Let F1, . . . ,Fk be intersecting families of subsets of nodes of a digraph D =
(V, A) with the following mixed intersection property:

X ∈ Fi, Y ∈ Fj , X ∩ Y 6= ∅ ⇒ X ∩ Y ∈ Fi ∩ Fj .

Then A can be partitioned into k subsets A1, . . . , Ak such that Ai covers Fi for each i = 1, . . . , k if and only
if ̺D(X) ≥ p1(X) for all non-empty X ⊆ V where p1(X) denotes the number of Fi’s containing X. •
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When the k families are identical, we are back at Theorem 2.9. When Fi = 2V −Ri − {∅}, we obtain
Edmonds’ Theorem 2.2. The proof of Szegő is based on the observation that the mixed intersection property
implies that p1 is positively intersecting supermodular and this is why Lovász’ approach works again. But
Szegő’s theorem is still not general enough to imply Theorem 2.7.

As a new contribution of the present work, we extend Szegő’s theorem to k families of bi-sets and this will
immeadiately yield Theorem 2.7. The proof uses again the same technique. We say that the bi-set families
F1, . . . ,Fk satisfy the mixed intersection property if

X ∈ Fi, Y ∈ Fj , XI ∩ YI 6= ∅ ⇒ X ∩ Y ∈ Fi ∩ Fj .

For a bi-set X, let p2(X) denote the number of indices i for which Fi contains X. For X ∈ Fi, Y ∈ Fj , the
inclusion X ⊆ Y implies X = X ∩ Y ∈ Fj and hence p2 is monotone non-increasing in the sense that X ⊆ Y ,
p2(X) > 0 and p2(Y ) > 0 imply p2(X) ≥ p2(Y ). We will need the following preparatory lemma.

Lemma 2.11 If p2(X) > 0, p2(Y ) > 0 and XI ∩ YI 6= ∅, then p2(X) + p2(Y ) ≤ p2(X ∩ Y ) + p2(X ∪ Y ).
Moreover, if there is an Fi for which X ∩ Y ∈ Fi and X, Y 6∈ Fi, then strict inequality holds.

Proof. Consider the contribution of one family Fi to the two sides of the claimed inequality. If this contri-
bution to the left hand side is two, that is, if both X and Y are in Fi, then so are X ∩ Y and X ∪ Y and
hence the contribution to the right hand side is also two. Suppose now that X belongs to Fi but Y does not.
Since p2(Y ) > 0 is assumed, Y belongs to an Fj . But then X ∩Y belongs to Fi due to the mixed intersection
property, that is, in this case the contribution of Fi to the right hand side is at least one. An Fi with the
properties in the second part contributes only to the right hand side ensuring this way the strict inequality. •

THEOREM 2.12 Let D = (V, A) be a digraph and F1, . . . ,Fk intersecting families of bi-sets on ground set
V satisfying the mixed intersection property. The edges of D can be partitioned into k parts F1, . . . , Fk in such
a way that Fi covers Fi for each i = 1, . . . , k if and only if

̺D(X) ≥ p2(X) for every bi-set X. (10)

Proof. The condition is clearly necessary. We prove the sufficiency by induction on
∑

i
|Fi|. There is nothing

to prove if this sum is zero so we may assume that F1, say, is non-empty. Let U be a maximal member of F1.
Call a bi-set tight if ̺(X) = p2(X) > 0.

Claim 2.13 There is an edge e entering U in such a way that each tight bi-set covered by e is in F1.

Proof. Suppose indirectly that no such an edge exists. Then each edge e entering U enters some tight bi-set
M 6∈ F1. By the mixed intersection property, we cannot have M ⊆ U . Select a minimal tight bi-set M 6∈ F1

which intersects U . Since p2 is monotone non-increasing, we know that p2(U ∩ M) ≥ p2(M). Here, in fact,
strict inequality must hold since U ∩ M ∈ F1 and M 6∈ F1. The inequality p2(U ∩ M) > p2(M) implies that
D has an edge f = uv for which u ∈ M − U, v ∈ U ∩ M . By the indirect assumption, f enters some tight
bi-set Z 6∈ F1. Lemma 2.11 implies that the intersection of M and Z is tight. Since neither of M and Z is in
F1, the second part of the lemma implies that M ∩Z is not in F1 either, contradicting the minimal choice of
M . •

Let e be an edge ensured by the Claim. Let F ′

1 := {X ∈ F1 : e does not enter X}. Then F ′

1 is an intersecting
family of bi-sets. We claim that the mixed intersection property holds for the families F ′

1,F2, . . . ,Fk. Indeed,
let X ∈ F ′

1 and Y ∈ Fi be two intersecting bi-sets for some i = 2, . . . , k. Since F ′

1 ⊆ F1, one has X ∩ Y ∈ Fi.
If indirectly X ∩ Y is not in F ′

1, then e enters X ∩ Y . Since e enters U and U was selected to be maximal in
F1, it follows that X ⊆ U . But then e must enter X as well, contradicting the assumption X ∈ F ′

1.
Let p′

2(X) denote the number of these families containing X (that is, p′

2(X) = p2(X) − 1 if X ∈ F1 and
e enters X and p′

2(X) = p2(X) otherwise). Let ̺′ denote the in-degree function on bi-sets with respect to
D′ := D − e. The choice of e implies ̺′ ≥ p′

2. By induction, the edge set of D′ can be partitioned into k parts
F ′

1, . . . , Fk in such a way that F ′

1 covers F1 and Fi covers Fi for i = 2, . . . , k. By letting F1 := F ′

1 + e, we
obtain a partition of A requested by the theorem. • •

Though not needed in the sequel, we point out that Theorem 2.12 can be reformulated in terms of set
families. For a subset T ⊆ V , we say that a family F of subsets of V is T -intersecting if X, Y ∈ F and
X ∩ Y ∩ T 6= ∅ imply X ∩ Y, X ∪ Y ∈ F .

THEOREM 2.14 Let D = (V, A) be a digraph with a specified subset T of nodes containing the head of every
edge of D. Let F1, . . . ,Fk be T -intersecting families of subsets of nodes of a digraph D with the following mixed
intersection property: X ∈ Fi, Y ∈ Fj , X ∩ Y ∩ T 6= ∅ ⇒ X ∩ Y ∈ Fi ∩ Fj . Then A can be partitioned
into k subsets A1, . . . , Ak such that Ai covers Fi for each i = 1, . . . , k if and only if ̺D(X) ≥ p1(X) for all
non-empty X ⊆ V where p1(X) denotes the number of Fi’s containing X.
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Proof. The necessity is evident again. For the sufficiency, define a family F ′

i of bi-sets as follows. For each
set X ∈ Fi let the bi-set (X, X ∩T ) be a member of F ′

i . Then each F ′

i is intersecting and they meet the mixed
intersection property. Since the head of every edge is in T , an edge enters a subset X precisely when it enters
the bi-set (X, X ∩ T ). Hence the partition of A into k sets ensured by Theorem 2.12 meets the requirement
of the theorem. •

The reverse implication is equally simple and is left to the reader.

Alternative proof of the sufficiency in Theorem 2.7 . Let D′ be a digraph arising from D by subdividing
first each edge e ∈ A0 by a node ve and deleting then r0. Let V0 denote the set of the subdividing nodes and
let Vi denote the subset of V0 corresponding to the set Ai (i = 1, . . . , k).

For each j = 1, . . . , k, let Fj be a family of bi-sets (XO , XI) for which ∅ 6= XI ⊆ V ∗, XI = XO ∩ V ∗,
XO ⊆ V0 ∪V ∗ and XO ∩Vj = ∅. Then Fj is an intersecting family of bi-sets and it follows from the definition
that these k families meet the mixed intersecting property. It is also straightforward that (8) is equivalent to
requiring that the number of edges entering a bi-set X is at least p2(X), the number of Fj ’s containing X.
By Theorem 2.12, there are disjoint subsets F ′

1, . . . , F
′

k of the edge set of D′ so that F ′

j covers Fj . We may
assume that each Fj is a minimal covering of Fj (with respect to inclusion) which implies that an edge uv
with u ∈ V0, v ∈ V ∗ can belong to F ′

j only if u ∈ Vj . By the construction, the edges set Fj of D corresponding
to F ′

j is a spanning arborescence of D rooted at r0 so that Fj ∩ A0 ⊆ Aj . •

Recently, N. Kamiyama, N. Katoh, and A. Takizawa [14] were able to find a surprising new proper extension
of Theorem 2.7 (and hence the strong Edmonds theorem). We are going to show that their result can also
be derived from Theorem 2.12. This is, however, a bit trickier due to the fact that the corresponding set
function p1 in their theorem is no more supermodular (and for the same reason their original proof is rather
complicated). Similarly to Edmonds’ theorem, this new result has also several equivalent formulations. One
of them is as follows.

THEOREM 2.15 (Kamiyama, Katoh, and Takizawa [14]) Let D = (V, A) be a directed graph and let
R = {r1, r2, . . . , rk} ⊆ V be a list of k possibly not distinct root nodes. Let Si denote the set of nodes reachable
from ri. There are edge-disjoint ri-arborescences Ai spanning Si for i = 1, . . . , k if and only if

̺D(Z) ≥ p1(Z) for every subset Z ⊆ V (11)

where p1(Z) denotes the number of sets Si’s for which Si ∩ Z 6= ∅ and ri 6∈ Z.

Proof. The necessity of the condition is evident.
For brevity, we call a strongly connected component of D an atom. It is known that the atoms form a

partition of the node set of D and that there is a so-called topological ordering of the atoms so that there is
no edge from a later atom to an earlier one. By a subatom we mean a subset of an atom. Clearly, a subset
X ⊆ V is a subatom if and only if any two elements of X are reachable in D from each other. Note that any
atom is disjoint from or included in Si for each i = 1, . . . , k.

Define k bi-set families Fi for i = 1, . . . , k as follows. For each non-empty subset XO ⊆ V − ri, let
Fi := {(XO , XI) : XI = XO ∩ Si 6= ∅ a non-empty subatom}. For each bi-set X, let p2(X) denote again the
number of Fi’s containing X. It follows immediately that Fi is an intersecting bi-set family.

Proposition 2.16 The bi-set families Fi meet the mixed intersecting property.

Proof. Let X = (XO , XI) and Y = (YO, YI) be members of Fi and Fj , respectively, and suppose that X
and Y are intersecting, that is, XI ∩ YI 6= ∅. Since a subatom and a subset with no leaving edges are never
properly intersecting, we obtain that XO ∩ Si ⊆ Si ∩ Sj and YO ∩ Sj ⊆ Si ∩ Sj . This implies for the sets
ZO := XO ∩ YO and ZI := XI ∩ YI that ZO ∩ Si = ZI = ZO ∩ Sj and hence X ∩ Y = (ZO , ZI) ∈ Fi ∩ Fj , as
required. •

Proposition 2.17 ̺(X) ≥ p2(X) for each bi-set X.

Proof. Let q := p2(X) and suppose that X belongs to F1,F2, . . . ,Fq. Let Z := (V −(S1∪S2∪ . . .∪Sq))∪XI .
Since no edge leaves any Si, every edge entering Z must enter XI and hence also the bi-set X. Therefore
̺(X) ≥ ̺(Z). By (11), ̺(Z) ≥ p1(Z). It follows from the definition of Z that p1(Z) ≥ q = p2(X), and hence
̺(X) ≥ p2(X) •

Therefore Theorem 2.12 applies and hence the edges of D can be partitioned into sets F1, . . . , Fk so that
Fi covers Fi for i = 1, . . . , k.

Proposition 2.18 Each Fi includes an ri-arborescence Ai which spans Si.
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Proof. If the requested arborescence does not exist for some i, then there is a non-empty subset Z of Si − ri

so that Fi contains no edge from Si − Z to Z. Consider a topological ordering of the atoms and let Q be the
earliest one intersecting Z. Since no edge leaving a later atom can enter Q, no edge with tail in Z enters Q.

Let XO := (V − Si) ∪ (Z ∩ Q) and XI := XO ∩ Si. Then XI = Z ∩ Q is a subatom and X = (XO , XI)
belongs to Fi. Therefore there is an edge e = uv in Fi which enters X. It follows that v ∈ XI ⊆ Z and that
u ∈ Si −XI . Since u is not in Z and not in V − Si, it must be in Si −Z, that is, e is an edge from Si − Z to
XI ⊆ Z, contradicting the assumption that no such an edge exists. • •

Note that Theorem 2.8 can immediately be obtained from Theorem 2.15. To this end, add m(i) new
root-nodes to D and add an edge from each of them to ri for i = 1, . . . , q. This way we will get k distinct
(new nodes) and each node of V is reachable from every new root. In this setting the necesseary conditions in
Theorems 2.15 and 2.7 coincide and each of the k maximal arborescences ensured by Theorem 2.15 will span
the whole V .

To describe the original form of the theorem of Kamiyama et al., we call a branching B of D maximal if
no edge of D leaves the node set of B.

THEOREM 2.19 (Kamiyama, Katoh, Takizawa [14]) In a digraph D = (V, A), let R = {R1, . . . , Rq}
be a family of non-empty (not necessarily disjoint or distinct) subsets of V and let Si denote the set of nodes of
D reachable from Ri. Let m1, . . . , mq be positive integers whose sum is k. There are k edge-disjoint maximal
branchings of D so that Ri is the root-set of mi of them for i = 1, . . . , q if and only if

̺(X) ≥
∑

[mi : Ri ∩ X = ∅ and X is reachable from Ri] for every X ⊆ V . (12)

Proof. For each root-set Ri, let r1
i , . . . , rmi

i be new nodes and extend the digraph by adding k new parallel
edges from rj

i to every element of Ri for i = 1, . . . , q. An easy calculation shows that (11) is equivalent to
(12) and the k disjoint arborescences ensured by Theorem 2.15 when restricted to V provide the requested
maximal branchings of D. •

In [12], Frank, Király, and Kriesell observed that Edmonds’ disjoint arborescences theorem can be extended
to dypergraphs. A subset F of a ground-set V with a specified head-node in F is called a directed hyperedge, or
briefly a dyperedge. F is said to enter a subset X ⊆ V if its head is in X but F 6⊆ X. A dypergraph D = (V,D)
is a hypergraph consisting of dyperedges in which ̺D(X) denotes the number of dyperedges entering a subset
X. We call D rooted k-edge-connected with respect to a root-node r0 if the in-degree of every non-empty
subset of V − r0 is at least k. In the special case k = 1, the dypergraph is root-connected. In [12], with
a rather easy reduction to Edmonds’ disjoint arborescences theorem, it was shown that the dyperedges of a
rooted k-edge-connected dypergraph can always be decomposed into k root-connected dypergraphs. With a
similar approach, we can derive the following result.

THEOREM 2.20 Let D = (V,D) be a dypergraph and R = {r1, . . . rk} a root-set. Let Si denote the set of
nodes reachable from r0 in D. Then D includes k disjoint dypergraphs D1 = (S1,D1), . . . , Dk = (Sk,Dk) so
that each Di is root-connected at ri if and only if ̺D(X) ≥ p(X) for every X ⊆ V where p(X) denotes the
number of roots ri for which ri 6∈ X and Si ∩ X 6= ∅. •

3 Covering supermodular bi-set functions by digraphs

As mentioned in the introduction, the uncrossing technique was invented by Lovász [18] in order to obtain a
short proof of the Lucchesi-Younger theorem. Later the method has become an indispensible tool for deriving
combinatorial min-max theorems concerning sub- or supermodular set functions.

As a new application of the uncrossing procedure, we derive a result on covering simultaneously two
supermodular bi-set functions by a digraph. (Recall that these functions were assumed to have positive values
only on non-trivial bi-sets and they are integer-valued.) There have been two earlier results of this kind.
Frank and Jordán [11] proved (in an equivalent form) the following result on minimum coverings of crossing
supermodular bi-set functions (whose special case for set-functions appeared in [9]).

THEOREM 3.1 Let p be a positively crossing supermodular bi-set function. The minimum number of di-
rected edges covering p is equal to max{

∑

[p(X) : X ∈ F ] : F an independent set of bi-sets}. •

The other result of similar vein concerns cheapest coverings of intersecting supermodular bi-set functions
(generalizing its set-function version from [5, 6]).

THEOREM 3.2 ([10]) Let D = (V, A) be a digraph. Let p : P2 → Z be a positively intersecting supermod-
ular bi-set function and g : A → Z+ ∪ {∞} a non-negative upper bound on the edges of D that covers p. The
linear system

̺x(Z) ≥ p(Z) for every bi-set Z ∈ P2, 0 ≤ x ≤ g (13)

is totally dual integral.

7



3.1 Simultaneous coverings

Both theorems were motivated by and have several applications in network design. Our new contribution is a
min-max theorem on smallest simultaneous coverings of two fully supermodular bi-set functions. It is neither
a special case nor a generalization of the two previous results and has no special set function version known
earlier. In what follows, we work throughout with a ground-set V of cardinality n. Let D∗ = (V, A∗) denote
the complete digraph on V where A∗ := {uv : u, v ∈ V } denotes the set of all the n(n − 1) directed edges on
V . Recall that P2(V ) = P2 denoted the set of all bi-sets. A bi-set function p is positively supermodular if the
supermodular inequality holds for every pair {X, Y } of bi-sets for which p(X) > 0, p(Y ) > 0. For example, if
p is supermodular on a ring-family, and its value is zero otherwise, then p is positively supermodular.

THEOREM 3.3 Let p1 and p2 be two positively supermodular bi-set functions which may be positive only
on non-trivial bi-sets. Let p := max{p1, p2} where p is defined by p(X) := max{p1(X), p2(X)}. Then p can
be covered by γ (possibly parallel) directed edges if and only if

p1(X) + p2(Y ) ≤ γ (14)

for every pair of independent bi-sets X, Y .

Note that, due to p(∅, ∅) = 0, (14) includes the necessary conditions p1(X) ≤ γ and p2(Y ) ≤ γ so they
need not be mentioned explicitly and a similar statement holds for later variations of the theorem.

It is more convenient to prove this result in a slightly more general form. We call a bi-set function p positively
2/3-supermodular if for any choice of three bi-sets with positive p-value there are two of them that satisfy
the supermodular inequality. Clearly, the maximum of two supermodular functions is 2/3-supermodular, but
it turns out that there are 2/3-supermodular functions not arising this way.

THEOREM 3.4 A positively 2/3-supermodular bi-set function p can be covered by γ (possibly parallel)
directed edges if and only if p(X) + p(Y ) ≤ γ for every pair of independent bi-sets X, Y . Equivalently, the
minimum number τ (p) of edges covering p is equal to ν(p) := max{p(X)+p(Y ) : {X, Y } independent bi-sets}.

Proof. The necessity of the condition is obvious since an edge can cover at most one of two independent
bi-sets.

Lemma 3.5 Let C1 and C2 be two chains of nontrivial bi-sets and let F = C1 ∪ C2 (in the sense that a bi-set
belonging to both chains occurs in two copies in F). Suppose that no edge of D∗ covers more than h members
of F. Then the members of F can be coloured by h colours so that each edge enters at most one member of
each colour class. Furthermore, each colour class consists of at most two bi-sets.

Proof. Since two comparable bi-sets are not independent, the second statement of the lemma is immediate.
Construct an undirected graph B = (U,A) whose nodes correspond to the elements of F and two nodes

are connected by an undirected edge if the corresponding members X, Y of F can be covered by an edge of
D∗, that is, if they are not independent. Since F consists of two chains, B is the complement of a bipartite
graph, and hence B is perfect.

Claim 3.6 Let Q ⊆ U be the node-set of a clique of graph B and let FQ denote the members of F corresponding
to the elements of Q. Then there is an edge of D∗ covering all members of FQ.

Proof. Assume first that FQ is a chain. Let t be any node in the inner set of the smallest member of FQ while
s any node outside the outer set of the largest member of FQ. Then st covers all members of FQ. Therefore
FQ may be assumed to be the union of two non-empty chains C′

1 and C′

2. Let X1 and X2 be the smallest
members of C′

1 and C′

2.
As Q is a clique, X1 and X2 are not independent, so there is a node t ∈ V in the intersection of their inner

sets. Similarly, let Y1 and Y2 be the largest members of C′

1 and C′

2. They are not independent either so there
is a node s ∈ V outside the union of their outer sets. Then st covers all the members of C′

1 and C′

2. •

The claim and the hypothesis of the lemma imply that the largest clique of B has at most h elements.
Since B is perfect, its node set can be partitioned into h stable sets. Therefore F can be partitioned into h
independent sets of bi-sets families. • •

Let us turn to the proof of the non-trivial inequality τ (p) ≤ ν(p) in the theorem. We proceed by induction
on

∑

[p(X) : X ∈ P2]. If this sum is zero, then the digraph (V, ∅) with no edge will cover p. Suppose now that
this sum is positive. For an edge e ∈ A∗, let pe(X) := (p(X)−1)+ if e enters X and pe(X) := p(X) otherwise.
Since the in-degree function (on bi-sets) of a digraph is fully submodular, pe(X) is 2/3-supermodular.

Lemma 3.7 If p(Z) > 0 for a bi-set Z, then there is an edge e ∈ A∗ entering Z such that ν(pe) < ν(p).
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Proof. Let A denote the set of edges entering Z and suppose on the contrary that ν(pe) = ν(p) for each
element e of A. That is, there is an independent pair Fe := {X, Y } of bi-sets for which e enters neither X nor
Y and p(X) + p(Y ) = ν(p)

Let F ′ consist of bi-set Z plus all of the bi-sets which are members of some Fe in the sense that each bi-set
X is taken into F ′ in as many copies as the number of pairs Fe containing X. Note that (∗) every edge of
D∗ enters at most h := |A| members of F ′. The uncrossing procedure consists of finding two non-comparable
elements X, Y of F ′ for which the supermodular inequality holds and replacing them by their intersection and
union. Apply the uncrossing procedure as long as possible. Because the sum

∑

[|XI |
2+|XO |2 : X ∈ F ′] strictly

increases at each uncrossing step, the procedure terminates after a finite number of steps. Discard all members
with p-value zero and let F denote the resulting family. Clearly |F| ≤ |F ′|, p(Z) + hν(p) = p(F ′) ≤ p(F),
and (∗) holds for F , too. F cannot contain three pairwise non-comparable bi-sets for otherwise, by the 2/3-
supermodularity of p, two of them would satisfy the supermodular inequality, and then they could have been
uncrossed. If a partially ordered set contains no three pairwise uncomparable elements, then, by Dilworth’s
theorem, there are two disjoint chains covering the ground-set of the poset. Therefore the members of F can be
partitioned into two chains C1 and C2. By Lemma 3.5 the members of F can be partitioned into h independent
parts Ii (i = 1, . . . , h). So for one of these we must have p(Ii) ≥ ⌊p(F)/h⌋ > ν(p), a contradiction. •

For the edge e provided by Lemma 3.7, we have by induction τ (pe)−1 ≤ τ (p) ≤ ν(p) ≤ ν(pe)−1 ≤ τ (pe)−1
from which equality holds throughout, and in particular τ (p) = ν(p). • • •

Theorem 3.4 has a self-refining nature as it gives rise to its own extension. Let S and T be two non-empty
subsets of V . We call a directed edge st an ST -edge if s ∈ S and t ∈ T . Two bi-sets X and Y are ST -
independent if there is no ST -edge covering both (or, equivalently, at least one of the sets T ∩ XI ∩ YI and
S − (XO ∪ YO) is empty).

THEOREM 3.8 Let q be a positively 2/3-supermodular bi-set function so that q(X) can be positive only
if there is an ST -edge covering X. Then q can be covered by γ (possibly parallel) ST -edges if and only if
q(X) + q(Y ) ≤ γ for every pair of ST -independent bi-sets X, Y .

Proof. The necessity of the condition is evident since an ST -edge cannot cover two ST -independent bi-sets.
For the sufficiency, define a bi-set function p on P2, as follows.

p(X) :=
{

max{q(X ′) : X ′ ∈ P2(V ), XI = X ′

I ∩ T, XO = (X ′

O ∪ (V − S))} if XI ⊆ T and V = XO ∪ S,
0 otherwise.

(15)

Proposition 3.9 p is positively 2/3-supermodular.

Proof. Let X, Y , and Z be bi-sets for which p(X) > 0, p(Y ) > 0, and p(Z) > 0. By the definition of p,
there is a biset X ′ for which p(X) = q(X ′) and XI = X ′

I ∩ T, XO = (X ′

O ∪ (V − S)), and similarly there are
bi-sets Y ′ and Z′ with analogous properties.

It follows that
XI ∩ YI = (X ′

I ∩ Y ′

I ) ∩ T and XO ∩ YO = (X ′

O ∩ Y ′

O) ∪ (V − S)

from which q(X ′ ∩ Y ′) ≤ p(X ∩ Y ), and analogously,

XI ∪ YI = (X ′

I ∪ Y ′

I ) ∩ T and XO ∪ YO = (X ′

O ∪ Y ′

O) ∪ (V − S)

from which q(X ′ ∪ Y ′) ≤ p(X ∪ Y ).
Since q is positively 2/3-supermodular, among the three bi-sets X ′, Y ′, Z′, there are two, say X ′ and Y ′

satisfying the supermodular inequality. Hence p(X) + p(Y ) = q(X ′) + q(Y ′) ≤ q(X ′ ∩ Y ′) + q(X ′ ∪ Y ′) ≤
p(X ∩ Y ) + p(X ∪ Y ), as required. •

If p(X) > 0, then p(X) = q(X ′) for some X ′ and hence p(X) = q(X ′) ≤ γ. If p(X) > 0 and p(Y ) > 0
for independent X and Y , then there are bi-sets X ′ and Y ′ for which p(X) = q(X ′) and p(X) = q(X ′). The
definition of p implies that X ′ and Y ′ are ST -independent and hence p(X) + p(Y ) = q(X ′) + q(Y ′) ≤ γ.
Therefore Theorem 3.4 implies the existence of a set of γ edges covering p. The definition of p implies that
every edge covering a bi-set X with p(X) > 0 is necessarily an ST -edge, moreover any set covering p also
covers q, and hence the theorem follows. • •

As a corollary, we have the following extension of Theorem 3.3.

THEOREM 3.10 Let q1 and q2 be two positively supermodular bi-set functions for which qi(X) can be
positive only if there is an ST -edge covering X. Let q := max{q1, q2}. Then q can be covered by γ ST -edges
if and only if q1(X) + q2(Y ) ≤ γ for every pair of ST -independent bi-sets X, Y . •
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We will point out in Subsection 3.3 that positively supermodular functions do not behave well from an
algorithmic point of view. In typical applications, however, one encounters with fully supermodular functions
defined on a ring-family of bi-sets that may take negative values. For this case, Theorem 3.10 specializes as
follows.

THEOREM 3.11 For i = 1, 2 let pi be a supermodular function on a ring-family Ri of bi-sets and assume
that pi(X) may be positive only if there is an ST -edge covering X. There is a set of γ ST -edges covering both
p1 and p2 if and only if

pi(X) ≤ γ for every X ∈ Ri (i = 1, 2) (16)

and
p1(X

′) + p2(X
′′) ≤ γ for every ST -independent X ′ ∈ R1, X

′′ ∈ R2. (17)

Equivalently, the minimum number of (possibly parallel) ST -edges covering p1 and p2 is equal to ν :=
max{ν1, ν2, ν3, ν4} where

ν1 = max{p1(X
′) : X ′ ∈ R1}

ν2 = max{p2(X
′′) : X ′′ ∈ R2},

ν3 = max{p1(X
′) + p2(X

′′) : X ′ ∈ R1, X
′′ ∈ R2, X

′

I ∩ X ′′

I ∩ T = ∅},
ν4 = max{p1(X

′) + p2(X
′) : X ′ ∈ R1, X

′′ ∈ R2, S − (X ′

O ∪ X ′′

O) = ∅},
where the maximum on the empty set is defined to be zero. •

This implies the following equivalent version of Edmonds’ polymatroid intersection theorem [1] (which was
originally formulated for submodular functions).

THEOREM 3.12 (Edmonds) Let p1 and p2 be supermodular functions on a common ground-set T . Then
min{z(T ) : z : T → Z+, z(X) ≥ max{p1(X), p2(X)} for every X ⊆ T} = max{p1(X) + p2(Y ) : X ∩ Y = ∅}.

Proof. Let s be a new element, V := T + s and S := {s}. Apply Theorem 3.11 for the special case when
Ri := {(XO , XI) : XO = XI ⊆ T} and observe that in this case ν = ν3 and the ST -edges can be identified
with the elements of T . •

It should be noted that Edmonds extended the theorem for the more general case as well when pi is
intersecting supermodular only (that is, the supermodular inequality is required only for intersecting sets). In
this case the maximum formula in the theorem is more complicated as it includes partitions rather then sets
only. No extension of Theorem 3.11 is known to cover this form. The difficulty is indicated by the fact that the
following natural-looking statement is false: For i = 1, 2 let pi be a non-negative integer-valued intersecting
supermodular function on an intersecting family Ri of sets so that pi(X) may be positive only if there is an
ST -edge covering X. The minimum number of (possibly parallel) ST -edges covering p1 and p2 is equal to
max{

∑

[p1(X) : X ∈ F1] +
∑

[p2(X) : X ∈ F2]} : Fi ⊆ Ri is laminar, F1 ∪F2 is ST -independent.} (A family
R of sets is intersecting if it contains X ∩ Y and X ∪ Y whenever X, Y ∈ R, X ∩ Y 6= ∅. R is laminar if
one of the sets X − Y, Y − X, X ∩ Y is empty for every two members X, Y .) Let V = {v1, v2, v3, v4},R1 :=
{{v1}, {v2, v3}, {v1, v2, v3}},R2 := {{v3, v4}, {v1, v3, v4}}, let pi be identically one on Ri, and let S := T := V .
Then the minimum value in the statement is 3 while the maximum is only 2.

Edmonds’ intersection theorem extends to the weighted case, as well, asserting, in a concise form, that
the linear system {z ≥ 0, z(X) ≥ max{p1(X), p2(X)} for every X ⊆ T} is totally dual integral (TDI). The
min-cost version of Theorem 3.10 includes NP-complete connectivity augmentation problems so it is unlikely
to have a TDI-ness result concerning Theorem 3.10. In other connectivity augmentation problems however
[8] the special case of node-induced costs were nicely solvable (where node-induced means that the cost of an
edge st arises as the sum of the given node-costs of s and t). The corresponding problem in the enviroment
of Theorem 3.10 remains open.

3.2 Applications to bipartite graphs and digraphs

Let us derive a graphical consequence concerning bipartite matchings.

THEOREM 3.13 For i = 1, 2, let Gi = (S, T ; Ei) be a bitpartite graph with n = |S| = |T |. There is a set F
of at most γ (undirected) ST -edges so that both G1 + F and G2 + F has a perfect matching if and only if

q1(Z
′) + q2(Z

′′) ≤ γ (18)

holds for every two disjoint subsets Z′, Z′′ of S and for every two disjoint subsets Z′, Z′′ of T . Here qi(Z) :=
|Z| − |Γi(Z)| where Γi(Z) (for Z ⊆ S or Z ⊆ T ) denotes the set of nodes having at least one neighbour in Z
in the graph Gi (i = 1, 2).
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Proof. The necessity of (18) is evident, we prove its sufficiency. For i = 1, 2, define ring-families Ri of bi-sets
as follows. Ri := {X = (XO, XI) : XI = XO ∩T, XO ⊇ (XI ∪Γi(XI)}. For simplicity we will not distinguish
between the directed ST -edges and the undirected edges connecting S and T . Since an edge of Gi, when
considered to be oriented toward T , cannot cover any member of Ri, it follows that Ri is indeed a ring-family.
For X ∈ Ri, let

pi(X) := 2|XI | − |XO |.

Clearly, pi is supermodular on Ri. For X ∈ Ri let Z := S − XO . Since Γi(XI) ⊆ XO − XI we have
pi(X) = |XI | − (|XO | − |XI |) ≤ |XI | − |Γi(XI)| = qi(XI). Since Γi(Z) ⊆ T − XI , we have |XI | + |Γi(Z)| ≤
|T | = |S| = |Z| + |XO − XI | = qi(Z). Based on these, (18) implies (17). Since the bi-set (∅, ∅) belongs to Ri

and pi(∅, ∅) = 0, we conclude that (17) implies (16).
By Theorem 3.11, there is a set F of γ ST -edges covering both p1 and p2. we claim that G+

i := Gi + F
satisfies the Hall condition. Indeed, if the set Y ′ of neighbours of a subset Y ⊆ T in G+

i had fewer elements
than |Y |, then pi(Y ∪ Y ′, Y ) > 0 and F would not cover the bi-set (Y ∪ Y ′, Y ). By Hall’s theorem, G+

i has a
perfect matching, as required. •

It should be noted that requiring (18) only for the subsets of T is not sufficient (unlike the situation in
Hall’s theorem on perfect matching in bipartite graphs where Hall’s criterion |X| ≤ |Γ(X)| is violated by a
subset of S if and only if it is violated by a subset of T ). Given the simple condition (18) in Theorem 3.13,
one may feel tempted to derive the result from classical matching theory or matroid intersection, and, indeed,
J. Pap [20] found a short, elegant way to derive Theorem 3.13 directly from Edmonds’ matroid intersection
theorem [3].

As another corollary, we exhibit a connectivity augmentation result concerning simultaneous augmentations
of two digraphs. In order to handle edge-disjoint and node-disjoint paths uniformly, the following common
generalization was introduced in [10].

Let D = (V, F ) be a digraph and g : V → Z+ a function. A set of edge-disjoint st-paths is said to be
g-bounded if each node v ∈ V − {s, t} is used by at most g(v) of these paths. We stress that g-boundedness
automatically means that the paths are edge-disjoint. Let λg(s, t;D) denote the maximum number of g-
bounded st-paths. Note that for large g (say, g ≡ |F |) λg(s, t;D) is the maximum number of edge-disjoint
st-paths, while for g ≡ 1, λg(s, t; D) is the maximum number of openly disjoint st-paths.

We will need the bi-set function µg defined by

µg(X) :=
∑

[g(v) : v ∈ XO − XI ] (= µg(XO) − µg(XI)). (19)

It is easily seen that for bi-sets X and Y

µg(X) + µg(Y ) = µg(X ∩ Y ) + µg(X ∪ Y ). (20)

The following characterization can be easily derived from the edge-version of Menger’s theorem (and was
done in [10]).

Proposition 3.14 (Variation of Menger’s theorem) In a digraph D = (V, F ) there are k g-bounded st-
paths if and only if

̺F (X) ≥ k − µg(X) holds for every bi-set X = (XO, XI) with t ∈ XI and XO ⊆ V − s. • (21)

We say that D is (k, g)-connected from s to t if there are k g-bounded paths from s to t.

Suppose now that Di = (V, Ai) are digraphs for i = 1, 2 on the same node set V in which si and ti are
designated source and sink nodes. Moreover, let gi : V → Z+ be a function and ki positive integer. Consider
the ring-family Ri := {X ∈ P2(V ) : t ∈ XI , XO ⊆ V − s} of bi-sets and define a bi-set function pi on Ri by

pi(X) := ki − ̺Di
(X) − µgi

(X).

Since ̺Di
is submodular and µgi

is modular, pi is supermodular on Ri. Let S and T be two non-empty subsets
of V so that there is an ST -edge covering each bi-set with positive p1- or p2-value. By Theorem 3.11, we get
the following.

THEOREM 3.15 Given Di, si, ti,Ri gi, ki, pi S, T for i = 1, 2 as above, there is a set F of γ ST -edges
whose addition to Di results in a digraph which is (ki, gi)-connected from si to ti if and only if

pi(X) ≤ γ for every X ∈ Ri, (i = 1, 2), and

p1(X
′) + p2(X

′′) ≤ γ for every ST -independent X ′ ∈ R1 and X ′′ ∈ R2. •
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3.3 Algorithmic aspects

Before sketching an algorithmic approach, we make some observations on classes of supermodular functions.

Claim 3.16 If a positively 2/3-supermodular function is given by an evaluation oracle, then its maximum
cannot be computed in polynomial time.

Proof. Let p be a set function which takes positive value on exactly one subset and zero otherwise. This
is positively 2/3-supermodular and to find out its maximum one must, in worst case, call for the value of all
subsets. •

Therefore there is no polynomial algorithm for computing the extrema in Theorem 3.4 if the 2/3-submodular
function is given by an evaluation oracle. The question arises whether the problem in Theorem 3.4 is more
general at all than the one in Theorem 3.11. The next claim shows that the answer is yes.

Claim 3.17 Not every 2/3-supermodular function arises from two positively supermodular functions as their
maximum.

Proof. Let the ground-set V = {v1, v2, . . . , v5, s} have six elements so that the first five elements are arranged
around a circle according to their subscripts. Define p(X) to be 1 if s ∈ X and the elements of X − s are
consecutive around the circle (in particular, if X = V or X = {s}), otherwise let p(X) = 0. Then easy
case-checking shows that p is 2/3-supermodular but there cannot be two positively supermodular functions
p1 and p2 so that p(X) = max{p1(X), p2(X)}. Indeed, p(Vi) = 1 for Vi := V − vi, 1 ≤ i ≤ 5. Since the
non-consecutive pairs form a five-gon, one of p1 and p2, say p1, must take value one on two sets Vi, Vj with
non-consecutive vi, vj . But then p1 cannot be positively supermodular since p1(Vi ∩ Vj) ≤ p(Vi ∩ Vj) = 0 by
definition and p1(Vi ∪ Vj) ≤ p(Vi ∪ Vj) ≤ 1. •

An analogous question concerning positively supermodular functions was answered by T. Király [15]:

Claim 3.18 Not all positively supermodular functions arise as the non-negative part of a fully supermodular
function.

Proof. Let X1, X2, X3 be three subsets of a ground-set V in general position. Let p(Xi) = 1, p(Xi ∪ Xj) =
2 (i 6= j), p(X1 ∪ X2 ∪X3) = 4 and p(X) = 0 on the remaining sets. Then p is positively supermodular and a
simple argument shows that it cannot be the nonnegative part of a supermodular function. •

The only general construction we know for positively supermodular functions is taking the non-negative
part of a supermodular function on a ring-family, and likewise, we do not know any general class, let alone
applications, of 2/3-supermodular functions which are not the maximum of two supermodular ones. On
one hand, these function classes gave rise to formally more general results and their use made the proofs
technically simpler, on the other hand they are not convenient for algorithmic handling. This is why we
formulated separately Theorem 3.11: there is a strongly polynomial algorithm for computing the extrema in
that theorem.

The very nature of the theorem makes it possible to compute a digraph H covering p1 and p2 with a
minimum number of edges, provided that a subroutine is available for computing ν given in the theorem.
With some work, such a subroutine can indeed be constructed by making use of an existing algorithm for
maximizing supermodular functions [13, 21] (and in the special case of Theorem 3.15 even a Max-flow Min-cut
subroutine suffices). So suppose that such a subroutine is available. The digraph H with a minimum number
of edges that covers p1 and p2 will be defined with the help of a function z : A∗ → Z+ which tells us the
number z(a) ≥ 0 of parallel copies of every possible ST -edge a to be taken into H . The digraph defined by z
covers pi if ̺z ≥ pi for i = 1, 2.

For a given z, let ν(z) denote the optimum in Theorem 3.11 with respect to the revised bi-set functions
p1 − ̺z and p2 − ̺z. Call a function z : A∗ → Z+ good if

ν = ν(z) + z(A∗). (22)

By definition z ≡ 0 is good and the problem of finding a minimum z is equivalent to construct a good z
covering of p.

Consider the elements of A∗ in an arbitrary order a1, . . . , am. At the beginning z ≡ 0. At a general
step, suppose that the values of z(a1), . . . , z(ai−1) have already been computed in such a way that the vector
z = (z(a1), . . . , z(ai−1), 0, . . . , 0) is good. Compute ν(z). If this number is zero, then z is a covering of p and
the algorithm terminates by returning z. Suppose now that ν(z) > 0. Let z′ be a vector arising from z by
setting z(ai) to be a big enough number M and compute ν(z′). It follows from Theorem 3.11 that by setting
z(ai) to be ν(z)− ν(z′) the revised vector keeps to be good and the algorithm may proceed to the next index
i + 1.
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