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‘The subrhodular flow model, due to J. Edmonds and R. Giles, is a common gen-
eralization of network flows, polymatroid intersections, and directed cut coverings. Here
we outline a combinatorial method, developed in earlier papers, for solving the submodu.
lar flow optimization problem. Some applications and theoretical consequences are also
discussed,

1. Introduction

In the last couple of years a large number of papers have
appeared on sub- and supermodular functions. It turned out that these
functions play a unifying role in combinatorial optimization. In [17] a
beautiful survey can be found about the connections between the vari-
ous models.

One of the most general frameworks is due to Edmonds and Giles
- [4]. Their model includes the minimum cost flow, polymatroid inter-
section, directed cut covering (Lucchesi-Younger), and orientation
(Nash-Williams) problems. From the algorithmical point of view,
Grotschel, Lovdsz, and Schrijver [11] have discovered a good algorithm
for the Edmonds-Giles problem, based on the ellipsoid method. But it
is desirable to have a purely combinatorial algorithm that only consists
of steps like making an auxiliary digraph, finding augmenting paths,
etc. Such kinds of methods were known for the minimum cost flow [5]
for the matroid intersection [2,6] and for the Lucchesi-Younger prob-
lem [9] among the above special cases. The polymatroid intersection
problem was solved only for the case of (0,1) objectives [14,16].

As far as the general Edmonds-Giles problem is concerned, a
polynomial time combinatorial algorithm was developed in {7] for the
case when the variables are bounded by 0 and 1. {8] contains a method
for finding a feasible solution when the bounds on the variables are
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arbitrary numbers. Making use of these algorithms along with a scal-
ing technique, quite recently we were able to develop a polynomial
time algorithmn for the general Edmonds-Giles problem [1]. That
algorithm looks important even in the special case of polymatroid inter-
sections since before that, as mentioned, cfficient combinatorial algo-
rithms were kmown only for the case of (0,1) weights.

The purpose of the preseat paper is to summarize the method, its
theoretical consequences, and some applications. However, the
present approach is different from the one in {1] where the concept of

restricted Edmonds-Giles problems was used, Here we work

throughout on the original problem so the algorithm and the proof of
its validity can be discussed directly.

It should be emphasized that the algorithm needs an oracle which
can, roughly, minimize a submodular function. In the applications we
cxhibit in Section 9 this oracle is indeed available via a combinatorial
algorithm,

2. Preliminaries

Throughout the paper we work with a finite ground set V of n ele-
ments. If ACV, then A denotes V—A. Scts A,B are intersecting if
none of ANB, A—B, B—A is empty. If, in addition, AUB+#V then
A,B are crossing. A family B of subsets of V is intersecting (crossing) if
ANB, AUB € B for all intersecting (crossing) sets A,B € B. B is
called a ring family if it is closed under taking union and intersection.
For intersecting (crossing) families we can assume without loss of gen-
crality that @ ¢ B (J,V ¢ B) . A family of subsets is laminar if it
does not contain two intersecting sets.

A set function b is submodular on A,B if
b(A) + b(B) = b(ANB) + b(AUB). If the reverse inequality holds, &
is called supermodular if equality holds, b is modular on A,B. Some-
times we refer to a pair (b, B ) as an intersecting (crossing) submodular

function if B is an intersecting (crossing) family and.5 is a function on .

B submodular on intersecting (crossing) pairs. An intersecting submo-
dular function (b, B ) and an intersecting supermodular function (p,R)
are said to be compliant if B € BP ¢ P ,B~P # &, P-B # J imply
that B—P € B, P—B € P and b(B) - p(P) = b(B—P) — p(P—B).
AsetAiscalled auvsetif u €A, v¢{ A, LetG= (V,E)bea
directed graph with node set V and arrow set E. (For directed edges
we use the term arrow while an edge means an undirected edge.) Mul-
tiple arrows are allowed but loops not. An arrow wv leaves (enters)
BCV if B is a uv-set (vi-set). For a vector x € R*, and
B CV, p,(B) denotes 3 (x(e):e enters B) and 9,(B) = p:(B). M:(B)
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denotes p,(B) — 3,(B). It is easy to check that ), is modular on pairs
A,B of subsets of V.

Let B be a family of subsets of V. Tbe arrow-incidence matrix B
of B is a (0,=1) matrix with rows corresponding to the members of B
and with columns corresponding to the arrows of G. An entry &, 18
+1 (—1) if e enters (lcaves) B and O otherwise.

For an integer vector d by _.m_ we mean a vector d’ with com-
ponents d’(e) = _,m.mumu-._. We assume that addition, substraction, and
comparison of two real numbers are one computational step cach.

The following useful concept is due to Hoffman and Edmonds-
Giles [13,4]. A lincar system Ax =< b is called totally dual integral
(TDY) if for any integral vector d the dual lincar program min yb sub-
ject 10 y = 0, yA = d has an integral optimal solution if it has an
optimal solution. The basic feature of TDI systems is given by the fol-
lowing theorem.

THEOREM A TDI lincar system defines a polyhedron spanned by its
integer points provided that b is integral-valued.

3. Submodulsr Flows

Let (' ,B’) be a crossing submodular function and let G = (V,E)
be a directed graph. Let £ € (R U £}, g € (R U {+=})* be capa-
cities and d € R* a weighting on the arrows, Let B’ denote the arrow-
incidence matrix of B’ and consider the following dual pair of linear
programs.

(1') max dx subject to

B’x < b’ ( or, equivalently \,(B) < b'(B) for every B € B')

f=sx=g

AN.VBFv.w+uI.?;=EoQS
@aiéadum

2Z,w) =0
irﬂo@ the owBﬁougﬁ of y correspond to the members of B’ and the
components of both z and w correspond to the clements of E so that
w(e) = Oif f(e) = — and z(¢) = 0if g(¢) = +w. ([I] is the identity
matrix of appropriate size.) These linear programming problems were
introduced by Edmonds and Giles {4]. We call a linear programming
problem of form (1') & submodular flow problem (or sometimes an
Edmonds-Giles problem) and a solution to it is said to be a submodular
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Jlow. :

.H.mmowmg 1.[4] The lincar system (1') is TDI. Consequently, if d is
integer valued and wn.u has an optimal solution, then (2‘) has an
integral optimal solution. If b’, and (the finite components of) f and g
are integral valued and (1°) has an optimal sclution, then (1’) has an
integral optimal solution.

. The algorithm will find thesc optima. First, we shall be dealing
with a simplified <oammo= of the submodular flow problém when the
bound imposed on A, is an intersecting submodular function denoted by
(b, B ). In Section 7 we shall indicate how the general crossing case
can be reduced to this version. In the intersecting case we shall refer
to the linear programs (1') and (2°) as (1) and (2), respectively,

Henceforth we assume d to be integer valued. A rational d can
be replaced by D-d where D is the common denominator of the com-
ponents of . For irrational d the algorithm does not work. Thus the
algorithm in [7] for the 0—1 case has a slight and mostly theoretical
u.%nbﬁmo. namely, it does work well if the components of d are irra-
tional, For example they may be of the form aV2 + & (a,b integers).

For simplicity, we require that no arrow ¢ = gb cxists with
J(e) = ==, In Eooonqs case, if g(e) = +o, replace ¢ by ¢; = ab
and e; = ba with f(e) = \..Tuu =0, g(er) = gles) = +=» and
mm.npv = d(e), d(ez) = ~d(e); if g(e) < +, replace ¢ by e; = ba
with f(e1) = —g(e), g(er) = +o and d(e1) = ~d(e).

The complementary slackness conditions are as follows.

(3a") z(e}> 0=>x(e) = gle) (<=)fore € E.
(36") w(e) > 0 => x(e) = fle) (>—) for e €E.
(3c) y(B)>0=>\,(B)=5b(B) forB¢B.

Denote yb, by y(e) where b, is the column vector of B
corresponding to e. Suppose we have a feasible solution x to (1’) and
a vector y for which

(3a) y(e) > d(e) => x(e) = fle) (> —-»)

(38)  y(e) < d(e) => x(e) = g(e) (< +).

By letting w(e) = y(e) — d for isfying-

z(e) = d(e) — y(e) nwunsoﬂnunuuwmm.ﬁuwwqmﬂuu “M.uﬂﬂ”h oﬂﬁ&u% Bn“nw
ponent of w and z is 0, the vector x and Q.u...& satisfy (3a’'b’c).

Therefore our purpose is to determine algorithmically th
satisfying (3abc). s y e veaam
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4. Tight Sets and Potentials

Assume x is a solution to (1). A set B € B is called b-tight or
bricfly right with respect to x if A:(8) = 5(B). The following lemmas
are taken from [7].

LEMMA 2. The intersection of two tight sets is tight, If a family of
tight sets forms a connected hypergraph, its union is also tight.

Denote by B,(v) the intersection of tight sets containing v. By the
lemma B,(v) is tight.

A fundamental feature of the method is that the dual variables
associated with the members of B are not used during the algorithm.
Instead, we work with potentials which are vectors in Z¥. At the end
of the algorithm the optimal dual solution can be reconstructed from
the final potential. To be more precise, assume we have a solution x
to (1) and a potential [1 such that

uv € E, [I(v) — (u) > d(e) => x(e) = fle) (4a)
uv € E, II(v) — Nl(e) < d(e) => x(e) = gle) (4b)
u € B.(v) => [I{x) = I(v). (4¢)

With the help of this potential I we are going to define a vector y that,
along with x, will satisfy (3abc).

Let the distinct values of I be Ih<Ij < -:- <IL and
Vi={u: Iu)=IL}Li=1,...,k
LEMMA 3. (4c) is equivalent to the fact that each V, partitions into
tight sets.

Namely, the partition is formed by the components of the hyper-
graph {B.(v): v € Vi}. Denote this family of componeats by K,(V.).

For B ¢ B define y(8) = 3 (Il; ~ IL-;) where the summation
extends over those subscripts i for which B € K.(V,) (the empty sum is
defined to be zero).
LEMMA 4. For cache = wv € E, Ii{v) — II{x) = y(e).

These lemmas imply that x and y satisfy (3abc) and y is integer if
Il is. From algorithmical point of view, in order to get y we have to be
able to determine B,(v). (Creating the components of a hypergraph is
easy).

5. Strategy of the Algorithm

Our remaining purpose is to find a solution x to (1) and a poten-
tial I1 which satisfy the optimality criteria (4abc). The algorithm starts
with an arbitrary submodular flow which is found by an algorithm
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described in [8). _ :
We shall need the scaling technique. It was introduced by

Edmonds and Karp (3] for solving the minimum cost flow problem,

They scaled the capacities. In our case roﬂoﬁn.v this does not seem to

work since difficulties arise from the fact that Tul._ is not submodular.
This is why we are going to scale the cost function d. To this end sup-
posc that d(e) is given in base 2 and that the biggest non-zero digit is
2571, i.c. the number max, ¢ gId(e)! consists of K digits.

The basic idea is as follows. If onc already has a sclution x and a
potential [] satisfying (4abc) with respect to a cost function d* then it is
possible to determine another x* and I’ satisfying (4abc) with respect
to a new cost function d'’ where 4’ differs from d' in one component
by one. This will be done by the Inner Algorithm.

The Level Procedure, starting with x,II satisfying (4abc) 419.

respect to d*’ = _.ml 1, finds a solution x* and a potential II" satisfying

(4abc) with respect to d’. If the Inner Algorithm is available, this is
simple since x and 2II satisfy (dabc) with respect to 24" and 2d4'’
differs from 4’ in any component by at most one. Therefore the Level
Procedure is nothing but a series of applications of the Inner Algo-
rithm, at most |E| times, yielding the required x’ and II’.

di-y

Let dy=d and &H—iull._. i=12,...,K. Obviously

de(e) = 0 if d(e) = 0 and dx(e) = —1 if d(e} < 0. Any solution x* -

and I = 0 satisfy (4abc) with respect to d = 0. Applying the Inner
Algorithm at most lE| times we obtain & vector xr and a potential Iy
satisfying (4abc) with respect to dr. We call this part of the algorithm
the Beginning Phase. Then apply the Level Procedure X times: first to
dr, then to dg-1, . . ., finally to d;. This is called the Level Phase.
The final x and II satisfy (4abc) with respect to the original cost func-
tion d. One can sec that the Beginning Phase nceds at most IEl, while
the Level Phase at most K1E| applications of the Inner Algorithm.,

In Section 8 we shall give a combinatorial good characterization of
dual infeasibility. At this point it is important to know that, as can be
proved, none of the intermediate problems are dual infeasible unless
the original problem is dual infeasible,

In the next section we concentrate on the Inner Algorithm,
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6. Inner Algorithm
The Inner Algorithm works with the following input and output.

Input
x: feasible solution to (1)
II: potential
e’ = ab: arrowinE
d’: cost function
X: +lor—1
such that (4abc) holds.
Oautput
x': feasible solution to (1)
. potential

such that (4ab¢) holds with respect to the modified 4, where
di(e) = d'(e) if € ae ¢’ and di(e’) = d(e’) + X.

In the Beginning Phase, apply the Inner Algorithm with x = -1,
The input x and II almost satisfy (4abc) with respect to d;. Only (4a)
can be violated by ¢’. In the Level Phase x = 1 and the starting x and

~ IT almost satisfy (4abc) with respect 1o d;. Only (4b) can be violated

by ¢’. We shall be dealing only with this latter case. The algorithm is
quite analogous when x = —1.

Suppose now that e’ = ab violates (4b) with respect to x, I1, and
dy, i.e. di(ab) = II(b) — ll(a) + 1. Denote dy(uv) — II{v) + —..mntu by
di(wv). Define an auxiliary digraph H, on V in which three kinds of
arrows may exist having the following capacitics.

1. &; = uv is a (s0-called forward) arrow if uv € E, x{uv) < g(uv) and
dy(uv) = 0. Its capadity is c(e;) = g{wv) — x(uv).

2. ex=vu is a {backward) arrow if wv E, x(uv)> f(uv) and
di(uv) = 0. Its capacity is c(e2) = x(sev) — g(uwv).

3. ey=uv is a (jumping) arrow if there is no tight wi-set mun
M(u) = II(v). Its capacity if c(es) = min(b(B) ~ M\.(B): B ¢ B, Bisa
uv-set ).

(The minimum on the empty set is defined to be +.)

One can see that all capacities are positive. Try to find a directed path
in H, from b to a. There may be two cases.

CASE 1. No path exists, i.c. @ § T = {v: v can be reached from
bin H,}. Revise the potential as follows. II'(u) = Il(u) + 1ifu €T
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and = [I(u) otherwise. The next claim is a straightforward conse-
quence of the optimality criteria (4abc) and the definition of H,.
CLAIM x' := x and II' satisfy (4abc) with respect to d;.
CASE 2. In H, there exists a path from 5 to a.

Let A be such a path with a minimum number of arrows, Denote
a.w A the least capacity of the arrows on A + ¢’. (A is called the capa-
city of the augmentation along A.) It can be shown that if A = + o, the
problem is dual infeasible. Thercfore we can suppose that A < + o,

Define a new vector x°:

x(uv) + A ifuv €EEisonAoruv=¢'.
x'(uv) = {x(uv) — A ifuv € E and vu is on A.
x(v) otherwise.

We call this .ovgwn an augmentation (of A amount }. Call an arrow on
the augmenting path critical if its capacity is A.
It is casy to sce that:
LEMMA 5.[8] For each B € B, A,,(B) = A\.(8) + A (¢/(B) — &(B"
where &/(8) stands for the number of jumping arrows on wﬁ_nuninw M.Vu
The next lemma is crucial to the algorithm.
LEMMA 6. x' is solution to (1). .
PROOF Ocﬁoﬁ_w S=x'=<g. Scte(B)=0b(B)~ M\(B)forB € B.
Then « (B) is submodular on intersecting pairs. We are going to prove
mruﬂ.%nmu.b < €(B) for cach B € B. By Lemma $§ this already
implies that A :(B) = 5(B), i.e. x’ is a solution to (1).

__ Proceed by induction on the value 8/(8). The case 3/(B) = 0 is
trivial. Let #(B) > 0 and let «v be & jumping arrow on P leaving B
such that [I{v) (=II(x)) is as large as possible. If there are more such
arrows let uv be the first one on P (starting from b ).

CLAIM. #(BU B:(u)) = &/(B) - 1.

PROOF. Since no jumping arrows leaves B,(u) and uv does not leave
B C.P?u we have .muow UB,(u)) = &/(B) — 1. On the other hand if
gr is another jumping arrow on P leaving B then we claim that
r ¢ B,(u) (and so gr leaves B U B,(u) t00): in the contrary case
I(r) = II{u) by (4c) and therefore, by the maximal choice of uv,
I(r) = ﬁ?u = [1(¥). Hence ur is a jumping arrow in H,. By the
assumption on uv, uv precedes gr on P and so ur is a shortcut arrow to
P contradicting the minimality of P.

Now we have
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€ (B) = ¢ (B) + € (B:(w))
> € (B N B.(u)) + € (B U B,(u))
=A+A@B)-1)
= ¥(8)

as required. Here we made use of the induction hypothesis for
B U B,{u) and the previous claim. O

LEMMA 7. (4abc) holds again with respect to x’,1I and d; with the
only possible exccption that e’ still violates (4b). (This is the case
exactly when A < g(e’) — x(e').)

PROOF. The statcment for (4a) and (4b) follows directly from the
definition of H,. We prove (4c). By Lemma 3, V; is the union of dis-
joint sets Xy, . . . , X, where each X, is tight with respect to x. Since
no jumping arrow leaves any tight set and no jumping arrow enters V,
we have #(X)) = &(X;) = 0. Thus cach X; is tight with respect to x’.
Apply again Lemma 3. O

Like the classical maximum flow algorithm, the Inner Algorithm
consists of iterating the augmentation procedure. More precisely, in
every loop of the iteration we apply the augmentation to an input x, II
which was the output x', I of the previous augmentation, that is
x:= x' and II is unchanged. The Inner Algorithm terminates when
cither Case 1 occurs {and then we perform the potential change
described there) or e’ stops violating (4b) (since the current
A = g(e') = x(e")). Note that the potential Il remains unchanged dur-
ing the whole Inner Algorithm except, possibly, at the very end if Case
1 occurs.

To justify the algorithm we have to prove that the number of sub-
sequent augmentations can be bounded by a polynomial of V1. To this
end we always choose a shortest augmenting path. This kind of selec-
tion was proposed by Edmonds and Karp [3] in order to get a polyno-
mial bound for the maximum flow algorithm. In addition, among the
various shortest augmenting paths in a given stage we break ties by a
lexicographic ordering. This technique was devised by Schonsleben
{16] and Lawler and Martel [14] to obtain a vector of maximum
component-sum in the intersection of two polymatroids.

Assume that the nodes of H, have fixed (distinct) indices. For
notational convenience we do not distinguish between the name and the
index of a node. That is, for two nodes u,v, ¥ > v means that the
index of u is bigger than that of v.

By a shortest path from b to a we mean one with a minimum
number of arrows and this number is the lemgrh of the path.
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@x(1) (7:(¢)) stands for the length of a shortest path from & to « (x to
a) in H,, Cal an arrow wv in H, aodmissible if
au{u) + 1.(v) + 1 = 0,(a). Obviously, a shortest path from b to a
consists of admissible arrows. ‘

_ Letus define i;(v) as the minimum index u for which uv is admis-
sible. nwn no Eﬂ: a ¥ cxists then i;(») = ., The nodes of the augment-
ing path P we will use are (in reverse order) a,i.(a), i (i, ..
None of these indices is 3.A Y ouddehbtiuta). b

Let J; denote the set of jumping arrows in H,.

LEMMA 8. Suppose that o,(v) > 0.(x) and uv is a new jumpi
) a * * E
arrow in H,-, thatis uv ¢ J,, uv € J,». There exists an arrow ViU %n_.bw
such that Vill1, viv, kuy € J, and Quntv = o...?av
=a,(v) = 1 = o,(u) ~1.
PROOF. Since uv is a new jumping arrow in H,, therefore v ¢ B,(u)
and B,(¥) is not tight with Tespect to  x'.  Set
J(u) = {w: II(w) = Il(u),w € B,(u)}. Let B be a maximal set in B
satisfying the following properties
a. B is tight with respect to x,
b. w € B implies that [I(w) = I[I(x),
€ weEP, weB—J), [I{w) = Il(y) imply that (5)
o.(w) < a,{u),
d. Bisauv—set,
This definition does make sense since B,(x) satisfics (5).

Since wv € J," , B cannot be tight with respect to x’. Thus, b
HbBBm 5, (B) > 0. Let viuy € J, be an arrow on P entering B, iw
are going to prove that viu, satisfics the requirements of the lemma.
By Lemma 2, B’ = B U B,(v:) is tight with respect tox. If w € B,(vy)
then [I{w) = [I{v,) = II(w) = II(u) therefore (Sb) holds for B'. We
show that (5c) is also true for B’. To this end let
we€PNB(v)—-B such that II{w) = I(u). Then
II(w) = N{v1) = (u;) = O(x) from which Ii(w) = I{(v1). Thus cither
S_Mwh M_.u Sunx:u Since w#u; and w€P we have
0:\w) < a:(v1) = 0,(1) — 1 < 0.(u). Consequently, B’ satisfics
(Sabc). Being B maximal B’ cannot be a wi-set, that is v € B,(w).
Then II(v) = II(v1) = H(us) = Il(s) = [I(v) therefore equality holds
everywhere. Thus (i) o.(v) = 0.(vi) + 1. We claim that uy € J(u)
and 50 0,(#1) = o.(u) + 1. For otherwise, using (5¢) for w = u; and
(i), ox(v) S ou{w1) + 1 = 0. () < o:(u), a contradiction,

Now we bhave o,(u)+1= o(v)s= a(v) + 1=
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o:{u) = o:(u) + 1 from which equality follows everywhere. Further-
more u,v,u;, v, are distinct nodes and viv, uuy, ving € Jy. O
LEMMA 9. Forw € V o,(w) and 1,(w) are non-decreasing.
PROOF. We prove the lemma for a,(w). If uv is a new arrow in H.,
for which o {u)<o,(v) then we€Jr. By Lemma 8§
o,(u) = o,(v) — 1 therefore o,(w) cannot decrease. ©

By a phase we mean a maximal sequence of subsequent augmenta-
tions in which o,(a) is unchanged. Obviously the number of phase is
at most n.
LEMMA 10. In onc phase i,(v) does not decrease.
PROOF. The only possibility for decreasing i,(v) would be a new
jumping arrow wv arising by performing an augmentation. Apply
Lemma 8 and consider those nodes vy,u; of P. Then uyv, uuy, viu, are
all admissible arrows in H,. Thus i,(v) = vy = i,(1) = u, i.e. the
new jumping arow uv does not reduce i,(v) . O
LEMMA 11. After making an sugmentation, a critical arrow disap-
pears from the auxiliary digraph.
PROOF. The lemma is obvious if uv is a critical forward or backward
arrow. Assume that uv € J,. We are going to prove the existence of a
uv-sct B tight with respect to x’. Since wv is critical there exists a ui-
set By for which A = b(B,) — M\(B,) and choose B, to be minimal.
CLAIM. B, C B.(u). .
PROOF.
A=ecB)=€e(B1) + €« (B;(u)) = e (B, N B, (u)) + €« (B, U B, (u)) =
A + 0 from which € (B; N B:(«)) = A. By the minimality of B,,
B, = B; N B,(u), i.e. B1 § B,(u).

Let B be a maximal set in B for which

a. Bis auv-set,

b. «(B)=A
(6) c. w € B implies II(w) = I1(u),

d. Iw) = Ii(u), w € B N P iroply that o,(w) = o0.(u).
The definition of B does make sensc because B, satisfics (6).

CLAIM. There is no jumping arrow s7 on P eatering B.
PROOF. Suppose on the contrary that sr exists, Let B’ = B U B,(s).
We are going to prove that B’ satisfies (6) which will contradict the
maximal choice of B. _
(6a):v € B,(s) would imply II(v) = [I{s) = II(s) = N(u) = II(v)

whence II(s) = II(v) and sv would be a jumping arrow in H, and

then o,(v) s o,(s)+ 1. But this is impossible since
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o)+ 1=0:(t) = o) = o,(v) ~ 1, i.e. sv would be a
shortcut arrow to P. Thus B’ is a uv-set.

(6b):A+0z=e(B)+e@BAs)=e(B)+e¢(BNB(s))=A+0
from which € (B') = A.

(6¢): If w € By(s) then II(w) = II(s) = I{r) = M{u).

(6d):Let w € (B«(s) N P) — B such that [I(w) = II{x). Then, because
of I{w) = Il(s) = II(s) = II(u), we have II(w)=II(s) and
sw € J,. Since w ae t, cither w = s or w precedes s on 2. Thus
o,(w) S 0:(s) = ou{t) = 1 < o.(u) — 1 and (6d) is true for B,

In other words the claim says that &) =0. Hence

b(B) = M\ yr(B) = X.(B) — A Q.__N.mwu -¥@B)=bB)-A-0+

A-9(B) = b(B) -~ A + A from which 5(B) = \,.(B) follows and the

proof of the lemma is now complete. O

LEMMA 12. If uv is a critical jumping arrow on an augmentation path

Py then wv will no longer be a jumping admissible arrow during the
whole phase.

PROOF. By Lemma 11 after augmenting along P; the arrow v disap-
pears from the auxiliary digraph. That time we had iz,(v) = u, thus,
by Lemma 10 i(v) =« during the whole phase. Assume now
indirectly that later in the same phase we are making an augmentation
of the current x along an augmentating path P so that uv becomes again
a jumping admissible arrow. Applying Lemma 8 we have
% S i;(v) = v1 = i;(u;) = u whence u = v, that is uv was a jumping
arrow already in H,, a contradiction. O

Summing up, by now we have proved that within one phase an
arrow may be critical at most once. Since in H, there may be three
parallel arrows from & to v the number of subsequent augmentations is
at most 3»® in one phase and thus the overall number of augmentations
is at most 3n®, Furthermore if the input data b,f,g are all integra! then
all the arithmetic is integral and the final submodular flow is also
integral.

a In order to be able to apply the Inner Algorithm we need an ora-
e to

(*) compute the min value of b(B) — A,(B) over the uv-members of
B

With the help of this oracle we can determine the auxiliary digraph H,
as well as the capacitics of jumping arrows in H,. Assume this oracle
is available with complexity . One augmeating path and the new H,,
with the capacities can be computed in 0(n?k) steps. Thus the overall
complexity of the Inner Algorithm is O(n’k). We have seen that the
Inner Algorithm needs to be applied at most (X + 1) e times where
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e = |El. Consequently, an optimal solution to (1) and a potential
satisfying (4abc) can be obtained in at most 0(n’ehK) steps.

Finally we briefly remark that the present algorithm can be con-
sidered as a generalization of the method for finding a feasible solution
to (1) {8], consequently the present algorithm can be applied to find a
starting feasible solution. To this end adjoin a new node r to the graph
along with arrows from v to » for cach v € V. For a new arrow vr set
fOr)=0, glwr)=o d(vr)=—1 and for an old arrow uv set
d(uv) = 0. The original submodular problem has a feasible solution if
and only if the new one has a solution of 0 cost. Thus we can apply
the optimal submodular flow algorithm to this new problem. Notice
that a starting feasible solution to the new probem is easily available by
taking x(uv) =0 for wv € E and x(vr) = max{0,—min b(B)) for

vER
veYV.
Incidently this trick gives rise to a feasibility criterion. See Section 8.

7. Croasing Families

In this section we indicate how the methods developed for the
intersecting case lead to a solution for the general crossing problem.
The following lemma was proved in [7].

- LEMMA 13. For a crossing submodular function (»',B’) define a

function b on as follows. Set B ={X: Xage @, X =N X, X, €B' ,
XinX;=2}u{v} and b(X) = min(Eb'X): X=NX, X, € B
XxNnx;=)forXxX¢ B ~{V}and b(V)=0. Then (b, B ) is an
intersecting submodular function. Moreover the submodular
polyhedron P’ defined by (1°) is exactly the submodular flow
polyhedron P defined by (1).

This lemma makes it possible to apply the algorithm developed
for intersecting submodular functions. As far as the oracle (*} is con-
cerned the content of the next lemma is that an oracle for b’ gives the
right answer with respect to b as well. [8]

LEMMA 14. Forx € P' (=P) ,u,v € V we have
min(b(B) — A.(B): B € B, Bisa UV-set)

= min(b’'(B) — \.(B): B € B’, Bisauv-set).

These lemmas show that in order to determine the optimal x and

I1 case can be used without any change for crossing submodular func-
tions providing that a starting solution is available. The problem of
finding a starting solution can also be reduced to the intersecting case
but a bit more sophisticated trick is needed. Sec [8].

To construct the optimal dual solution needs some more work., In
[7] a simple combintorial procedure was shown, given x and II
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satisfying (4abc), for computing the optimal sohition to the dual of
(1'), which will in addition be integer-valued if II is.

8. Feaslbllity and Optimality
The next results are taken from [1,7,8)].
THEOREM 15. The linear system ( 1’ ) has a solution if and only if

pr(UB,) — 3,(UB)) = b'(By)

for disjoint non-empty sets By,B2, . . . ,B: (possibly notin B’ ) where
cach B; is the intersection of pairwise co-disjoint members B of B’
(= 1,2,...,&k). Moreover, if b',f,g arc integral-valued and the con-
diton holds, then (1’) has an integral valued solution.

It should be noted that the condition becomes much simpler if B’
is a ring-family and 5’ is submodular on every pair. In this case it is
necessary and sufficient for (1') to have & solution that
py(B) — 3,(B) < b'(B) for B € B' If B' consists of all subsets of V
m,aua b’ is identically zero, we get back Hoffman's circulation theorem
5].

In order to formulate dual feasibility conditions let us define a
digraph H = (V,F) and a cost function d’ on its arrows as follows.

e=uv € Fifuv € E and g(uv) + o, Setd’'(e) = —d(e).
e =vu € Fifuv € E and f(uv) = —, Setd'(e} = d(e).
e = uv € F if there is no uv-setin B. Setd’(e) = 0.

THEOREM 16. The linear programming dual to (1') has a solution if
and only if H does not possess a directed circuit of negative cost.

The following theorer gives a criterion for a submodular flow to
be optimal. Letx be a solution to (1' ). Let us define a digraph

G, = (V,E,) and a cost function d’ on its arrows,

e = uv € E, if uv € E and x(uv) < g{uv). Setd’'(e) = —d(e).
e = vu € E, if uv € E and x(uv) > f(uv). Set d'(e) = d(e).

e = uv € E, if there is no b-tight uv.setin B, Setd’(e) = 0.

THEOREM 17. A submodular flow x is an optimal solution to {1') if
and only if there is no negative directed drcuit in G;.

An interesting consequence of Theorem 15 was derived in [7,8].
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Discrete Separation Theorem.

Let (b, B ) and (p, P ) be intersecting submodular and supermo-
dular functions, respectively. There exists a modular function
m: 2V - R such that 5(B)=< m(B) for B € B and m(P) = p(P) for
P € P if and only if $p(P:) = Tb(B;) holds for every disjoint
members P; of P and disjoint members B; of B such that UP; = UB;.
Morcover, if » and p are integer-valued, then m can be chosen to be
integer-valued.

For a ring family the condition is simpler.

THEOREM 18. Let K be a ring-family and b and p integer-valued
sub- and supermodular functions, respectively, on K If p = b, there
exists an integer-valued modular function m for whichp = m =< 5.

It is an open problem to find a characterization for the existence
of an integer-valued Eﬁauonnnn modular function on ¥ such that,
given integer-valued intersecting sub- and supermodular functions,
respectively, on F, b(F) = m(F) = P(F)for F ¢ F.

9. Applications

In the introduction it was mentioned that the min cost flow, the
(poly-) matroid intersection and the Lucchesi-Younger problem are
special cases of the Edmonds-Giles model. See also {6,9]. Here we
discuss further applications.

I. Orlentations.

A directed graph is called k-strongly arrow connected or briefly k-
connected if the number of entering arrows is at least k for any non-
empty proper subsct. The nouoﬂ_bm theorem is due to Nash-Williams
(15}

THEOREM 19. An undirected graph has a k-connected orientation if
and only if there exists 2k cdges between every subset and it comple-
ment.

Here we consider a generalization of this preblem. Suppose we
arc given a mixed graph G = (V,A U E) ( i.c. a graph with arrows
and edges ). The problem is to find an orientation of the edges so that
the resulting digraph should be k-connected. Another problem is to
find a minimum cost k-connected orientation if the two possible orien-
tations of each edge have different costs. This problem can be reduced
to (1') as follows. First, give an arbitrary orientation to the edges in
E. Denote by p(B) the number of new and original arrows entering B.
Consider the following linear system.
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ps(B) — 8,(B) = p(B) — k %)
0=x=1

It is easy to see that '(B) = p(B) ~ k is a crossing submodular fune-
tion on B’ = 2¥ — {@&,V}. Thus (7) is a problem of form (1'). On the
other hand there is a one-to-one correspondence between the integer-
valued solutions x to (7) and the k-connected orientations of G.
Namely, reorient those arrows among the elements of E for which
x(e) = 1. Therefore an algorithm for the submodular flow problem
can be applied to get 2 minimum cost k-connected orientation. The
oracle nceded by the algorithm in this case is to minimize
p(B) — k = p.(B) + 3.(B) over uv-sets. This is equivalent to minimiz-
ing p’(B) over uv-sets where p’ denotes the in-degree function in the
reoriented digraph defined by x. This minimization problem is done
by a max flow min cut computation. .

PROOF OF THEOREM 19. The hypothesis of the Theorem means
that the vector consisting of components 1/2 is a solution to (7). But
then there exists an integer-valued solution to (7) and such a 0—1 vee-
tor corresponds to a k-connected orientation, O

II. Kernel systems ,

._..2 H = (U,A) be a digraph, (p,P) an intersecting supermodular
function (P C 2%). Morover, at each node v an intersecting submodu-
lar function (&,,B,) is given where B, consists of some subsets of the
arrows entering v. Consider the following linear system.

p:(P) = p(P)forP ¢ P
x(B) = b,(B)forv € V,B € B,, (8)
0=<x

THEOREM 20. The lincar system (8) is TDIL.

This theorem was proved in {10] in the special case when no sub-
modular constraints were imposed at the nodes. The proof of this
theorem is by showing that (8) can be reduced to (1) by an elementary
construction. Namely, let a digraph G = (V,E,) be defined by
14 = A'UA", E={a"a':fora€ A}, where A’ and A"’ are disjoint
copies of A. Let us define (b’,B’) as follows.

] B’ ¢B' and b'(B') = b.(B) provided that B € B, for some
v EU.

V-~-XEB and b'(V - X) = ~p(Z) provided that there is a

Z€ P such that X =X, UX, and X, consists of all arrows
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corresponding to arrows in H induced by Z.

It is not hard to see that (5°,B") is a crossing submodular function
and the submodular polyhedron defined by (b’,B") is exactly the solu-
tion set of (8).

Note that if one imposed submodular functions at the nodes on
the leaving arrows rather than the entering arrows, the resulting linear
system would involve the Hamiltonian path problem so the correspend-
ing TDI-ness theorem would not be true,

Here we list some problems which can be transformed into form
(8). Sec also [10].

A. Extend a digraph by adjoining arrows of minimum weight 50 as to
have a flow of value k from a source to a sink. [5]

B. Extend a digraph by adjoining arrows of minimum weight so as to
have a flow of value k from a fixed source to each other node.

C. How many arrows can be covered by & spanning arborescences
rooted at a fixed node ?

D. When can a digraph be covered by k branchings?

E. Given a digraph and a matroid on its arrow set, find k arrow-
disjoint arborescences rooted at a fixed node so that the k arrows enter-

_ ing cach node should be independent in the matroid.

III. Generslized polymatrolds, semimodular flows
Let (b, B ) and (p, P ) be intersecting sub- and supermodular
functions, respectively, which are compliant. In [11] we called the
polyhedron Q@ = {x: x(B) =< »(B) for B € B and x(P) = p(P) for
P € P} a generalized polymatroid or g-polymatroid and showed that
the polymatroid intersection theorem holds for g-polymatroids as well.
Namely, if Q; is a g-polymatroid defined by (&,,B,,p:;,P),i = 1,2, the

linear system
’ Hﬂ@b = &Aw-v forB, ¢ B,

i=12 ®

Hﬁﬁgv = ‘Qvav forP € P,
is totally dual integral.

In [11] it was also shown that the submodular flow polyhedron
arises by projecting the intersection of two g-polymatroids. On the
other hand the intersection problem (9) can be formulated as a submo-
dular flow problem therefore the algorithm described in the previous
sections applies. To this end take two copies S’ and §'' of the
groundset § and lead an arrow from each s" to s'. LetV = §"" U §'
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and let (»',B’) be defined as follows.

X € By X' €B’, b'(X") = bh(X)

X€EP V-X€B, b'(V-X')==p:(X)
For let

X €B; V-X"eB, b'(V-X")=+bX)

Xe¢p; X" € B', b'(X"") =-p(X).

It is casy to sce that (b’,B’) is a crossing submodular function and the
submodular flow polyhedron defined by this system is exactly the solu-
tion set of (9).

Next we show a symmetric version of the Edmonds-Giles problem
in which both lower and upper bounds are imposed on
M(B) = ps(B) — ?GV mcﬁ_uo“o that G = (V,E) is a digraph and
(5,8), (p,P) are intersecting sub- and supermodular functions, qn...uon.
tively, which are compliant.

THEOREM 21. The lincar system
A(B) = b(B)forB ¢ B
MP)=p(P)forP EP (10)
fsx=sg

1s totally dual integral.

A solution to (10) is called a semimodular flow. To reduce (10) to
a submodular flow problem, adjoin a new node r to the graph. Let
XeB and b'(X) = b(X)if X € Band = ~p(X)if V+r—X € P.
Now (&',B') is a crossing submodular function and the submodular
flow polyhedron defined by it is the solution set of {10).
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