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43 A. Frank

An undirected (directed) graph is called Eulerian if d(v) is even (g(v) = 6(v))

for every node v.

Where S is a finite set, X © § and h : § — R is a function we use the notation
Bh(X) =3 ex B(x).

In an undirected graph G = (V, E) splitting off two edges uv and vz means
the operation of replacing uv and vz by a new edge uz. Similarly, in a directed
graph splitting off two arcs uv and vz is an operation that replaces uv and vz by
a new arc uz. If u = z, we leave out the resulting loop uz.

‘The following two equalities will prove extremely useful. The first concerns
directed graphs while the second is for undirected graphs. For 4,B < Vv

(1.1 06(4) + ec(B) = 26{A N B) + 6(4, B} + dc(4, B)

(1.2) dg(A) + dg{B) = dc{A N B) + dg(AU B) + 2dg(4, B)

The proof consists of showing that the contribution of any of the edges to
the two sides of the equality is the same.

An obvious consequence of (1.1) and (1.2) is the submodular property of ¢
and d:

(L1 26(4) +e¢(B) 2 (4N B) + ¢o(A U B)

(1.2) do(A) +dg(B) = dg(A N B} + dg(4U B)

Sometimes more complicated relations are needed. Suppose that the node set
V is partitioned into 5 sets; A, M, N, X,Y. Then

(13) d(XUM)+d(Y UM)+2d(4,N) = d(X UN) +d(Y UN) +2d(4, M).

The proof is an easy exercise.

The starting point of the whole theory is Menger's (1927) theorem. In what
follows s and t are two specified nodes of the graph or digraph G = (V,E) in
question.

Theorem 1.1. a, In a digraph (graph) there are k arc-disjoint (edge-disjoint) st-
paths if and only if every (5-set has at least k entering edges.

b, In a digraph (graph) if there is no arc (edge) from s to ¢, there are k openly
disjoint st-paths if and only if the paths from s to t cannot be covered by less than
k nodes distinct from s and t.

(A set of paths is called openly disjoint if they are disjoint except for their
end nodes).

Actually here we have four theorems according to whether directed or undi-
rected and edge-(arc-)disjoint or openly disjoint st-paths are considered. Menger
originally proved the undirected, openly disjoint version.

Although this theorem is included in almost every book concerning graphs,
here we exhibit a proof since its basic idea, splitting off a pair of adjacent edges
and the use of submodularity, is extensively used throughout the whole paper.
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Proof. Let us first consider the arc-disjoint case. Let the minimum in question be
k> 0. Call a (5-set T tight if o(T) = k.

Lemma. If A and B are tight, then both AN B and AU B are tight, furthermore
d(A,B) =10.

Proof. By (1.1) we have k + k = ¢(A) + 2(B) = g{ANB)+ (AU B) + d(4,B) =
k + k + d(A4, B) from which the lemma foilows. a

We use induction on the number of edges. Let ¢ = uv be an edge with v # 1.
(If there is no such an edge, the theorem is trivial) We can assume that e enters
a tight set, for otherwise, by deleting ¢, we are done by induction. By the lemma
there is a unique minimal tight set T that is entered by e. Now there is an edge
vz with z € T, for otherwise g{T —v) < k. There is no tight set Z containing z
but not containing % and v since then Z N T is tight by the lemma contradicting
the minimal choice of T. There is no tight set Z containing u and z but not v
since then d(Z, T) > 0 contradicting the lemma again.

Therefore if we split off uv and vz, no t3-set can arise with indegree less than
k. By induction the resulting graph includes k edge-disjoint paths from s to t.
Replacing back the new edge uz by uv and vz we obtain k edge-disjoint paths in
G.

From the directed edge-version the other three cases of the Menger theorem
follow by elementary construction. Namely, in case a, replace each edge by a pair
of oppositely directed arcs and observe that if there is a set of k arc-disjoint paths
in the resuiting digraph, then there is one that does not use both arcs assigned
to an original edge. The same construction yields the undirected openly-disjoint
version from the directed one.

To see the directed openly-disjoint version construct a new digraph D’ from
D as follows. Replace each node v of D (# s,7) by a pair of new nodes ¢' and
v". Let v'v" be an arc of D' and for an arc uv of D let ¥’v be an arc of D'.
Arc-disjoint st-paths in D’ correspond to openly disjoint paths in D. Moreover,
if there are k arcs in D' covering all st-paths, then these arcs can be assumed to
be of type ¢'v” and this set of arcs corresponds to a set of k nodes of D covering
all st-paths. o

There exist other versions of Menger’s theorem. For example, given a graph
and two disjoint subsets S, T of its node set, there are k disjoint paths between §
and T if and only if there are no k—1 nodes covering all such paths. By elementary
construction this result easily follows from the original Menger theorem.

Since this paper is about paths and circuits let us close this introductory first
section by mentioning a recent application of the Menger theorem.

Theorem 1.2 (Egawa, Kaneko and Matsumoto 1988). In an undirected graph there
are k edge-disjoint circuits passing through two specified nodes s and t if and only
if every cut separating s and t contains at least 2k edges and after deleting any
node distinct from s and t every cut separating s and t contains at least k edges.



50 A, Frank
2. Disjoint Paths Problem

In this section we address the following problem, called the disjoint paths prob-
lem. Let us given a connected graph G = (V, E) or a digraph and k pairs of
nodes (sy, t1), (s2,£2), ..., (St tx). Find k pairwise disjoint paths connecting the cor-
responding pairs (s;, ;). If we are interested in finding edge-disjoint paths we
speak about the edge-disjoint paths problem.

First, let us concentrate on undirected edge-disioint paths. Sometimes it
is convenient to mark the terminal pairs to be connected by an edge. The
graph H = (U, F) formed by the marking edges is called a demand graph while
the original graph G = (V,E) is the supply graph. (Of course, H may not be
connected). In this terminology the edge-disjoint paths problem is equivalent to
seeking for |F| edge-disjoint circuits in G+ H each of which contains exactly one
edge of F.

A natural necessary. condition is the cut criterion:

CUT-CRITERION dg(X) = dy(X) for every X < V.

Since any cut of G can be partitioned into bonds cut criterion holds if we require
the inequality above only for subsets X for which both X and V — X induce a
connected subgraph.

We call d5(X) the congestion and the difference s(X) = dg(X) — du(X) the
surplus of cut V(X) The cut criterion is equivalent to saying that the surplus of
every cut is non-negative. A cut V{X) is called tight or saturated if s(X) = 0.

The cut criterion is sufficient if the demand graph consists of a set of parallel
edges (in which case we are back at the undirected edge-version of Menger’s
theorem), or if H is a star (that is, the demand edges share a common endpoint).
(This immediately follows from Menger).

The cut criterion is not sufficient, in general, as the following simple example
shows (Figure 2.1).

REDUCTION PRINCIPLE. Let us introduce a simple device by which the edge
disjoint paths problem can be reduced to a case when every degree in G + H is
at most 4. First replace each demand edge by a path of three edges such that the
middle edge is a demand edge, the two other edges are supply edges. As a result,
no demand edge is incident to a node of degree bigger than 2. Next let v be a
node with degree at least 5. Replace this node and the incident edges as is shown
in the picture 2.2

It is easy to see that the edge-disjoint paths problem is solvable in the original
graph if and only if it is solvable in the new graph. Applying this reduction at
one node v as long as the degree of v is bigger than 4, we see that v is replaced
by a subgraph displayed in Figure 2.2a.

The problem we obtain by eleminating all nodes of degree at least five is not
only equivalent to the original problem but its size is a polynomial of the original
size. Indeed, every node has been replaced by O(d(v)%) new nodes of degree four.
For applications of the reduction principle, see Sections 3 and 4.
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There is a natural relaxation of the edge-disjoint paths problem called mul-
ticommodity flow, or for short, the multiflow problem. Let G be undirected. The
probiem is to assign non-negative variables to paths connecting the prescribed
terminal pairs sjty,s$sts,...,5: so that for each terminal pair s¢; the sum of
variables assigned to paths connecting s; and ¢; is at least one and the sum of
variables assigned to paths passing through any edge of G is at most one. (In the
general multifiow problem one may have capacities on the edges).
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Obviously a solution to the edge-disjoint paths problem is a 0-1 solution to the
multiflow problem and vice versa. This is why we say that the edge-disjoint path
problem has a fractional solution when its multifiow relaxation has a solution.
Notice that the problem in Figure 2.1 has a fractional solution (assign 1/2 to the
4 paths of length 2}).

One way to formulate the multiflow probiem as a linear program is the
following. Let A be a 0,1 matrix the rows of which correspond to the edges of
G the colums correspond to the good circuits. An entry {(,j) is 1 if the edge
corresponging to # is in the circuit corresponding to j and 0 otherwise. Similarly
let B be a 0,-1 matrix the rows of which correspond to the edges of H the columns
correspond to the good circuits. An entry (i, ) is -1 if the edge corresponding
to i is in the circuit corresponding to j and O otherwise. (The structure of B is
simple: every column has exactly one non-zero entry). The multifiow problem is
equivalent to the following linear inequality system. Ax <1, Bx=-1, x>0,
where 1 and —1 is appropriately sized vectors of 1’s and -1's, respectively.

By Farkas’ lemma this system has no solution if and only if there is a vector
w in RE and a vector z in RF such that Z(w(e} : ¢ € E) — Z(z(f} feF) <0
and such that Z(w(e) : e € C — f) — z(f) = 0 holds for every demand edge f and
every circuit C for which CNF = {f }. Obviously, if there is such a w and z, then
7 can be chosen so as to satisfy z(f) = dist,(u,v) where f = uv and distw(u,v)
is the minimum w—weight of a path in G connecting the end nodes of demand
edge f.

Theorem 2.0 The multifiow problem has a solution if and only if
DISTANCE CRITERION Z(dist,(u,v) : uv € F) < Z(w(e) : e € E)
holds for every vector w € RS

By chosing d to be 1 on the edges of a cut and O otherwise we sec that the
distance criterion implies the cut criterion. But not the other way round! In the
next figure one can check by inspection that the cut criterion holds true but the
distance criterion does not: choose w to be 1 everywhere.

This example also shows that the cut criterion is not sufficient in general even
if G + H is Eulerian. The next example, due to Eva Tardos, shows that even the
stronger distance criterion is not sufficient (Figure 2.4).

Actually this is not surprising in the view of the following.

Theorem 2.1 (R. Karp 1972). The undirected (edge-) disjoint paths problem (when
k can vary) is NP-complete.

The disjoint paths problem remains NP-complete for plapar G and even for
gridgraphs (a gridgraph is an induced subgraph of a rectilinear grid) (Richards),
(Kramer and Leeuwen).

Even, Itai and Shamir (1976) proved that the problem is NP-complete in
the special case when the demand graph consists of two sets of parallel edges.
Recently, Middendorf and Pfeiffer (1989) proved that both the edge-disjoint
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and the node-disjoint paths problem is NP-complete if G + H is planar even if
every degree in G + H is restricted to be at most 3. They also showed that the
haif-integer multicommodity flow problem is NP-complete. This implies that the
edge-disjoint paths problem is NP-complete even if G + H is Eulerian.

To moumaﬂ the arc-disjoint paths problem in directed graphs let D = (¥, 4}
be a digraph and let (s, ¢;) (i = 1,2,...,k) be ordered pairs of terminals. The
problem is to find arc-disjoint paths from s; to ¢;.

Let H = (U, F) denote the demand digraph, where F = {(t;s; :i=1,2,...,k}.
Then the problem can be reformuiated as follows: Find k arc-disjoint circuits in
G + H each of which contains exactly one demand edge.

Again a natural necessary condition is available:
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DIRECTED CUT CRITERION gg(X) = 6g(X) forevery X = V.

If 5y = ... = s and t; = ... = t, then the directed cut critérion is sufficient as well
(directed arc version of Menger’s theorem). It remains true, via an elementary
construction, if we require only 51 = ... = 5.

For general digraphs one has the following negative result.

Theorem 2.2 (Fortune, Hopcroft and Wyllic 1980). The (arc-) disjoint paths
problem is NP-complete for k = 2.

To close this section we formulate a necessary condition for the disjoint path
problem (in an undirected graph).

NODE-CUT CRITERION. The counterpart of the cut condition requires that
a subset S of nodes must not separate more than (S| terminal pairs.

This condition is sufficient if the terminal pairs share a common node (a
node-version of the Menger theorem) but not in general. Another special case
when the node-cut criterion is sufficient is the following.

Theorem 2.3 (N. Robertson and P. Seymour 1986). Suppose that G is planar and
the terminals are on the outer face. This disjoint paths problem has a solution if
and only if the node-cut condition holds and there are no two “crossing” terminal
pairs (that is, any two pairs (s1,t1) and (s2,t2) are in this order on the outer face:

81, t1, 82, t2).

(The proof of this result is easy).

3. G + H is Eulerian

In Section 2 we saw how submodularity can be used for proving Menger's
theorem. Let us start this section by claiming a simple lemma that makes possible
some more sophisticated uses of submodularity.

Let G = (V,E) and H = (V,F) be two graphs for which the cut criterion
holds, that is dg(X) > du(X) for every X < V. Call a subset X of nodes tight if
dg(X) = dy(X).

Lemma 3.1. a, If A and B are tight and dy(A, B) = 0, then both ANB and AUB
are tight and dg(4,B) = 0. b, If A and B are tight and dy(A, B) = O, then both
A — B and B — A are tight and dg(A4,B) =0.

Proof. By applying (1.2) to G and H we have

dy(A) + dg(B) = dg(4) + do(B) = dg(4 N B) + dg(4 U B) + 2d6(4, B) 2 du(AN
B) + dy(A U B) + 2dg(A, B) = du(4) + du(B) + 2(ds(4, B) — dy (4, B))

from which part a, follows. We obtain part (b) if (a) is applied to Aand V—B. O

In this section we outline the edge-disjoint paths problem when G + H is
Fulerian. It was already mentioned that the edge-disjoint paths problem can be
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formulated in terms of packing of circuits. When G + H is Eulerian, the problem
is equivalent to finding a partition of the edge set of G + H into circuits each of
which contains at most one edge from H. Such a partition will be called good.
Figure 2.3 shows that the cut criterion is not sufficient in general even if G is
planar. /

However, 'there are important special cases when the cut criterion is sufficient.
In one class of exampies the supply graph G is planar and there are additional
restrictions on H. In another class G is arbitrary but the demand graph H is
rather restricted.

First let us survey the results concerning planar G.

Theorem 3.2 (Okamura and Seymour 1981). Suppose that G is planar, G+ H is
Eulerian, and each terminal is on one face of G. Then the cut criterion is necessary
and sufficient for the solvability of the edge-disjoint paths problem.

Proof (Okamura and Seymour 1981). By induction on the number of edges of
G. Let G be embedded in the plane. We can assume that G is 2-connected. Then
every face is bounded by a circuit. Let C denote the circuit bounding the infinite
face and iet the subscripts of the nodes vy,...,0; of C reflect the cyclic order.
Assume that the terminals are on C.

Choose an edge ¢ of C which is in a tight cut (if there is no tight cut any
¢ € E(C) will do) and renumber the nodes of C such that ¢ = v,p;. Let A be a
minimal tight set containing » but not v,. Choose a demand edge f = vw; (i < J)
such that v € 4, v; & 4 and j is as big as possible. (If there is no tight set at all,
any demand edge will do).

Delete e from G and replace f by v and v;v,. We are going to show that
the cut criterion holds with respect to the resulting G and H. This will imply
the theorem since G has one less edge than G and the other hypotheses of the
theorem hold for G and H. So by induction we have the edge-disjoint paths in
G. This provides the required edge-disjoint paths in G if we observe that glueing
together the path between v; and v; and the path between v; and v, and the edge
e we obtain a path between v; and v;.

If the cut criterion, indirectly, fails to hoid for G and H, then there is a set B
which is tight with respect to G and H and, among the four nodes vy, v;, vj, 04, B
contains exactly (i) vy, (i) vy, (iii) v, and .

By Lemma 3.1 if A and B are tight and dg(A4, B) = 0, then both AN B and
AU B are tight and dg(A4, B) =0,

By the choice of f in each case we have dy(4, B} = 0 so Lemma 3.1 applies.
Thus AN B is tight which in Cases (i) and (iii), contradicts the minimal choice of
A. Lemma 3.1 also implies that savedg(A4, B) = 0 showing that Case (ii} cannot
occur either (in Case (i) dg(4, B) > 0 because of edge e). O

Remark. Around the same time when Okamura and Seymour proved their
theorem S. Lins (1981) showed that the maximum number of edge-disjoint non-
separating circuits in an Eulerian graph embedded into the projective plane is
equal to the minimum cardinality of a non-separating cut. This theorem in the
present context is nothing but the theorem of Okamura and Seymour’s theorem
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in the special case when ail the terminals are distinct and they are positioned
around the specific face in the cyclic order s1,52,..., Sk, L1, £2;.- - -, t. However, it can
be shown by a simple trick that this special case implies the Okamura-Seymour
theorem. Indeed, if there are two terminals sy, s sitting at the same node «, then
add two new nodes vy, v» and two new edges upy,uvs to the graph and move
terminal s; to v; and s; to . Applying this operation we can ensure that the
terminals are distinct. The requirement on the cyclic order of the terminals is
equivalent to saying that any two terminal pairs sit; and s;t; crosses each other,
that is, their cyclic order is s;,s;, ¢, ¢; If this is not the case, then there are two
non-crossing terminal pairs s;#; and s;t; such that one of s; and ¢, say s;, and one
5; and t;, say s;, are consecutive in the cyclic order (this is an easy exercise), Now
modify the graph and the position of s; and s; as is depicted in Figure 3.1.

Fig.3.1

It is easily seen that the cut criterion is satisfied for the new problem if it is
satisfied for the old and if the required paths exist in the new problem, then so do
they in the old. Furthermore the number of crossing terminal pairs is one Em.mn_.
in the new problem. Applying this technique as long as there are non-crossing
terminal pairs finally we obtain a problem which is equivalent to the original one
and the terminals satisfy Lins’ requirement.

H. Okamura generalized the theorem of herself and Seymour in two directions.

The first one is:

Theorem 3.3 (Okamura 1983). Suppose that G is planar, G + H is Eulerian, and
there are two faces Cy, Cy such that each demand edge connects two nodes of either
C, or Cy. Then the cut criterion is necessary and sufficient for the solvability of the
edge-disjoint paths problem.
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The proof below (due to Gabor Tardos (Tardos 1984)) is a slightly simplified
version of Okamura’s original proof.

Proof. Again, we can assume that G is 2-connected. We say that a set K of nodes
crosses a face if K contains a node of the face but not all. If there is a tight set
crossing only one of the two specified faces C; and C;, then the reduction step
used in the proof of Okamura and Seymour’s theorem can be applied. (Notice
that the crucial equality dg (A, B) = 0 in that proof cannot spoil down since every
terminal pair is either on C) or on Cz.)

So assume that every tight set crosses both C; and C,. Assume that a terminal
pair st is in C; and that C is the outer face of G. (It will cause no confusion that
we usc the same term C; to denote the graph-circuit of G bounding the face C;.)
The nodes s and t divide C; into two paths P and @ connecting s and .

First, delete the edges of P from G and remove the demand edge st from H.
For the resulting G; and H; the hypotheses of the theorem hold and then we are
done if the cut criterion is satisfied. So assume this is not the case. Then there is
a set K which is tight with respect to G and H such that s,t ¢ K and K intersects
P.

Second, delete the edges of @ from G and remove the demand edge st from
H. Analogously to the first case, we are in trouble only if there is a set L tight
with respect to G and H such that s,z ¢ L and L intersects Q.

Let Z := V — (KU L). Since both K and L cross C;, in the subgraph induced
by Z there is no path connecting s and t. Therefore there is a partition of Z into
two sets A and N with s € N, t € A such that dg(4, N) = 0 Let us introduce the
following notation: M .:=KnL, X =K —L, Y := L—K. If M is non-empty,
then at least one of 4 and N, say A, is disjoint from C;. Theorefore dy(4, M) =0
and this is also true if M = 0.

We will apply formula (1.3) from Section 1:

d(XUM)+d(Y UM)+2d(A,N) =d(X UN)+d(Y UN)+2d(4, M)
Now X UM and Y U M are tight and dg(A4, M) = 0 = dg(4, N), thus we have
040 =s(XUM)+s(Y UM) = s(XUN)+5s(Y UN)+2[ds(A, M) +dy(A,N)] = 0.

Therefore each term is 0, in particular, dg (4, N) = 0. But this is impossible since
the demand edge st leads between A and N. O

Okamura’s other generalization of Okamura and Seymour’s theorem is as
follows.

Theorem 3.4 (Okamura 1983). Let G be planar, G+ H Eulerian, C a specified face
of G and s is a node of C. Suppose that each terminal pair has either both members
on C or one member at 5. Then the cut criterion is necessary and sufficient for the
solvability of the edge-disjoint paths problem.

There is a recent result by A. Schrijver of similar vein concerning path-packing
problems in a planar graph.
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Theorem 3.5 (Schrijver 1988b). Let G be planar, G+ H Eulerian and let Cy and
C; be two specified inner faces of G. Assume that the demand edges s\ty,...,5t2
are such that each s; is on C, and each t; is on C, and their cyclic order is the
same. Then the cut criterion is necessary and sufficient for the solvability of the
edge-disjoint paths problem. (Notice that if C, is chosen to be the outer face of G
then the cyclic orders should be opposite.)

In Theorems 3.3 and 3.5 G is planar G + H is Eulerian and the terminals are
on two specified faces. Figure 2.3 shows that if we do not impose some extra
conditions on the terminals, then the cut condition is not sufficient, in general.
In the example in Figure 2.3 even no fractional solution exisis. Thus one may
suspect that under the circumstances above the existence of a fractional solution
already implies solvability. However this is not the case as is shown in Figure 2.4.

Here is yet another fundamental result concerning planar graphs.

Theorem 3.6 (Scymour 1981). Suppose that G + H is planar and Eulerian. Then
the cut criterion is necessary and sufficient for the solvability of the edge-disjoint
paths' problem.

Proof (Z. Zubor 1989). We can assume that every edge e € E is in a tight cut since
otherwise ¢ can be moved from E into F without destroying the cut criterion.
By the reduction principle we can assume that in G + H every degree is 2 or 4.
Suppose that G + H is a counter—example with a minimum number of nodes of
degree 4. Define

wi:EUF = {+1,—-1} by
+1 ifecE
wie) =
—1 ife€eF.

The cut criterion is equivalent to: dy(X) = O for every X = V. We need the
following observation of A. Sebd (1987b).

Claim. Let A< V be tight, i.e. dy(A) = 0, and define

won_ fwle  ifed V(A
wiey= Ale@ if e € V(A).

Then d(X) =0 forevery X = V.

Proof. We have dy(X) = dy(A & X) —dy(4) = dy(ADX) 20. (4@ X denotes
A=-X)U (X —4)) o

By interchanging along a cut C we mean an operation that replaces F by
F@C and E by E @ C. By the Claim the theorem holds for G+ H if and only if
it holds after interchanging along a tight cut.
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Let vu; be a demand edge. Assume that the four edges e; = vy; (i=1,2,3,4)
incident to v are indexed in cyclic order so that ¢) € F, e; € E. Modify slightly the
“splitting off” operation as follows. Replace v by v’ and v” so that v’ is connected
to u; and u; and ¢" is connected to u3 and uy (Figure 3.2).

Let G’ = (V/,E') and H' = (V', F) denote the resulting graphs. If there were
2 solution to the edge—disjoint paths problem in G’ + H’, there would be one in
G + H. Thereby there is 2 bond V/(A) for which dg(4) < dy:(A). We can assume
that v € A. Since the cut criterion hoids for G + H we have

{*) v" ¢ A and an edge ¢; (i = 1,2,3,4) belongs to V'(A) precisely if ¢, € F.
These are two cases.

Uy Uy U
_c. " .c. e__
g e g e: : e.:
: Uy 2 u, u,

O €A
O e V-A
e 3 F Uy L Uy
—

Case 1 Case 2

Fig.33

Case 1. ¢4 € F. By (*) uz,uq € A and u;,u3 ¢ A. Both 4 and V' — A4 induce a
connected subgraph of G’ + H' contradicting the planarity of ¢’ + H'.

Case 2. ¢4 € E By (*) up € A and uy,us € A. Now A — ' is tight in G+ H. By
interchanging along V(A — v') (and re—indexing the e,’s) we are at Case l. O

It is a challenging open problem to find a unified theorem that implies all the
“planar” results above.
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Actually Seymour proved a result more general than Theorem 3.6. If we
take planar dual, then the role of circuits and cuts is interchanged, in particular
Eulerian turns into bipartite. Tt turns out that planarity can be left out from the
hypotheses:

Theorem 3.6° (Seymour 1981a). Suppose that G + H is bipartite. There are |F|
edge-disjoint cuts in G + H, each containing exactly one element of F if and only
if every circuit of G + H contains as many edges from G as from H.

In Section 8 (Theorem 8.1) we will prove this result along with some general-
izations. Also a strongly polynomial-time algorithm will be provided for the more
general weighted case. P. Seymour found another generalization of Theorem 3.6.

Theorem 3.7 (Seymour 1981b). Suppose that G -+ H is Eulerian and no subgraph
of it can be contracted to Ks (complete graph on 5 nodes). Then the cut criterion
is necessary and sufficient for the solvability of the edge-disjoint paths problems.

Let us now turn to another class of graphs when, supposing G + H Eulerian,
the cut criterion is sufficient.

For a given demand graph H = (V,F), H' will denote the graph arisen from
H by replacing each (maximal) set of parallel edges by one edge. Let us call a
graph a double star if there are at most two nodes that cover all the edges. In
what follows K, denotes the complete graph on n nodes and Cs denotes a circuit
on 5 nodes. Let X; + K3 denote a graph on 5 nodes with components K, and
K. Similarly 3K; denotes a graph consisting of three disjoint edges.

Theorem 3.8. Suppose that G + H is Eulerian and H' is either a double-star or K,
or Cs. Then the cut criterion is necessary and sufficient for the solvability of the
edge-disjoint paths problem.

The case when H’ is 2K; was proved by Rothschild and Whinston (1966b),
sharpening earlier results of T. C. Hu (1963). From this the theorem easily follows
for double-stars (see below). The Ky case was proved by P. Seymour (1980a) and
M. Lomonosov (1979), independently. The Cs case is due to Lomonosov (1979).

The theorem is sharp in the sense that if H' is different from each of the three
graphs in the theorem, then there is a G and H such that G + H is Eulerian, the
cut criterion holds but there is no solution to the edge-disjoint paths problem. To
see this, observe that the example in Figure 2.3 shows that H’ must not contain
K;+Kj; as a subgraph. The example in Figure 3.4 shows that H’ must not contain
3K,. This is due to Papernov (1976).

It is an easy exercise to show that if a graph contains neither of these two
forbidden graphs, then it is either a double star or Ky or Cs.

Proof of Theorem 3.8. Suppose the G + H is counterexample with a minimum
number of edges. Obviously G+ H is connected. We need some preparation that
is useful for each case.

Claim 1. There are no edges e € E and f € F that are parallel
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Proof. Deleting ¢ and f does not destroy the cut criterion and then a good
circuit-partition of the smaller graph along with circuit {e, f} would form a good
circuit-partition of G + H. (]

Lemma 3.1 implies:

Claim 2. Let vz be an edge of G where v is not a terminal node. Let A and B be
two (distinct) maximal tight zo—sets. Then dy(4, B) > 0 and dy(A4,B) > 0. u}

Let Ay, A3,..., Ay be the kﬂm_ tight z0—sets. Suppose that there is an edge
uv which does not occur in any tight cut. Then splitting off uv and vz does not
destroy the cut criterion. So the resulting graph has a good circuit-partition. But
this provides a good circuit-partition of G + H which is impossible. Therefore
every edge vu enters some A;.
ﬁmbcsw- 23,

Proof. If k = 1, then every neighbour of v is in V(4;) but then V(4; + v)
would violate the cut condition. If k = 2 and dg(v, A)) > dg(v, A3), say, then
dg(A; + 1) < dg(A;) (because of edge vz) and therefore V(A4 + v) violates the cut
criterion. 0

Turning to the different cases of the theorem let us first assume that H' = 2K,
and the demand edges are between s; and ¢; (i = 1, 2).

We claim tb -there is a node v which is not a terminal. Indeed, if no such
a node exists, then, by Claim 1, G must be a four-circuit with possible paralle]
edges. But this cannot be a counterexample as is seen by inspection (or by the
theorem of Okamura and Seymour). )

Therefore there is an edge vz of G where z HN and v is not a terminal node.
By Claim 3 there are at least three maximal tight zi-sets A;, 42, Ay. By Claim 2
du(4i, Aj) > 0 (1 < i < j < 3) but this is impossible since s; € A; N 4; N A3,

Next we show how the double star case reduces to the case H' = 2K;. Let s,
and s; be the two nodes covering the edges of a double-star H. First subdivide
each demand edge si¢; by a node t, such that s,¢' belongs to the demand graph
and £t; to the supply graph. Then contract the nodes ¢, into one node. Finally



62 A. Frank

do the same with the demand edges incident to s;. This way we obtain a new
problem which is equivalent to the original one and the demand graph consists
of two sets of parallel edges. ’

Suppose that H' = K4 and the four terminal nodes are 5q,...,54. By Claim 1
there is no edge in G connecting two terminal nodes.

Let us denote s; by z. If there is no tight set containing 51, 52 and not containing
53, 54, then let vz be any edge in G with vs;. If there is one, then the intersection
Z of such sets is tight by Lemma 3.1. We claim that there is a v € Z — {5y, 8}
such that vz is an edge of G. For otherwise, dg(Z) = dg(z) + dg(Z — z) =
dy(z) + dg(Z — 2) = du(Z) + 2dy(z, Z — z) = dG(Z) + 2dp(z,Z — 2) > dG(Z), a
contradiction.

By Claim 3 there are at least three maximal tight zi—sets A4, 4, A;. By Claim
2 dy(Ai,A)) >0 (1 < i< j<3). But this is possible only if each of 4y, 4; and
Aj; contains a terminal node which is not in the union of the two others. Assume
that 4; contains s». Then A is a tight set containing sy, s> and not s3,s4 and v.
This contradicts the choice of v and the definition of Z and thus the case of Ky
is settled.

Finally let us assume that H' = Cs. If {¥| = 5, then, by Claim 1 G is a
subgraph of a S-circuit with possible parallel edges. But then the Okamura-
Seymour theorem shows that G + H cannot be a counterexample. So let vz be
an edge of G where v is not a terminal.

By Claim 3 there are at least three maximal tight zT-sets 4, 4, 45. By Claim
2 (*) du(A4;, Aj) > 0 and dy(A;,4)) > 0 (1 < i < j < 3). Then each A; contains
2 or 3 terminals. The complement of A4; is also tight so we can assume that
there are three tight sets B, By, B; for which (*) holds and each of them contains
exactly two terminals. Now if By N B, N Bs contains a terminal node, then each of
By, By, B; contains a terminal node which is not in the union of the two others.
But then these three terminals must form a triangle in H' which is impossible.

Suppose now that B; N B; N By contains no terminal node. Since B; N By
contains a terminal node (1 < i < j < 3) the other two terminal nodes must be
outside NB; and then we must have again a triangle in H', a contradiction. O

Each of Theorem 3.2 through 3.8 has a fractional version as an easy conse-
quence. For example:

Theorem 3.8 (Papernov 1976). Let G be arbitrary and H as in Theorem 3.8.
Then the cut criterion is necessary and sufficient for the solvability of the multiffow
problem,

There is a very useful device by which the reverse implication can also be
proved, The idea, noticed by van Hoesel and Schrijver (1990}, is as follows. (For
more details, see (Schrijver 1988a)).

Proof of Theorem 3.8 from Theorem 3.8'. Let x be a sclution to the multifiow
problem and P a path for which x{P) > 0. Let v be any inner node of P and uv
and vz the two edges of P incident to v. We claim that wv and vz can be split
off without violating the cut criterion. Indeed, if the cut criterion does not hold
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after the splitting, there is a tight cut of G that contains both uv and vz. But this
is impossible since a simple argument shows that any tight cut and any path Q
with x(() > 0 have at most one edge in common. m]

One can similarly proceed to derive Theorems 3.2-3.6 from their correspond-
ing fractional version. However, in order to maintain planarity, certain care is
required while chosing the pair of edges to be split off:

Proof of Theorems 3.2-3.6 from the corresponding fractional versions. First, by
the reduction principle described in Section 2 we assume that in G + H ev-
ery node has degree four. Let x be a solution to the corresponding multiflow
problem (in either of Theorems 3.2-3.6). If there is a path P and an inner node
v of P such that x(P) > 0 and the two edges uv and vz of P are in the same
face of G, then splitting off these edges preserves not-only the cut criterion but
also the planarity. If no such a path exists (that is, for every inner node v of any
path P with x(P) > 0 goes “across” v}, then for every terminal pair (s,¢) there
can be only one path P with x(P) > 0 connecting s and ¢. Consequently, x is

_0-1 valued, that is, x itself is a solution to the corresponding edge-disjoint paths

problem. |

Of course, the reduction method above can be considered useful only if there
is a direct way to prove the “fractional” theorems. In Section 8 we indicate such
a method.

By applying the splitting off technique to directed graphs a directed counter-
part of the theorem of Rothschild and Whinston can be proved. By a (directed)
star we mean a directed graph in which either all the edges enter the same node
or all the edges leave the same node.

Theorem 3.9 (Frank 1985). Suppose that G + H is an Eulerian digraph and H is
the union of two stars. Then the directed cut criterion is necessary and sufficient
for the solvability of the undirected edge-disjoint paths problem.

The following figure shows some small H which are not the union of two
stars, the directed cut condition holds but there is no solution,

- .
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Let us conclude this section by citing two recent results of Karzanov concern-
ing undirected G and H.

Theorem 3.10 (Karzanov 1987). Suppose that G+ H is Eulerian and the demand
edges form a Ks. Then the distance criterion is necessary and u:.%”nmman \9” the
solvability of the edge-disjoint paths problem. (In other words, if there is a fractional
solution, there is an integral one.)

Theorem 3.11 (Karzanov 1989a). Suppose that G+ H is Eulerian, G a.. planar and
the demand edges are on three faces of G. Then the distance criterion is necessary
and sufficient for the solvability of the edge-disjoint paths problem.

4, Further Necessary Conditions

The purpose of this section is to introduce some further necessary conditions
concerning the (edge-) disjoint path problem. They belong to two classes. .—,.un
first one is a kind of topological obstruction while the second is based on parity

arguments. o .
Let G and H be undirected. We know that the cut-criterion 1s sufficient when

H is a star. Suppose now that H consists of two &&.&E.oamnm. The following
characterization appears in three different papers: E.A. Dinits and A.V. Karzanov
(1979), P. Seymour (1980) and C. Thomassen (1980).

Theorem 4.1. Let G be a graph such that no cut edge separates both of the two
terminal pairs (s1,t;) and (s2,t2). There is no two edge-disjoint paths between the
corresponing terminal pairs if and only if some edges of G can be no:ﬁ.nnm& s0
that the resulting graph G’ is planar, the four terminals have degree two while :wm
other nodes are of degree 3 and the terminals are positioned on the outer face in

this order: s1,52,11,t2.

Figure 4.1 shows a typical example where the two edge-disjoint paths do not
exist.

8 82

t

Fig. 4.1
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Recall that if one wants k; paths between s; and ¢; (i = 1, 2), then the problem
becomes NP-complete. The necessity of the condition in the theorem depends on
three observations. Namely, edge-contraction does not destroy solvability, a node
of degree three can be used by at most one path, and two curves in the plane
connecting antipodal pairs of points of a circle must intersect each other.

Actually this theorem immediately follows from the following node-version
by considering the line graph.

Theorem 4.2 (Thomassen 1980a, Seymour 1980). Let G be a graph such that no
node separates s| from t, and s; from ts. There are no disjoint paths between sy
and t; and between sy and t; if and only if G arises from a planar graph G', where
the four terminals are one the outer face in this order sy,5,t1,t2, by placing an
arbitrary graph into some faces of G' bounded by two or three edges.

For directed graphs the two disjoint paths problem is NP-complete. However,
Thomassen (1985) found a complete description of acyclic digraphs have no
solution to the 2-disjoint paths problem. The core of his result os as follows.

Theorem 4.3. Ler us be given an acyclic digraph D = (V, A) (with no cut-node and
parallel edges) and terminal pairs (si,4;), (t2,t2) such that |V| = 5, p(v),6(v} = 2
Jfor each non-terminal node v and g(s1) = ¢(52) = &(ty) = 8(t;) = 6(t2) = 0. If there
are no disjoint paths from s, to t) and from s; to ts, then D is planar and has a
plane representation in such a way that sy,ta, 11,52 are on the outer face occuring
in that cyclic order.

Notice that in these theorems the hypotheses are purely graphical and topo-
logical arguments come only in the characterization. But one can be interested
in disjoint paths in a graph embedded in a plane with certain holes such that the
paths must satisfy a certain homotopy requirement. (That is, the topological way
how the paths have to go around the holes is spedified.) This general problem is
precisely the central topic of A. Schrijver’s article in this volume.

Let us turn to the other class of necessary conditions and consider the edge-
disjoint paths problem in an undirected graph. In the preceding section we have
considered special classes when G + H is Eulerian, that is, when dg,p(X) is even
for every subset of V. Let us now call a set X odd (or the cut Vg odd) if dg+x(X)
is odd, It is useful to observe that the number of odd nodes is always even and
that a set X is odd if and only if X contains an odd number of odd nodes.

The crucial observation concerning odd cuts is that, given an odd set X
and any solution to the edge-disjoint paths problem, an odd number of edges
of Vg(X), in particular at least one edge, can not be used by the paths in the
solution. (Actually, we have already relied on an special case of this idea when
we argued after Theorem 4.1 that no two edge-disjoint paths can go through a
node of degree three.)

Thus this parity argument provides a kind of force that intuitively pre-
vents a solution to use too many edges. On the other hand, in a tight cut all of
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the edges are necessarily used. Or more generally, for a set X with surplus
s(X) (= dg(X) — dy(X)) there may be at most s(X) edges in Vg(X) which are
not used by a solution. Thus this surplus argument provides a kind of force that
intuitively prevents a solution to use too few edges.

These two forces of opposite directions are the basis of each of the following
necessary conditions. For example, it is necessary that

4.1) V(D) cannot be covered by two tight cuts for any odd set D.

Observe that (4.1) is not satisfied by the graph in Figure 2.1. We mention
three cases when (4.1} is sufficient, as well.

Suppose first that H consists of two sets of parallel edges, that is, there are
two terminal pairs. We call a set X of nodes (and the cut V(X))) separating
if V(X) separates both terminal pairs. Two separating sets X and Y are called
parallel if either X — Y or X N'Y is separating. Otherwise they are non-parallel.
We say that a set X crosses C if X N C and C — X are non-empty.

Theorem 4.4 (Seymour 1981a). Suppose that G+ H is planar and H consists of two
sets or parallel edges. The edge-disjoint paths problem has a solution if and only if
the cut criterion holds and (**) dg,u(S N T) is even for any two tight non-parallel
separating sets S, T.

Proof. We can assume that G is 2-connected. Assume that there are k; demand
edges connecting s; and t;, the terminal pair (s;,#:) is on face C; (i = 1,2) and
that C; is the outer face. We can assume that both k) > k; > 0, since otherwise
Menger's theorem applies. Let us recall that if the cut criterion does not hold,
then there is bond V(K) violating it. Because of planarity K divides any facial
circuit of G into at most two paths.

The nodes s; and t; divide C; into two paths P and @ connecting 5; and ¢;.
First, delete the edges of P from G and remove one demand edge connecting s
and ¢; from H.

Assume first that the resulting G, and H, satisfy the cut criterion. One can
observe that if X and Y violate (**) for G, and H), then X and Y violate (**)
with respect to G and H. Then, by induction, there is a solution with respect to
G, and H, and this solution along with path P yields a solution with respect
to G and H. So we can assume that there is a set K violating the cut criterion
with respect to G, and H,. Then s,,t; ¢ K intersects P and the surplus 5(K) < 1.
Then V(K) nccessarily separates s; and t; and K crosses Cy.

Similarly, delete the edges of Q from G and remove one demand edge con-
necting s;t; from H. Analogously to the first case, we are in trouble only if there
is a set L with surplus s(L) < 1 such that s,¢; ¢ L and L intersects Q.

Let Z := V — (K U L). Since both K and L cross C,, in the subgraph of G
induced by Z there is no path connecting s; and t;. Therefore there is a partition
of Z into two sets A and N with s; € N, t; € 4 such that dg{4,N) = 0. Let us
introduce the following notation: M :=KNL, X =K-L, Y :=L—-K. IfM
is non-empty, then at least one of 4 and N, say 4, is disjoint from C;. Therefore
dy (4, M) = 0 and this is also true if M = §.
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We will apply formula (1.3) to both G and H. Exploiting that dy(4, M)
0 = dg(A, N), we have

1412 s(XUM)+s(Y UM) = s(X UN) +s(Y UN)+
4.2) 2dg(A, M) +dg(A,N)) =0+0+2[0+1] =2

Therefore equality holds everywhere and, in particular, s(XUM) = s(¥Y UM)
1, SCXUN) =s(Y UN) =0, dg(4, M) = 0, d¢c(A, N) = 1. The last equality shows
that k; = 1. Since k; = k; > 0, we have k» = 1. (This means that the two edges
leaving K are common edges of C; and C3).

Since s(K) = s(L) = 1 it follows that dg(K) = d¢{L) = 2 and that dg,py(K) =
3. Now M = K n L must be empty for if a node v is in K N L, then there is a
path in K from v to P. But such a path leaves L along an edge that is not in C;.
So we would have dg(L) > 3. Sec Figure 42. Weseethat K=X and L=Y.

Since M is empty dy(N,M) = 0. (4.2} can be applied with interchanging A
and N. We obtain that Y U A is tight. Let § =: ¥ — (Y U 4) (= K UN) and
T:=V —(YUN)=(KJUA). Now S and T violate (*+) since § and T are tight,
K=8nT and dg4+r(K) is 3, an odd number. m}

Remark. The original proof of Seymour relies on the concept of T-cuts. The
proof outlined above has the advantage that it can be extended to obtain the
following generalization of Seymour’s theorem.

Theorem 4.4a (Frank 1988). Suppose that G+ H is planar and the edges of H are
in two faces of G. The edge-disjoint paths problem has a solution if and only if the
cut criterion holds and dg (S N T) is even for any two tight sets §,T.

A direct conseqeuence of Theorem 4.4 is that the problem has a solution if
the cut criterion holds with strict inequality on any separating cut. In Theorem
4.6 we shall see that in an extension of Okamura and Seymour’s theorem, when
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no parity restriction is imposed on the nodes of the outer face, a similar type
of results holds. The statement is not true if H has three disjoint edges as is
shown by the following example of E. Korach where there is no tight cut at all.
(Compare Theorem 4.4a to this example: here there are only three demand edges
but they are on three faces.) M. Middendorf and F. Pfeiffer recently showed that
the edge-disjoint paths problem is NP-complete if G + H is planar.

8

i
Fig. 4.3

The following theorem deals with a very special graph but it will find a nice
application in the next section.

Theorem 4.5 (Frank and Tardos 1984). Suppose that G is a circuit with parallel
edges. The edge-disjoint paths problem has a solution if and only if the cut-criterion
and (4.1) hold.

Proof. If G+H is Eulerian, then the cut criterion itself is sufficient by the Okamura-
Seymour theorem (Theorem 3.2). So assume that the set T = {ai,az,...,a2) of
odd nodes is non-empty. The idea behind the proof is that we want to reduce the
problem to Theorem 3.2 be eliminating the odd nodes. In order to do so first add
the following h new demand edges to H: ajaa, d3d4,...,d2—1a2. Let Hy denote
the extended demand graph. Obviously, G + H, is Eulerian, so we are done by
Theorem 3.2 if the cut criterion holds in G+ H,. If this is not the case, then there
is a bond V(X)) which is tight in G+ H where X| = {a;,@it1,.-..a;} (1 <i< ), i
is even and j is odd.

Second, add a,a3,a44s,...,aa; as new demand edges to H obtaining this
way Hs. If the cut criterion does not hold in G + Ha, then there is a bond V(X2}
which is tight in G+ H where X3 = {ai, akt1,...,a1} (1 <k <), kis odd and ! is
even. But now the component of G — (Vg(X1) U Vg(X2)) containing a; contains
and odd number of odd nodes and therefore it violates (4.1). (]

This idea of pairing off the odd nodes can be used to prove the following
consequence of the Okamura-Seymour theorem when no parity restriction is
imposed at the nodes of the outer face.
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Theorem 4.6. Suppose that G is planar, the terminals are on the outer face and the
degree of every node not on the outer face is even. If the cut criterion holds in a
strong form, that is, dg{X) > dy(X) for every @ & X < V, then the edge-disjoint
paths problem always has a solution.

Proof. If there are no odd nodes, we are done by Theorem 3.2. Otherwise let
T = {aj,az,...,az} be the set of odd nodes. Extend the demand graph by the
following new edges: a,aa,...,az— 122 Observe that the cut criterion continuous
to hold and apply Theorem 3.2. ]

There is a pretty consequence of Theorem 4.6. Suppose that given a big
triangle R in a triangular grid which is bounded by lattice lines. R defines a graph
Gp in the natural way.

i m 5 {
Fig. 44

Corollary. If the terminals are on the boundary of R and are distinct, then the
edge-disjoint paths problem has a solution.

Actually, we can have a complete characterization for the case considered in
Theorem 4.6:

Theorem 4.7 (Frank 1985). Suppose that G is planar, the terminals are on the
outer face and the degree of every node not on the outer face is even. The edge
disjoint paths problem has a solution if and only if Z(s(C;} = 1/2q for every family
{C1,Ca,...,C) of cuts (I < |V|) where q denotes the number of components in
G —Cy — C;... — C| which are odd (in G + H) and s(C) is the surplus of C.

Note that this theorem provides a characterization for the edge-disjoint paths
problem when the supply graph G is outerplanar.

Proof. (Outline} To show the necessity of the condition suppose that there is a
solution and let Qy,Qa,...,Q, be the odd components in question. For each Q;
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Fig. 4.5

at least one edge in Vg(Q)) is not used by the solution. Because any edge of G
may belong to (at most) two Vg(Q:)'s, we sce that at least 1/2q edges must not
be used. On the other hand all of these edges are in UC; therefore Zs(C;) = 1/24.

(For example there is no solution to the edge-disjoint paths problem in
the graph depicted in the following figure. The four cuts violate the necessary
condition of the theorem since their sum of surpluses is 2 while the removal of
them gives rise t0 ¢ = 8 odd components and 2 £ 8/2) The sufficiency of the
condition can be proved with the same idea we have used for proving Theorem
4.6. The only difference is that this time finding the appropriate pairing of the
odd nodes needs a little more care.

Namely we proceed as follows. If there is no tight cut, then we are back
at Theorem 4.6. For simplicity suppose that G is 2-connected and let C denote
the outer circuit of G. Call a tight set X minimal if V(C) N X is minimal for
inclusion. The basic step of the pairing algorithm is that we find a tight set X
which is minimal and find the odd nodes ay,a3,...,a; (in this order along C} in
V(C) N X. (It can be shown that j is even). Now extend the demand graph H by
the following new terminal pairs: ay4az,...,a;-1a;. The crucial observation is that
the original problem has a solution if and only if the new one has. Therefore
we can keep going on this pairing operation. If in the course of the procedure a
cut arises which violates the cut condition with respect to the current {(enlarged)
demand graph, then this cut and the minimal tight cut used by the procedure
in the previous steps violate the condition of Theorem 4.7. Let us consider a
possible run of the pairing procedure on following example:

The odd nodes are indicated by solid points. X;, X, X; are the current minimal
tight sets. In the fourth step Vs(X4) violates the cut condition with respect to
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the enlarged demand graph. The four cuts C; : Vg(X)} (i = 1,2,3,4) violate the
condition in the theorem since the sum of their original surplus is 2 while the

number of odd components in G — (UC;) is 8. See Figure 4.7. (m]
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In Theorem 4.7 the parity restriction on the inner nodes cannot be dropped
as is shown by the example in Figure 4.1.

Our last result to demonstrate the use of parity conditions is due to P.
Seymour. Let G be again arbitrary. The cut criterion is sufficient if H is a star,
The next two simplest demand graphs are 2K> and Kj. As another application
of the “parity-versus-surplus” principle we exhibit a characterization when H is
a K3 with paraliel edges.
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Theorem 4.8 (Seymour 1980b). If the demand graph H consists of three sets of
parallel edges between nodes s),5; and s, the edge-disjoint paths problem has a
solution if and only if the cut-criterion holds and

{4.3) q("i UV, U Vs) <s(V1) +5(12) +5(V3)
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for every choice of disjoint sets V; with s; € V; (i = 1,2,3) where s(X) denotes
the surplus and q(X) denotes the number of components C in G — X for which
dg(C) + dg(C) is odd.

Proof. Let X = V; U ¥, U V3. If there is a solution, then a least g(X)} edges of
Vs(X) are not used. On the other hand at most s(V1) + s(Va2) + s(V3) edges are
avoided by the paths in the solution. Therefore (4.3) is necessary.

To see the sufficiency we invoke Mader’s edge-disjoint A-paths theorem (see
Theorem 7.3). Extend G by adding three new nodes 4,,42,a3 and ki + ki
parallel edges between g; and s; (where i = 1,2,3) and the subscript are meant
modulo 3). Let A = {ay,as,a3}. If there are h := ki2 + k3 + ko3 edge-disjoint
A-paths, then their restriction to G provides the desired edge-disjoint paths in G.
So suppose there are no h edge-disjoint A-paths. By Mader’s theorem there are
three disjoint sets U; with a; € U; (i = 1,2,3) for which

“4.4) h > value(U,Us, Us)

where value(U;, Ua, Us) = 1/2(Zdc(U;) — q(UU3}).

We can assume that (i) each U; induces a connected subgraph. Indeed, if
the subgraph induced by U, say, has a component C not containing a;, then
value(U; — C, U, U3) < value(Uy, Uz, ;).

We can assume that (i) each component C of ¥V — UU; is connected to every
U; (i = 1,2,3). Indeed, if a component C is not connected to Us, say, but it is
connected to U;, then value(U, U C, U, Us) < value(U, Uz, Us). {(Notice that if
U, is connected, then so is U UC) If 5, € U; for each i = 1,2, 3, then the sets
V, = U; —a (i = 1,2,3) violate (44). If 5; ¢ U\, say, then U, = {a;} because of
(i) and then g(LU;} < 1 because of (ii).

But now we have h > value (U, U, Us) = 1/2d(U)+1) =2 h+1/2, a
contradiction. (Notice that the cut-criterion was used in the last inequality) O

5, Problems on Grids

We devote this section to disjoint paths problems when the supply graph G isa
subgraph of a rectilinear grid.

We are given a closed rectangle T (bounded by lattice lines), T defines a finite
subgraph G of the plane grid in the natural way which has m * n nodes when
m horizontal and » vertical grid lines intersect T. Assume that the terminals are
on the perimeter of T, that is on the outer face of G. Then the edge-disjoint
paths problem is a special case of the problem solved in Theorem 4.7. However,
exploiting the simpler structure of G we can obtain simpler theorems. By a
column (row) of G we mean a cut consisting only of horizontal (vertical) edges.
Obviously there are n — 1 columns and m — 1 rows.

Let us first restrict ourselves to the case when each terminal is on the upper
or on the lower horizontal lines bounding T. We call this case two-sided. See
Figure 5.1. Figure 2.1 shows that the cut criterion is not sufficient even for the
two-sided problem. However a tiny restriction makes the cut criterion sufficient:
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Theorem 5.1. In the two-sided case if the terminals are distinct and at least one

of the assumptions (i) and (ii) holds, then the edge-disjoint paths problem has a

solution if and only if the cut criterion holds for every column where

(i) at least one corner point of T is not a terminal,

(ii) at least one terminal pair is such that both members of it are on the same
horizontal line.

Part (i) was proved in (Frank 1982) with the help of a polynomial time
algorithm. A slight modification of the same idea led to (ii) (Abos, Frank, Tardos
1982).

Notice that if there is an inner node v on the upper boundary of G such
that neither » nor its opposite node u on the lower boundary is a terminal, then
the vertical line connecting « and v can be left out. Similarly we can leave out
horizontal lines as long as the cut criterion holds for columns. This way we can
preassume that m < k and n < 2%. In applications it is desirable that the paths
do not have too many bends since each bend corresponds to a via in a layout
realization.

Theorem 5.2 (Preparata and Lipski 1984). Assume that one member of each ter-
minal pair is on the upper boundary line of T, the other member is on the lower
boundary line and that there is no terminal on the | = d /2 right-most vertical lines
where d denotes the maximum congestion of a column. If m > d (that is, the cut
criterion holds for the columns) then there is a solution to the edge-disjoint paths
problem such that each path has one of the following shape (Figure 5.2).

Let us turn to the case when the terminals are still distinct (with the possible
exception that there may be two terminals sitting at one corner) but they are
arbitrarily positioned on the boundary of T. Let ¢ be an arbitrary column and
let {r,r2,...,r;} be the set of tight rows (¢t = 0). Let Ty, T,..., T4y be the
components of G—(cUr; U...Ur,) that are on the left-hand side of ¢. The parity
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congestion of ¢ is the number of odd sets Ti. The parity congestion of a row is
defined analogously. By the parity-versus-surplus principle we see that the

REVISED CUT CRITERION: the parity congestion of a row or column cannot
exceed the surplus is necessary for the solvability.
We have

Theorem 5.3 (Frank 1982). We are given a rectangle in a rectilinear grid and k
pairs of distinct terminals on its boundary. The edge-disjoint paths problem has a
solution if and only if the revised cut criterion holds for every row and column.

In Figure 5.4 two examples are shown differing only in the position of terminal
“17. The first example has a solution but the second does not since the column ¢
indicated in the picture violates the revised cut criterion.

A further advantage of Theorem 4.7 is that it makes possible to handle certain
capacitated cases. For example, suppose that each vertical and ronm.osam_ line has
a positive integer capacity (not necessarily the same). Let the capacity of an ﬁmﬁ
e of the grid-graph be the capacity of the line containing e. Instead of seeking
for edge-disjoint paths we require that no edge is contained in more paths ﬁ.v.wn
its capacity. Obviously Theorem 4.7 can be applied since the sum of capacities
of the edges incident to an inner node is even.
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In applications sometimes one needs regions of the grid more general than
rectangles. As long as the terminals are on the outer face the problem is still
a special case of the problem answered by Theorem 4.7. But the revised cut
criterion is not sufficient in general as was shown by (Lai and Sprague 1987). See
the problem in Figure 4.6.

With the help of the pairing method described in the proof of Theorem 4.7
we can reduce the probilem to the Eulerian case. When the boundary region is
x-convex, that is, any horizontal line intersects it in a segment, then there is an
extremely simple algorithm due to M. Kaufmann.

We close the section by an application of Theorem 4.5. (The material is taken
from (Frank and Tardos 1984). Let O and I be two closed rectangles bounded
by lattice lines such that I is in the inside of O. The graph we consider is the
subgraph of the rectilinear grid between @ and I. The k terminal pairs to be
connected are on the perimeter of I. The problem is to find edge-disjoint paths
connecting the corresponding terminal pairs which, in addition, do not touch.
That is, if a path bends at a certain node v, then v must not be used by other
paths. This constraint is imposed in order to model two-layer routing problems
where one layer is used for horizontal segments, the other for vertical ones and
a bend corresponds to a via hole between the two layers.

Figure 5.5 shows an instance of the problem along with a solution,

A version of this problem was solved by LaPaugh (1980} when only the inner
rectangle I is given and the preblem is to find a surrounding rectangle O of
minimum area such that the paths exist between O and I.

‘We need the following well known result. Let & be a family of closed intervals
of a segment S. The density of # is the maximum number of intervals covering
a point of §.
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Lemma (Gallai 1962). # can be partitioned into d classes consisting of pairwise
disjoint segments if and only if the density of F is at most d. (Furthermore the
partition can be found in O(|F|log |F 1) time.)

The four straight lines of the boundary segments of I divide O — I into four
channels and four corners.

The width of the channels above and below I (resp. left and right to I ) is the
number of their horizontal (resp. vertical) lines.

Observe that each path has two different homotopies. Suppose for a moment
that the homotopies have already been specified. Then they define four interval
systems as is shown in Figure 5.7a and b.

If (*) the density of each of these interval systems is at most the width of the
corresponding channel, then by Gallai’s lemma the intervals can be placed on the
available lines, and the resulting segments belonging to the same homotopy can
be connected in the corners so as to form the desired paths (Figure 5.7 o).
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Therefore the only problem we are encountered is to find the homotopies that
satisfy (*). But this problem can immediately be solved if we apply Theorem 4.5
to the graph obtained by contracting all the edges in the four corners, the vertical
edges in the two horizontal channels and the horizontal edges in the two vertical
channels.

6. When the Disjoint Paths Problem is Tractable

F this section we survey restrictions of the (edge-) disjoint paths problem when
either a polynomial time algorithm is available or a sufficient condition (or both}.

Theorem 6.1 (Robertson-Seymour 1986b). For fixed k the undirected (edge-) dis-
joint paths problem can be solved in polynomial time.
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Actually this theorem is the central topic of Robertson and Seymour’s paper
in this volume. As they remark the algorithm is completely out of the range of
practical usability when k > 2. For acyclic digraphs an analogous result holds.

Theorem 6.2 (Fortune, Hopcroft and Wyllie 1980). In acyclic digraphs the (arc-)
disjoint paths problem can be solved in polynomial time if k is fixed.

Unlike the undirected case, the algorithm of Fortune, Hoperoft and Wyllic is
quite reasonable for smail k. The idea behind it is reformulated in (Thomassen
1985) as follows. Let the set § = {S1,...,5} of source nodes and the set T =
{t1,...,tc} of target nodes be disjoint. We introduce an auxiliary digraph G the
nodes of which cotrespond to the k—tuples of distinct nodes of G. There is an
arc in G from X = {x,...,x} to ¥ = {y1,...,yx} if and only if there is a
j € {1,...,k} such that x;y; for i % j and G contains an arc x;y; and contains
no directed path from x; to x; (i # j). It can be shown that therc are k pairwise
disjoint paths in G from s; to #; (i = 1,...,k) if and only if G* has a path from §
toT. ,

A by-product of Schrijver’s disjoint homotopic paths theory {see his paper in
this volume) is the following.

Theorem 6.3. The disjoint paths problem is solvable in polynomial time when G is
planar and the terminals are on a bounded number of faces of G.

Note that in this case no restriction is put on the size of the demand graph.
The status of the corresponding edge-disjoint paths problem is not known.

Theorem 6.4 (Scbd 1988). The integer multicommodity flow problem is solvable in
polynomial time if G+ H is planar and there is a bounded number of demand edges
(with arbitrary big demand values).

The same question remains open if only the number of faces of G covering
the terminal nodes is bounded.

Next we list results where connectivity assumptions prove to be sufficient for
the (edge-) disjoint paths problem.

Let us call a graph k-linked on the edges (or weakly k-linked) if for any
choice of k pairs of terminals there are k edge-disjoint paths connecting the
corresponding terminal pairs. Let g(k) denote the minimal number m such that
every m-edge-connected graph is k-linked on the edges.

C. Thomassen has a nice conjecture asserting that g(2k +1) = g(2k) =2k + 1.

Theorem 65. g(3) = 3, g(4) = 5, g(5) < 6, g(6) < 8, g(7) < 9,g(3k) < 4k, and
gBk+1) <gBk+2) <4k+2 (k22

Here g(3) = 3 is due to (Okamura 1984), g(4) =5 to (T. Hirata-K. Kubota-O.
Saito 1984) and to (Mader 1985), the other results are due to (Okamura 1988).

Surprisingly for directed graphs the analogous situation is much simpler. The
following was observed by Shiloach (1979). Let us call a digraph D = (V, A) k-
linked on the ares if for any choice of k pairs {(s1,t1),. .., (Sk, t)} of (not necessarily
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distinct) terminals there are arc-disjoint paths p; from s; to f (i = 1,...,k).
Obviously such a digraph is strongly k-arc connected (that is every non-empty
proper subset of nodes has k entering arcs.)

Theorem 6.6. A strongly k-arc connected digraph is k-linked on the arcs.

Proof. Add a new node r to D and new arcs rs; (i = 1,2,...,k) and apply
Edmeonds’ disjoint arborescence theorem (Edmonds 1973). m]

We call a graph k-linked if for any choice of k pairs of terminals there are k
openly disjoint paths connecting the corresponding terminal pairs.

Theorem 6.7 (Jung 1970), (Larman and Mani 1970). A 2% connected graph is
k-linked.

It is not known if 2°* can be replaced by a linear bound. The natural 2k + 2
is not enough as can be seen from a Ky, with edges xyyy,..., x¢¥x removed (an
example due to (Strange and Toft 1983)).

In certain cases the cut condition is not strong enough to ensure the existence
of all required paths but the demands can almost be met:

Theorem 6.8 (Korach and Penn 1985). Suppose that G + H is planar and that the
demand edges are on k faces of G. If the cut criterion holds, there are edge-disjoint
paths connecting all but k — 1 terminal pairs so that for one face F, specified in
advance, all the terminal pairs on F are connected while for each other face F' the
terminal pairs on F' with one possible exception are connected.

Actually, Korach and Penn proved a more general result. There is an important
corollary to Theorem 6.8.

Corollary 6.9. Suppose that G + H is planar and H consists of k demand edges
(s, ;) endowed with integer demands d;. The supply edges e have integer capacities
c(e) so that the cut criterion holds. Then there are dy paths connecting s, and 1,
and d; — 1 paths connecting s; and t; (i = 2,3,...,k} so that each supply edge ¢ is
used by no more than c(e) among these 3 d; — k + 1 paths.

Another result of similar flavour is the following.

Theorem 6.10 (Itai and Zehavi 1984). In a graph s,,t; are terminal pairs (i=1,2)
such that there are k edge-disjoint paths connecting s; and t; (i = 1,2}. Then for each
m, 0 < m < k there are k edge-disjoint paths P,8,,5,...,58n @1, Q2,..., Qtem—1
such that each S; connects sy and 1y, each Q; connects s; and t and P connects
either 51 and t| or 52 and ta.
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7. Maximization

In combinatorial optimization sometimes we are interested in the existence of a
certain configuration (e.g., is there a perfect matching in a graph) other times
we need the biggest (or smallest) configuration (e.g. find the biggest matching).
Not surprisingly, the corresponding feasibility and maximization problem often
correlate and typically (though not always) the maximization problem is more
difficult.

For example, in the matching. case Tutte’s theorem on the existence of a
perfect matching is a direct consequence of the so-called Berge-Tutte formula
on the maximum cardinality of a matching. Conversely, the Berge-Tutte formula
can be derived from Tutte’s theorem via an elementary construction.

There are however other cases when a good answer to the feasibility problem
exists but the corresponding maximization problem is NP-complete. For example,
suppose that G has a perfect matching. Then the problem of finding a stable set
of |V|/2 elements is tractable, but to find a maximum cardinality stable set is
NP-complete. .

As far as (edge-) disjoint paths problems are concerned we have studied so
for problems of feasibility type. In the maximization problem we want to find the
maximum total number M of (edge-) disjoint paths connecting the corresponding
terminal pairs sty, S3t2,.. ., Stx (allowing many paths between one terminal pair).

In what follows we discuss, among others, some feasibility problems where the
corresponding maximization problem is solvable but the derivation needs some
work.

Let V), Va, ..., V; be a family 2 of disjoint subsets of ¥ such that each demand
edge connects different ¥;’s. By a multicut defined by # we mean the set of edges
uv of G such that u € V;, v ¢ V; for some i. The capacity m of a multicut is defined
to be 1/2Zd(V;). Let m; denote the minimum cardinality of a cut separating each
terminal pair. Obviously, my > m > M. If k = 1, then m; = M by Menger’s
theorem.

First, we will present two theorems for k = 2. In the first one, due to B.
Rothschild and A. Whinston (1966a), we assume that the degree of every non-
terminal node is even, in the second one, due to M. Lomonosov (1983), we assume
that G together with the two edges sit, s2t5 is planar.

For both cases let ¢; denote the cardinality of a minimum cut separating s;
and ¢; but not separating s3_;t3 ;. Let ¢12 denote the minimum cardinality of a
cut separating both terminal pairs. (Then ¢;2 = m;). Obviously ¢; +c; = cn2.

Theorem 7.1 (Rothschild-Whinston 1966a). If k = 2 and dg(v} is even for each
non-terminal node, then m; = M.

Proof. Assume first that c;s is even.

Case 1. d(s,) and d(t,) have the same parity (equivalently d(s;} and d(t;) have the
same parity). Define 2 demand graph H to consist of ¢; parallel edges between
51 and t; and ¢z — ¢; parallel edges between s; and t;. By Theorem 3.8 we are
done since G + H is Eulerian and the cut criterion holds.
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Fig.7.1

Case 2. Precisely one member, say sy and 53, of both terminal pairs has odd
degree. If both ¢| and c¢; are even (resp. odd), define H to consist of ¢; edges
between s and £y, ¢;2 — ¢ edges between s; and ¢; and just one edge between sy
and s, (resp. ¢, and ). If one of ¢; and ¢; is odd, say ¢, then let H consist of
c; edges between 5y and t;, c;p — ¢y + 1 edges between s» and ¢; and onc edge
between ¢, and ;. With some care one can check that in each case G+ H is
Eulerian and the cut criterion holds. Therefore Theorem 3.8 implies the existence
of the desired c;; paths.

If ¢)2 is odd, then one member, say 51 and s,, of both terminal pairs has odd
degree. Furthermore any set X for which V(X) separates both terminal pairs and
d(X) = ¢y contains exactly one of 5; and s;. Therefore if we add a new edge
e = 515 to G, then the new c), is one bigger that c;5. So it is even. For even ¢},
we have proved already the existence of ¢, edge-disjoint paths in G + e between
the two terminal pairs. If we take back the newly added edge ¢, we still have the
¢12 paths in G, as required. ]

Iet us call a cut C critical if it has a minimum number of edges from G
among all the cuts that separate the same terminal pairs as C does. Recall the
definition of separating and parallel sets (before Theorem 4.4)

Theorem 7.2 (Lomonosov 1983). Suppose that k = 2 and G + {s1t1, s2t2} is planar.
Then M is either cj2—1 or ¢;p. M = ¢12— 1 if and only if there is an odd cut V(T)
which does not separate either of the two terminal pairs and which can be covered by
three separating critical cuts V(X),V(Y),V(Z). Moreover X,Y,Z, T can be chosen
in suchawaythat Z < X, X and Y are non-parallel and T =(XNY)—Z. (See
Figure 7.1)

Proof. The original proof of Lomonosov consists of a direct construction and
is rather complicated. Here we derive the result from Theorem 4.4 of Seymour.
We can assume that ¢; > 0, ¢; > 0 and ¢;; > max(c;, ;) since otherwise the
situtation is trivial.
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Let H consist of ¢; — 1 parallel edges between s; and ¢; and ¢12 —¢1 parallel
edges between s; and 1, then the cut criterion holds and there is no tight
separating cut. By Theorem 4.4 we see that M > ¢z — 1.

The necessity of the condition in the second half of the theorem is straight-
forward.

Case I. c1 +¢cz=c12. . .
Let H consist of ¢; edges between s; and ; (i = 1,2). We are done if there is
a solution to the feasibility problem concerning G and H. Suppose there is none.

Then we have

Claim. There are tight non-parallel separating sets X,Y and tight sets Z; = X —
Y, Z; € X NY such that dg.u(X N'Y) is odd and Z; separates one of the two
terminal pairs while Z, separates the other.

Proof. By Theorem 4.4 there are tight non-parallel separating sets X and Y so
that dg,g(X N Y) is odd (and then automatically dg+n(X — Y), do+u(Y — X)
and dgiu(V — (X U Y)) are all odd). Assume that s; € XY, 5, €Y - X, 2 €
V—{(XuY)andr €XNY.

Let Z, be a minimal tight set separating s; and ¢; such that s55,f; ¢ Z;. Then
dg{(Z,) = ¢; and Z; contains one of s; and ¢y, say 1. Since du(X,Z,) =0, by
Lemma 3.1 Z, NY is tight. Therefore Z; € X by the minimal choice of Z;. Since
du(Z1,V —Y) =0, by Lemma 3.1 Z; — Y is tight so we obtain that Z, & X-Y.

It can be seen analogously that there is a tight cut V(Z;) separating s; and £
for which sy, t; ¢ Z2 and Z; iseither in XNY orin ¥V — (XUY). We can assume
that Z; = X N Y for otherwise we can work with ¥V —Y on place of Y. nl

LetZ=2Z,UZ,and T = XNY —Z. Since ¢13 < dg(Z) < dg(Z1) +dg(Z2) =
¢1 + ¢z = ¢12 we have dg(Z) = ¢12. Furthermore dg(T) = dg+n(T) = de+a(X N
uwv —_ &0+EANNV + N&Q+E~N~_ uJ. Since &Q+EAM‘ n %v is odd and &Q+=ANNV is even,
dg(T) is odd and therefore the theorem is proved for Case 1.

Case 2. ¢y +c2 > ci.

Let H' consist of ¢; edges between s; and #; and ¢j2 — ¢; parallel edges
between s, and ;. If there is a solution to the feasibility problem concerning
G + H’, then we are done. Otherwise, since the cut criterion holds, there are
separating non-parallel tight sets X’ and Y' suchthat s, € X' =Y, s2¢ X'UY’
and dgiz(X’ N Y') is odd. Suppose that X' and Y’ are minimal such sets. (To
avoid confusion we will call these sets H'—tight.)

Next, let H” consist of ¢, — 1 edges between s; and ¢; and ¢12 — ¢ +1
parallel edges between s; and t;. (¢ > O since otherwise we are at Case 1).
Again the cut criterion holds, so if the feasibility problem has no solution then
(by Theorem 4.4) there arc separating non-parallel H”-tight set X", Y" such that
si€X" —Y" 53¢ X'nY" and doyn(X" N Y") is odd. Suppose that X" and
Y” are minimal such sets.

It is not possible that X’ = X" and Y’ = Y" since do g (X' N Y') is odd,
therefore dgym(X' N Y') is even and dgin+(X” N Y") is odd. Assume that
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X' # Y’ By symmetry we can assume that X' ¢ X" thatis Z .= X'nX" c X"
Let T = X*nY' — Z. Since dg(X") = ¢13, X" is H'-tight. By Lemma 3.1
Z is H'—tight and separating. Since Z is a proper subset of X' and X’ was
chosen minimal, dg. g (Z N Y’) must be even. But then dg(T) = dgyu(T) =
derp(X'NY)—doy(ZNY' )+ 2dey(Z N Y', T) from which we conclude that
dg(T) is odd and sets X', Y',Z, T satisfy the requirements in the theorem. ]

There are cases when the maximization form is easier to handle:

Theorem 73a (Lovasz 1976b, Cherkasskij 1977). If the demand edges form a
complete graph induced by A (A = V) and dg(v) is even for v € V — A, then
m=M.

Proof. For a € A let ¢, denote the maximum number of egde-disjoint paths
connecting @ and 4 — a. By Menger's theorem this is the minimum cardinality
of a cut separating ¢ and A — a. Let us denote wn@& = F{c, : a € A). Obviously
c(A) = m = M. We are going to show, by induction on the number of edges, that
c{d) = M.

We can assume that G is connected. If A = V there is nothing to prove. Call
a set X < C critical with respecttoa€ Aif XN A= {a},|X| = 2 and d(X) = c,.

Case 1. There 1s a set X critical with respect to a certain a € 4. Contract the
elements of X into one node o'. In the contracted graph there are c{A4) edge-
disjoint A'—paths where A' = A—a+ 4. In X there are d(X) edge disjoint paths
from g to the edges in V(X). Pasting together the two sets of paths we obtain
c{A) edge-disjoint A—paths in G.

Case 2. There are no critical sets. Choose any two edges e, f which are incident
{0 a node v not in A. Because there are no critical sets, splitting off ¢ and g does
not reduce c{4) and we are done by induction. a

Generalizing this result to non-Eulerian graphs W. Mader (1978b) found the
following (much more difficuit) characterization for M.

Theorem 7.3. Let G = (V,E) be a graph and A a specified subset of nodes.
The maximum number of edge-disjoint paths connecting distinct elements of A is
min 1/2(Z(d(V3) — g(UV?))) where the minimum is taken over all collections of dis-
Joint subsets V1, Va,..., Vg for which |V, A| = 1. (Here d(X) denotes the edges
leaving X and q(X) denotes the number of components C of G— X for which d(C)
is odd.)

To formulate a node-disjoint version of Theorem 7.3 suppose that A is
independent.

Theorem 7.4 (Mader 1978c). The maximum number of openly rode-disjoint paths
connecting distinct members of A is equal to min(|Vy| + Z([1/2b(V,Vp}] : i =
1,2,...,k) where the minimum is taken over all collections of disjoint subsets
Vo,Vi,..., Vi of V. — A (k = 0) (where only Vy can be empty) such that



84 A. Frank

G — Vo —U(E(V) : i=1,...,k) contains no path connecting distinct nodes of A.
In the formula b(V;, Vy) denotes the number of nodes of V; which have a neighbour
outside Vy. .

in the next figure the solid points belong to A. There are two openly disjoint
A-paths and the only family where the minimum is attained is shown in the
picture.

b(Vi. Vo) = b(V2,%) =3 o =p

} 4

Fig. 7.2

This result can be regarded as a common generalization of Menget’s theorem
and the Berge-Tutte theorem. An immediate corollary of Theorem 7.4 is a result

of T. Gallai (1961):

Corollary 7.5. The maximum number of disjoint paths having end nodes in T is
mingey (K| + Z11/21C N T|]) where the sum is taken over the components C of

G—K.

Let us turn back to edge-disjoint paths. A common generalization of Theorems
7.1 and 7.2 has been found recently:

Theorem 7.6 (Karzanov 1985b). Let H = (T, F) denote the demand graph. If the
maximal independent sets of H can be partitioned into two classes such that both
classes consist of disjoint sets (which is equivalent to saying that the complement
of H is the line graph of a bipartite graph) and, in addition, if dc(v) is even for
veEV —T, thenm=M.

As far as the maximization problem is concerned for digraphs we mention
the following counter-part of Theorem 7.3a.

Theorem 7.7 (Frank 1989). In an Eulerian digraph D = (V,A4) the maximum
number of arc-disjoint paths connecting distinct nodes of a specified subset A of V
is equal to the minimum of Zo(V;) over all families of disjoint subsets V4, V2,..., Vil
of V for which |[VinAl=1 (i=12,...,]4]).

The proof goes along the same line as that of Theorem 7.3a.
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Professor Karzanov kindly informed me that this theorem was proved much
earlier by Lomonosov. Karzanov presented Lomonosov’s proof in: Combinatorial
Methods for Flow Problems (Inst. for System Studies, Moscow 1979, issue 3),
6-69, in Russian.

8. T-joins and T-cuts

Let G = (V,E) be an undirected graph. Let T be a subset of nodes with even
cardinality. A cut V(K)} is called a T-cut if [KN T| is odd. A T-join F is a set
of edges that has an odd number of edges incident to a node v if and only if
visin T. G has a T-join if and only if every component of G has an even
number of nodes from T (easy exercise). Obviously any T-join and T-cut has
an odd number of edges in common, in particular at least one. Therefore the
maximum number of disjoint T-cuts cannot exceed the minimum cardinality of
a T-join. The complete graph on 4 nodes, when T = V, shows that we do not
have equality in general. However,

Theorem 8.1 (Seymour 1981). In bipartite graphs the maximum number of disjoint
T-cuts is equal to the minimum cardinality of a T-join.

This theorem implies that (Lovasz 1976b) in an arbitrary graph G one half of
the maximum number of half-disjoint T-cuts is equal to the minimum cardinality
of a T-join. (Here half-disjoint means that each edge can be in at most 2 T-cuts.)
Indeed, subdivide each edge of G by a new node and apply Theorem 8.1. A weaker
version of this result, stating that the minimum cardinality of a T-join is equal
to the maximum of a fractional packing of T—cuts, was proved algorithmically
in (Edmonds and Johnson 1973). :

Because minimum T-joins and T-cuts packings have a great number of
applications we say some words about the algorithmic aspects.

A weighted generalization of Theorem 8.1 is the following.

Theorem 8.1w. Let d : E — Z be a non-negative integer-valued function with the
even-circuit property, that is, the d-weight of every circuit of G is even. Then the
minimum weight of a T-join is equal to max(> (y(4) : A<V, |[ANT| odd), y
non-negative gnd integer-valued, d(uv} = Y. (y(B) : |BNT| odd, |BN{uv} =1
Jor every uv € E)).

If we choose each weight to be 1, we are back at Theorem 8.1. On the other
hand this weighted version can easily be derived from Theorem 8.1. The problem
1s to find algorithmically the minimum and maximum in question.

Let m(uv) denote the minimum d—weight of a path in G between u and
v, (v,u € V). Obviously m{uv) < d(uv), m satisfies the triangle inequality, and m
has the even-circuit property if 4 has.

In order to construct 2 minimum weight T-join Edmonds and Johnson (1973)
associated the T-join problem with the following minimum weight perfect match-
ing problem. For each pair u,v € T compute m(uv) between u and v. Construct
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then a minimum m-weight perfect matching M in the compiete graph on T.
Finally, look at the union F of the minimum weight paths in G that connect
the pairs of nodes determined by M. It is easy to see that these |M | paths are
pairwise edge-disjoint and F is a minimum weight T-join. Because the mimimum
weight perfect matching problem is solvable in strongly polynomial time (as was
shown first by Edmonds (1965)), so is the minimum weight T-join problem.

To construct the optimal packing of T-cuts several algorithms have been
devised (Korach 1982, Karzanov 1986, Barahona 1987).

Here we exhibit the newest algorithm that seems to be conceptionally the
simplest. Its basic idea, due to A. Sebd (1988), is that not only the minimum
weight T-join problem reduces so handily to a minimum weight perfect matching
problem, but also its dual reduces relatively easily to the dual of the associated
matching problem.

To obtain an integral optimal solution to the dual matching problem we need
the following observation of Barahona and Cunningham (1988). Let Cr be the
complete graph on a set T of even cardinality and let m be a non-negative
integer-valued weighting on the edges of Cr with the even-circuit. property.

Barahona and Cunningham proved the following.

Lemma 8.2, If m satisfies the even-circuit property, then the minimum weight of
a perfect matching in Cr is equal to max(3.(y(4) : A< T, |4} odd), y(4) =0
for \A| = 3, y integer-valued and m(uv) = 3 (y(B) : |B| odd, |BN {u,0}} = 1 for
every edge uv) ).

This follows easily from Theorem 8.1w of Seymour. The main point in
Barahona and Cunningham’s paper is the observation that a natural modification
of Edmonds’ algorithm provides not only the minimum weight perfect matching
but also the integer-valued dual y occuring in the lemma. In other words,
the minimum and the maximum in the lemma can be computed in strongly
polynomial time.

The modification consists of two parts. First, the minimum weight of a perfect
matching is considered rather than the maximum. Second, unlike Edmonds’
algorithm, where an alternating forest is grown, Cunningham and Barahona's
algorithm grows only one alternating tree at a time. This ensures that the current
dual variables are automatically integer-valued if the even-circuit property holds.

It is obvious from the algorithm that the family & = {4 : y(4) > 0} is
laminar. Qur second observation is the following.

Lemma 8.3. If, in addition to the assumptions in Lemma 8.2, m satisfies the triangle
inequality, then y can be chosen non-negative.

Proof. Let us start with an optimal y occuring in Lemma 8.2. If this is non-
negative, we are done, so suppose that y(z) < 0 for some z € T. For any set
A € F containing z increase y(T — A} by y(A) and then revise y(4) to be 0.
This way we get another optimal solution such that no member of # contains
z. (Such a change keeps # laminar).

Packing Paths, Circuits, and Cuts ~ A Survey 87

Denote p{uv) := Y (v(4) : |AN {u,0}] = 1). The dual constraint in Lemma
8.2 requires that p(uv) < m(ur) for every u,v € T. There must be an edge uz
incident to z for which p(uz} = m(uz) since otherwise by increasing y(z) by 1 we
would get a better y.

Let A be a maximal member of # containing u. For v ¢ A we have

(*) p(uv) = pluz) + plvz) — 2y(z)

Let A := min(—y(z), y(4)) and revise y by increasing y(z) by 4 and decreasin
y(4) by 4. ,

We claim that the revised dual solution is feasible. To see this all we have
to show is that m(vz) — p(vz) = A for every v ¢ A. Actually, this inequality
turns out to be strict. Indeed, using (*) and the triangle inequality we get
m(vz) = m(uv)—m(uz) = m(uv) —pluz) > p(uv) — p(uz) = p(vz) —2y(z) > p(vz) +4,
as required.

Therefore we have another optimal dual solution. Repeat this procedure as
long as there is a point z in T with y(z) negative. We claim that after at most
2|T| iterations y becomes non-negative. Indeed, at every iteration the number of
points v with negative y(v) plus [#| reduces and this sum is at most 2|T|. (]

Let # < 2¥ be a laminar family and y : & — Z, a function. We call the
pair (v, #) a weighted laminar family on § as follows. Let #5 = {X = Fn§ :
for some F € #} and let ys(X) =Y (y{F): Fe &, X =8NF)for X € F5. We
will say that (y, #) is an extension of (ys, Fs) on V.

Let m be a metrics on V. We say that a w—laminar family (y, %) on § is
Seasible if m(uv) =Y (y(F) : |Fn{uv}| =1, F € F) holds for every u,v € §.

Lemma 8.4 (Sebd 1988). Every feasible w—laminar family (y,#) on S can be
éxtended (in polynomial time) to a w—laminar family on V.

Obviously, if we apply the lemma to the w-laminar family (y,%#) on T
obtained in Lemmas 8.2 and 8.3, we obfain an optimal solution to the T-packing
problem in Theorem 8.1w.

Originally, the lemma was proved, using a different method, by A. Sebd (1988).
The present proof has a slight advantage that it provides a conceptionally simpler
algorithm.

Proof. We are going to prove only that (y, %) can be extended on aset S+t (t €
¥V — 8} because then, element by clement, we can extend (y, %) on V. So suppose
that V = 8§ + .

It is well known that a laminar family # can be represented with the help of
an arborescence D = (¥, 4) (with V'V = @) and a mapping from V to V' as
follows. There is a one to one correspondence between the edges of D and the
members of # with the property that for every edge e of D the corresponding
member of # consists precisely of those elements of § whose map is reachable
in D from the head of E. We denote the map of an element u € ¥ by v
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For an edge f of D let y(f) := y(F) where F is the member of # corresponding
to f. For «/,v' € V' let y(u't') denote the y-length of the unique (undirected) path
in D between «' and ¢. In this representation the feasibility of (y, #) means that
m(uv) = y(u'v') for every u,v € S and the lemma follows from the following

Claim. Either there is a node t' of D for which
(*) m(ty) = y('v) for everyuc S

or there is an edge e = 7' of D and an integer 0 < h < y{(s'2'} so that subdividing
e by ' and defining y(5't) .= h, y(t'z) = y(s'z"} — h (+} holds true.

Proof. Let ¥ denote the root of D. If m(tu} > y(r'u’) holds for every u € S, then
¢’ :=r' will do. So suppose that y(r'v') — m(tu) > 0 for some u € § and let up € S
be an element for which M = y(r'u}) — m(tup) is maximum.

Let ¢z’ be an edge of the path from 7 to u) in D for which y(r’s’) <
M < y(¥'z'). If y(r's) = M, then choose ¢’ := §. If y(r's) < M, then subdivide
sz’ by a new node ¢ and choose h := M — y(r's'}. With this choice we have
y(t'uy) = m{tuo) and we claim that (+) is satisfied. To see this let D' denote the
subdivided arborescence and let u € § be arbitrary.

Case 1. The path in D’ from r’ to  contains ¢. Then y(r'uy) = y(r't) + y(t'up).
By the maximal choice of up we have y(r'up) —m(tuo) = y(r'u’) —m(tu}. Therefore
m(tu) = y(r'v') + mituo) — y('up) = y(r'w’) — y(r't) = y ().

Case 2. The path in D' from r' to «' does not contain . Then y(u/up) = y(t'up) +
Y(E'). We have m{tu) > miuuo) — mituo) = mluuo) — y(1iy) = ylu'riy) — y(t'sy) =
y('). o

This one element extension can be carried out in O(n) steps, therefore the
complete extension needs no more than O(n?) steps.

There is a version of Theorem 8.1 that ensures a maximum packing of T-cuts
with a special structure. For a subset X of nodes let gr(X) denote the number
of T-odd components in G — X (a component is T-odd if it contains an odd
number of nodes in T).

Theorem 8.5 (Frank, Sebd and Tardos 1984). In a bipartite graph G = (V1,V2; E)
the minimum cardinality of a T-join is equal to max Zqr(X;) taken over all parti-
tions {X;} of V1.

This result immediately implies Theorem 8.1: for an optimal partition {X;}
take the T-cuts defined by the T-odd-components of G —X; (i=1,2...).
Before deriving these results let us mention an easy but useful lemma.

Lemma 8.6 (Mei-Gu Guan). A T-join F is of minimum cardinality if and only if
no circuit of G uses more edges from F than from E — F (or in other words, there
is no circuit of negative total weight in G where the edges of F have weight —1 the
other edges have weight 1).
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‘We call a circuit of negative total weight a negative circuit.

To prove the non-trivial direction of Theorem 8.1 one starts with a minimum
T-join F and wants to find |F| disjoint T-cuts each of which containing one
element of F. Obviously F is a forest since the edge-set of a circuit could be left
out of F without changing the parity of the degrees. Here comes an observation:
a cut that contains exactly one element of F is automatically a T-cut. Therefore
Theorem 8.1 follows from the following.

Theorem 8.1, In a +1 edge-weighted bipartite graph there is no negative circuit if
and only there are edge-disjoint cuts such that each contains one negative edge and
each negative edge is contained in one cut.

(This is exactly Theorem 3.6" except that the wording is different.)

Actually Theorem 8.1’ follows from Theorem 8.1, as well. Indeed, the “if”
part is easy. To see the “only if” part let F denote the set of edges of weight
—1. Let T consist of those nodes that have an odd number of edges incident to
F. Then F is a T-join and, by the lemma, F is a minimum T-join. By Theorem
8.1 there are |F| disjoint T-cuts each of which necessarily contains exactly one
element of F.

Using the same idea, Theorem 8.1w transforms into:

Theorem 8.1'w. Let G = (V,Ft UF ) beagraphand d : FFUF~ — Z an
integer-valued weight-function for which d(€) = 0ife€ Ft and d(g) <0 ife € F~
and d satisfles the even-circuit property. There is no negative-circuit in G if and
only if there is an integer-valued vector y : 2V — Z, so that y(4) > 0 implies
that dp-(A) = 1, that Y.(y(A) : [An{u,v}| = 1) < d(u,v) for every uw € F* and
S (4 AN {u,v}| = 1) = d(uv) for every wv € F—.

Note that the algorithm given after Theorem 8.1w can be used to construct
either a negative circuit or a packing y. Namely, define T = {v € V,dF-(v) odd}
and find a minimum weight T-join F with respect to the weight function 4’ |d (e)|.
If d'(F) < d'(F™), then the symmetric difference F~ @ F contains a circuit of
negative d-weight. If &’(F) = d'(F7), then the vector y in Theorem 8.1w will do
for Theorem 8.1'w.

For later purpose we phrase here a fractional version of Theorem 8.1".

Theorem 8.1”. Let G = (V,E) be a graph where E is partitioned into two sets E
and F. Let y : E — R be a rational vector for which y(e) 2 0ife € E and y(e) <0
if e € F. There is an assignment of non-negative variables z(B) to cuts B containing
exactly one edge from F for which y(e) > X(z(B) : e € B) for every e € E and
—y(e) < X(z(B) : e € B) for every e € F if and only if there is no circuit of G with
negative y-weight.

If G is planar, we can take the dual graph and then Theorem 8.1 transforms
into Theorem 3.6.
We can reformulate also Theorem 8.5, as follows.
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Theorem 8.5. In a +1 edge-weighted bipartite graph G = (V1, V1, E) there is no
negative circuit in G if and only if there is a partition {X,Xa,..., Xi} of Vi such
that no component of G—X; is entered by more than one negative edge. (i = 1,..., k)

Proof (“only if” part). We use induction on the number of nodes. If there are
two nodes x and y in the same class V; with no negative path connecting them,
then identify x and y into a single new node z. By induction there is a partition
with the desired property. After splitting up z the same partition of V) satisfies
the requirements.

So assume that there is a negative path between any two nodes in the same
class. We are done by the following lemma of A. Sebd. See (Frank, Sebd and
Tardos).

Lemma 8.7. Let G = (V,Va;E) be a simple bipartite graph with at least three
nodes and w a +1-weighting on E. Suppose that there is no negative circuit but
there is a negative path between every two nodes in the same class V;. Then G is a
tree and w is identically —1.

Proof. Let P be a path of minimum weight m that has as few edges as possible.
Let ¢t be an end node of P and tx the first edge of P. Then (*) any starting
segment of P has negative weight, in particular, w(tz) = -~1. By induction the
next claim implies the lemma.

Claim. ix is the only edge of G incident to t.

Proof. Suppose ty is another edge. w(ty) must be positive since, if y € P, then
P[t, ¥] Uty is a negative circuit, if y ¢ P, then P Uty is a path of weight m — 1.

By hypothesis there is a negative path Q between x and y. By parity, w(Q) <
—2. O passes through ¢ since otherwise Q -+ xt + ty would form a negative circuit.
Moreover @ traverses the edge xt. For otherwise the weight of segment Q[t, x] is
at least 1, therefore the weight of Q[t, y] is at most -3, and then Q[z, y] + ty would
form a negative circuit.

We also see that circuit C = Q[t, ¥] + ty must have weight 0. Now C and P
have solely node t in common. Indeed, let z € P n C —t be the first node of P
(starting at t) distinct from ¢. By (*) w(P[t,z]}) < 0. Hence the weight of both
segments of C between z and t must be positive contradicting w(C) = 0. But
now the paths P and Q[t,y] together form a path of weight smaller than m, a
contradiction. (]

Theorem 8.5 immediately implies the Berge-Tutte formula for the maximum
cardinality of a matching, It also has the following pretty corollary.

Corollary 8.8 (Frank, Sebd and Tardos 1984). A graph can be made Eulerian by
doubling (parallelly) at most k edges if and only if Zq(V}) < 2k for all partitions
{V1,..., Vam} of V where q(X) denotes the number of components C of G— X with
V(C) odd.

It is interesting to observe that function g also played a role in Theorem 7.3.
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Exploiting further the idea introduced in Lemma 8.7, A. Seb6 (1987) found
the following refinement of Theorem 8.5".

Theorem 8.9 (Sebd 1987). Let G be a partite graph and w a 1 weighting on the
edges such that there is no negative circuit. Let s be a specified node of G and let
A(v) denote the minimum w-weight of a path from s to v. Then for any integer i and
for a component D of the subgraph induced by V; = {v : A(v) <)} the cut V(D)
contains exactly one negative edge if s ¢ D and no negative edge if s € D.

This theorem implies Theorem 8.1': the set of cuts of form V(D}, where D
is a component of the subgraph induced by V; and s ¢ D, provides the desired
packing. It is also easily seen that Theorem 8.5 follows from Theorem 8.9.

Let F denote the set of edges e for which w{e) is -1. Let T consist of those
nodes of G that have an odd number of incident edges from F. For two nodes
s,v let T’ be the symmetric difference of T and {s,v}. It is not hard to see that
A(v) is the difference of the minimum cardinality of a T'-join and the minimum
cardinality of a T-join. Thus, by the remark after Theorem 8.1w, A(v) can be
computed.

A striking consequence of Sebd’s theorem is that, once the values A(v) have
been computed, the packing of cuts in Theorem 8.1’ is also immediately available.

If G is planar in Theorem 8.9, a planar-dual form of the theorem can be
stated. In a certain sense we obtain this way a canonized form of Theorem 3.6.
Namely, suppose that G + H is planar and Eulerian and G + H has a fixed
embedding into the plane. Assume that the cut criterion holds for G and H. For
any face C of G+ H let A(C) :=min(|ENP|—|FNP|: P adual path from the
unbounded face to a C). For each integer i let S; denote the union of faces C
of G + H for which A(C) < i. Then each non-empty 5; uniquely partitions into
connected regions of the piane (connected in planar sense, that is, its boundary
is a circuit of G + H). Call such a region an island if it is bounded.

Corollary 8.10 (Sebd 1989). A circuit of G+ H bounding an island contains exactly
one edge of H. Moreover, these circuits are edge-disjoint and each demand edge is
contained in one of them.

We conclude this section by mentioning a recent theorem by AM.H. Gerards
(1988). By an odd K; we mean a subdivided K, such that each face is odd. By
a prismn we mean the graph on six nodes consisting of two disjoint triangles and
three disjoint edges connecting the two triangles. By an odd prism we mean a
subdivided prism so that the two subdivided triangles are odd, while the two
four-gons are even (see Figure 8.2).

Theorem 8.11 (Gerards 1988). Let G = (V,E) be a graph and T < V a subset
of nodes of even cardinality. If G contains neither odd K4 nor odd prism, then the
maximum number of disjoint T-cuts is equal to the minimum cardinality of a T-join.

Note that both bipartite graphs and series-parallel graphs satisfy the assump-
tions therefore the theorem can be considered as a common generalization of
two earlier results of Seymour.
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Almost bipartite graphs (graphs with a node covering all odd o:.a&@ m_.mo
satisfy the assumption. Applying first Theorem 8.11 for planar almost Evﬁ.m:a
graphs and then taking the planar dual one can easily derive the following

extension of Theorem 3.6.

Corollary 8.12. Suppose that G+ H is planar and the degree dg.p(v) of every node
v not on the infinite face of G+ H is even. Then the cut criterion is necessary and
sufficient for the solvability of the edge-disjoint paths problem.

9, Packing Cuts and Circuits

There is another fundamental theorem concerning packing of cuts. Let Q =(V,E)
be a directed graph. For a subset X of nodes, if there is no edge leaving X, the
(non-empty) set of edges entering X is called a directed cut.

Theorem 9.1 (Lucchesi and Younger 1978). The maximum number of disjoint
directed cuts is equal to the minimum number of edges covering all the cuts.
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For a short proof, see (Lovasz 1976a). (Frank 1981) includes an algorithmic
proof. By planar dualization one obtains:

Theorem 9.1'. In a planar directed graph the maximum number of edge-disjoint
directed circuits is equal to the minimum number of edges covering all the directed
circuits.

An analogous min-max relation holds for minimum directed cuts. By a
minumum directed cut we mean a directed cut of least cardinality. The following
result is a special case of a theorem of Edmonds and Giles (1977).

Theorem 9.2. In a directed graph the maximum number of disjoint minimum directed
cuts is equal to the minimum number of edges covering all the minimum directed
cuts.

This result can also be dualized. For example one gets: In a planar directed
graph with no oppositely directed edges the maximum number of edge-disjoint
directed triangles is equal to the minimum number of edges covering all directed
triangles.

Sometimes the theorem of Lucchesi and Younger can be used for undirected
graphs. For example, given a planar Eulerian graph G, what is the maximum
number of circuits into which the edge set of G can be partitioned? D. Younger
observed (as was communicated to me by W. Pulieyblank) that if we orient the
edges of G in such a way that each face is surrounded by a directed circuit
(we assume that G is 2-connected), then the maximum number of edge-disjoint
directed circuits in the orientation of G is the same as the maximum number of
edge-disjoint circuits in the undirected graph. (This is a useful exercise).

In Section 3 we briefly indicated how to derive Theorems 3.2-3.6 from their
fractional forms. In the next few paragraphs we exhibit an approach, related to
packing of cuts, by which the cut criterion can be proved to be sufficient for the
existence of a multiflow, at least in some special cases.

Let us recall Theorem 2.0: a multiflow problem has a solution if and only
if the distance criterion holds. Therefore if we want to show that in a certain
case already the cut criterion is sufficient, we have to show that the cut criterion
implies the distance criterion. One way to do so is, roughly, to point out that the
vector w in Theorem 2.0 can be expressed as a non-negative linear combination
of cuts.

Let G = (V,E) and H = (V,F) be graphs and w a non-negative rational
weight function on E. Let dist, (4, v) denote the minimum w-weight of a path in
G connecting 4 and v.

Theorem 9.3. Suppose that either

(a) (Schrijver 1990) G = (V,E) is planar, C\ and C; are two specified faces of
G and H = (V,E) is the union of two complete graphs on V{C;) and V(C,),
or

(b) G+ H isiplanar, or
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(c) H = (V,F) is either K4 or Cs (Karzanov 1985a) or a double-star (Seymour
1978). ‘

(A) Then there exists a fractional packing of cuts, that is an assigment on non-
negative varigbles x(B) to cuts B such that for each edge wv € F dist,(u,v) =
Z(x(B) : B a cut, uv € B) and for each edge uv € E w(w) = Z(x(B) : B a cut,
ur € B).
(B) Ew.qmoes.. if w is integer-valued such that every circuit of G has even w-weight,
then x can be chosen integer-valued.

Proof of the fractional versions of Theorems 3.3, 3.6 and 3.8. We use part (A) of
Theorem 9.3. The statement corresponding to cases (a),(b} and (c} will imply the
fractional versions of Theorems 3.3, 3.6 and 3.8, respectively. Indeed, assume that
there is a w violating the distance criterion. Let x be the variables in Theorem
9.3 assigned to the cuts. We have

Z(disty(u,v) : uv € F) = Z(Zx(B) : Bacutand w € B) : w € F) =
Z(x(B)[FNB|: Bacut) < Z(x(B)JENB|: Bacut)=2(Zx(B): Bacut
and uv € B) : wv € E) < Z(w(uwv) : uv € E), contradicting the assumption that
w violates the distance criterion. Here the first inequality follows from the cut
criterion. =]

Notice that the above derivation works in the other direction as well, that is
the fractional versions of Theorems 3.3, 3.6 and 3.8 imply part (A) of Theorem
9.3,

Remark. In this application we used only part (A) of Theorem 9.3. Part (B)
should be considered interesting for its own sake. Actually, Schrijver, Karzanov
and Seymour proved part B of cases (a) and (c), respectively, and observed that
part (B) immediately implies part (A). (A relatively simple proof of Karzanov’s
theorem can be found in (Schrijver 1988a). Karzanov (1986b) gave a constructive
proof of part B in case (a) that provides a strongly polynomial algorithm). The
story of case (b) is different, We are going to show that part (B) of case (b} is
equivalent to the foltowing theorem of P. Seymour.

Theorem 9.4 (Seymour 1979). Let G' = (v',E) be a planar graphand w' :E > Z,
such that w(B) is even for every cut B of G. There are non-negative integer variables
x(C) assigned to the circuits C of G’ such that w'(e) = Z(x(C) : C a circuit and
e € C) holds for every edge e if and only if w'(e) < w'(B — e) holds for every cut
B and edge ¢ € B.

(The proof of this theorem is rather difficult.} By planar dualization we obtain

Theorem 94'. Let G = (V,E) be a planar graph and w' : E — Z, such that
w{(C) is even for every circuit C of G. There are non-negative integer variables
x(B) assigned to the cuts B of G such that w'(e) = Z(x(B) : B a cut and e € B)
holds for every edge e if and only if (*) w'(e) < w'(C — ) holds for every cut C
and edge e € C.
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Proof of part (B) of Theorem 9.3b. Replace each edge ¢ of G by a path of two
edges ¢ and ¢’ (that is subdivide each edge by a new node) and let w'(e) :=
L(w(e)/2)], w'(e”) = [(w(e)/2]. Since w(e) = w'(¢/) + w'(e"') this operation does
not affect the w-distances of original nodes. For uv € F let w'(uv) := dist,, (u,v)
and let G = (V,E) be a graph where E = FUE' U E",

{Here E' and E” denote the corresponding copies of E).

Since every circuit of G has even w-weight, every circuit of G has even w'-
weight. An easy argument shows that the w'-distance of u and v{uv € F) in G is
dist,, (1, v). Therefore the hypotheses and (*) of Theorem 8.4° hold and then there
is an x as described in the theorem. Since every cut of G which is not a star of a
new node determines a cut of G, by leaving out these stars we obtain from x the
desired solution to part {B) of Theorem 9.3b. m]

Proof of Theorem 9.4' from Theorem 9.3. Let E and F be two copies of E (that
is, to each edge ¢ € E there corresponds an edge in E and an edge in F that
are parallel). Apply part B of Theorem 9.3b and let x be the integer vector
provided by the theorem. Since (*) implies that dist,(u, v) = w'(e) for every edge
e =uv € E, x will do for Theorem 9.4’ as well. m

As far as part (A) of Theorem 9.3b is concerned, it follows from part (B)
Theorem 9.3b but there is a more general result here. An equivalent reformulation
of part (A) of Theorem 9.3b is the following.

Theorem 9.5, Let G = (V,E) and H = (V, F} be graphs for which G+ H is planar
and let w and w' be two non-negative rational weight functions on E and on F,
respectively. Then there exists a fractional packing of cuts, that is an assignment
of non-negative variables x(B) to cuts B such that for each edge uv € F w'(f) <
Z(x(B) : B acut, f € B) and for each edge uv € E w(uw) = Z(x(B) : B a cut,
uv € B) if and only if W' (f) < w(C — ) holds (equivalently, w'(f) < dist,.(u,v))
Jor each circuit C of G + H containing exactly one edge f = uv from F.

Now the promised generalization states that if we take the planar dual form
of Theorem 9.5, then planarity can be left out from the premisses.

Theorem 9.5 (Seymour 1979). Let G = (V,E) and H = (V,F) be two graphs
and let w and w' be two non-negative rational weight functions on E and on F,
respectively. Then there exists a fractional packing of circuits, that is an assignment
of non-negative variables x(C) to circuits C such that for each edge uv € F w'(f) <
Z(x(C) : C a circuit, up € C) if and only if w(f) < w(B — f} holds for each cut
B of G + H containing exactly one edge f = uv from F.

Proof. By Farkas’ lemma if the desired x does not exist, then there is a vector
y:E—->Rwith yle) =0if e € E, y(e) < 0if e € F such that y(C) = 0 for every
circuit of G+ H and (*) Z(y{e)w(e) : e€ EY+Z(y( W' () : fFe F) <.

Apply Theorem 8.3” and let z be the vector in the theorem. We have
Z(-yifwW' () : feF)<ZW({Z(z(B): e B, B a cut containing solely
ffrom F): e€ F} £ Z(w(B — )Z(z(B) : B a cut containing solely f from
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F): feF) =ZweZ(B): e€ B, Bacut containing onec element of
F): ec E) < Z(y(eyw(e)) : e € E), contradicting (*}. o

(Note that the relation between Theorems 9.5 and 8.1” is the same as the
relation between the fractional versions of Theorems 3.3, 3.6 and 3.8 and part A
of Theorem 9.3a, b and c, respectively.)

The problem of Theorem 9.5 can be interpreted so that one wants to find a
fractional packing of circuits of G + H such that certain edges satisfy an upper
bound condition (edges in E) while other edges satisfy a lower bound condition
(edges in F). We can impose both lower and upper bounds for every edge:

Theorem 9.6 (Seymour 1979). Let G = (V,E) be an undirected graph endowed with
two functions f 1 E - Ry, g : E — Ry U {c0} for which f < g. There are non-
negative variables x(C) assigned to the circuits C of G for which f(e) < Z(x(C) : C
a circuit and e € C) < gle) holds for every edge e if and only if Z(f(e) : e enters
X) < Z(gle) : e leaves X) holds for every subset X of nodes. Moreover, if f and
g are integer-valued, x can be chosen integer-valued.

An important difference between the directed and the undirected case is that
the special case f = g is trivial for directed graphs while this is the crucial part
in Seymour’s proof of the undirected case.

Another essential difference is that for directed graphs one has the integrality
result which is not so for undirected graphs. The Petersen graph shows that the
integral packing of circuits does not necessarily exist: definc f and g to be 2 on
the edges of a specified perfect matching of the Petersen graph and 1 otherwise,
In this view we should even more appreciate Theorem 9.4. (We note that even
for planar graphs there is no known characterization for the existence of packing
circuits if lower and upper bounds are imposed on the edges).

Let us conclude this section by presenting a gencralization of Theorem 9.4.
Let G = (V,E) be an Eulerian graph. At every nodev € V a partition #(v) of
the edges incident to v is specified. A member of #(v) is called a Jorbidden part
and a subset of a forbidden part is called a forbidden set if it has at least two
elements. Let 2 := U(P(v) : v € V) denote the set of forbidden parts.

A circuit of G is called good if it includes no forbidden sets. If a cut § contains
more than |S| /2 elements from a forbidden part P, then S is called bad {with
respect to ).

Theorem 9.7 (Fleischner and Frank 1988). The edge set of a planar Eulerian graph
can be partitioned into good circuits if and only if there are no bad cuts.

This theorem immediately implies Theorem 9.4: replace each edge e by w(e)
parallel edges and let the forbidden parts consist of the sets of parallel edges.
Another special case of the theorem is an earlier result of H. Fleischner (1980)
when each forbidden part has at most two elements.
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